NL2030051B1 - Down-draft co-current reduction furnace (DCR Furnace) - Google Patents

Down-draft co-current reduction furnace (DCR Furnace) Download PDF

Info

Publication number
NL2030051B1
NL2030051B1 NL2030051A NL2030051A NL2030051B1 NL 2030051 B1 NL2030051 B1 NL 2030051B1 NL 2030051 A NL2030051 A NL 2030051A NL 2030051 A NL2030051 A NL 2030051A NL 2030051 B1 NL2030051 B1 NL 2030051B1
Authority
NL
Netherlands
Prior art keywords
metallic material
reaction chamber
reductant
reduction
gas
Prior art date
Application number
NL2030051A
Other languages
Dutch (nl)
Inventor
Feije Pronker Wiebe
Original Assignee
Pronovation B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pronovation B V filed Critical Pronovation B V
Priority to NL2030051A priority Critical patent/NL2030051B1/en
Priority to PCT/EP2022/084781 priority patent/WO2023104881A1/en
Application granted granted Critical
Publication of NL2030051B1 publication Critical patent/NL2030051B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/08Shaft or like vertical or substantially vertical furnaces heated otherwise than by solid fuel mixed with charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/023Making spongy iron or liquid steel, by direct processes in shaft furnaces wherein iron or steel is obtained in a molten state
    • C21B13/026Making spongy iron or liquid steel, by direct processes in shaft furnaces wherein iron or steel is obtained in a molten state heated electrically
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • C22B5/14Dry methods smelting of sulfides or formation of mattes by gases fluidised material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/005Shaft or like vertical or substantially vertical furnaces wherein no smelting of the charge occurs, e.g. calcining or sintering furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/062Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/142Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving along a vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/80Interaction of exhaust gases produced during the manufacture of iron or steel with other processes

Abstract

A process and reactor for the reduction of metal ores to bare metal are disclosed. More specifically, it describes a process for the reduction of iron oxides into DRI metal (e.g. HBI). The process is characterized by a gravitational plug-stream of the ore in reduction shafts within a refractory structure. Both the reducing agent (in gas phase) and the ore are fed from the top side of the shafts. Vlfithin the shafts, both the solid phases and the gas phases are heated by the hot surfaces of the shafts walls. The produced metal is off loaded at the lower side of each shaft. The developing off-gas is led from the lower side of each reduction shaft into combustion channels that run in parallel with the reduction shaft within the refractory structure. Vlfithin the combustion channels, the off gas is (partially or completely) combusted to supply the necessary thermal process energy and is led upwards through the refractory structure. The process is particularly suited to reduce iron with hydrogen since the degree of utilization of the hydrogen will be higher than with other processes. The process is also suited to process zinc containing or phosphorous ores since enrichment in the feed, which is the case in current art up-draft furnaces, is prevented.

Description

P35399NLO0
Title: Down-draft co-current reduction furnace (DCR Furnace)
Technical Field
The present invention relates to the reduction of metal ores using a reduction gas, specifically a hydrogen containing reduction gas such as methane, syngas or particularly hydrogen. The invention relates too to the reduction of iron ores containing high percentages of ‘volatile’ metals, e.g. zinc, or ‘volatile’ non-metals , e.g. phosphorous minerals, into bare metal, e.g.
DRI or HBI.
Terminology
DCR Furnace:
Acronym for Down-draft Co-current Reduction Furnace
Down-draft:
A down-draft reactor is a configuration for a gas - solids reactor where the gas flow within the reactor is directed downwards. This means that the gas supply towards the reaction process is placed higher and above the gas exit for the off-gas from the reaction process.
Co-current:
A co-curent reactor is a configuration for a gas — solids reactor where the gas flow and the reacting solids have the same direction of movement within the reactor, more specifically, in the area where the main reactions take place.
Volatile metals:
Volatile metals are those metals which have a boiling point below or not far off from the operational temperature within the specific reactor. In the field of iron ore reduction, relevant volatile metals are arsenic, cadmium and specifically zinc.
DRI:
Acronym for Direct Reduced Iron: Iron made from iron ore by a reducing gas where the ore does not reach the melting point of either ore or metal.
HBI:
Acronym for Hot Briquetted Iron: Briquettes pressed from hot iron lumps or pellets, e.g. those leaving a DRI reduction furnace.
Prior Art
Many metal ore or iron ore reduction processes and technologies already exist or are described in the public domain. To describe what this process discriminates, these prior art processes are described along common properties which group those prior art processes or methods in different aspects in which they differ from the down-draft co-current reduction process. In this respect, only reducing gas — based reduction processes are considered {thus not coal based or cokes-based processes). e Patent US1871848 e There are reactors where the last reduction step (from FeO to Fe) takes place while the Wustite and iron are in a molten, fluid or in a melting state. These so-called melting reactors are the blast furnace, the COREX reactor and Hi-melt and Hisarna reactors.
For the DCR Furnace, the full reduction process takes place in solid state of all metal and metal oxide components in the process. Reactors where the reduction takes place while iron and its ores are in the solid state are so called DRI reactors. e Within most reactors, the iron ore and iron phases move in vertical, downward direction. Some DRI processes, however, have their dominant movement direction in the horizontal plane, like the ITMK3 process, Sidcomet, SL/RN process and Redsmelt
NST. A special case is the so-called Primus process.
For the DCR Furnace, there is a single, vertical, gravitational driven downward path of movement for the iron ore in a reactor shaft. e There are several Iron ore reduction processes where the primary reduction steps take place in a single or in multiple connected fluidized bed reactors. The gas phase moves upward through the ore phase which forms or maintains a fluidized mass where loose particles constantly mix with the gas phase. Examples are the Finmet, the Fior, the Finex, the KDRI and with hydrogen the HYFOR processes.
Within the DCR Furnace reaction shaft, the iron ore moves downward as a solid, permeable mass while gas phase is moving downward as well (at higher velocity).
The solids are not fluidized. e Current art shaft-reactors are up-draft processes: The location where a gas phase is injected into the reaction process is located at a lower level relative to the location where the gas exits the active process phase, the gas(ses) draft upwards through the reactor shaft. Examples are, aside the Blast Furnace, the Midrex, the Hyl and specifically for hydrogen the Hybrit processes.
The DCR process again is a down-draft process where the reaction gas moves downwards through the permeable ore phases while reducing them.
e With gasses moving upwards in most reactor types, and solid components moving downwards, most non-fluidizing shaft type reactors house a so-called counter-current reaction process.
Within the DCRF reactor, the gas moves downwards through the reaction process, in the same direction as the ores move. It is a so called co-current process. e Further with respect to geometry, most vertical reaction vessels have a height - diameter ratio between 2 and 5, specifically so when the hot reaction zone is considered. Many of those shafts have some form of a pear-shape with a larger shaft diameter in the area where reaction intensity is highest.
The DCR process runs in one or multiple parallel shafts with a height — diameter ratio of between 6 and 12. Furthermore, the reaction shafts of the DCR process are linear in shape with little or no diameter variation over the length of the shaft. e A distinctive aspect of many reduction processes is that, to provide the necessary thermal input to the processes, some of the reductant is combusted by injecting air or oxygen into the process, more particularly into the reducing mass or into the space where the actual reduction reactions of the ore take place.
The DCR process distinguishes itself by an enclosed reaction space without oxygen addition and a thermal input to the process by radiation and conduction through the refractory wall of the reduction shaft. e Many laboratory scale reduction furnaces are descried in many scientific articles.
Some mimic one of the above described large-scale processes, some are used as laboratory set-ups. All those furnaces facilitate badge processes without a continuous flow of the ore — metal mixture through the reactor.
Summary (of the invention)
The invention is claimed in the attached claims.
This invention comprises a process and a possible embodiment for the reduction of metal ores (metal oxides, metal sulfides, metal hydroxides, metal oxides containing slags or any other form) to metal or a high metal-grade product. This invention is particularly aimed at reducing those ores with hydrogen or with a hydrogen containing reduction gas (such as methane or syngas).
Current art processes, when hydrogen is used as an important element in the reduction process, result in a very limited utilization of the hydrogen in the process. With coal-based processes, around 50% of the carbon is fully oxidized, forming CO.. The other 50% of the carbon is half-oxidized, forming CO. With hydrogen, in a counter current process, the utilization can drop to well below 20%. This can be explained with the graphics of figure 9. We see the balance (equilibrium) condition of both CO (carbon monoxide) and CO: and of Hz (hydrogen) and HO in the presence of Fe, FeO and Fe;O4. The graph shows that in case of
COACO+COy), the balance gets better (higher utilization) when temperature of the elements drops (as is the case in a counter current process). In the case of Hz/(Hz+H20), the balance shifts to the Hz side which means the utilization of the hydrogen drops when the gas temperature drops before leaving the process.
A second problem which many current art processes share is the enrichment of “semi- volatile” elements from the ore, specifically zinc and phosphor minerals in iron ore. Those elements evaporate when coming closer to the reaction zone but condense again in the colder ore at the entry side of a reactor as when gas flow is counter current to the ore flow.
This can lead to either clogging of the load inside the reactor or to unwanted enrichment of those elements within the metal output
This invention and the proposed embodiment aim at solving both problems. The down-draft co-current nature of the process results in a situation where the reduction gas (including any volatile elements from the ore, if present) leave the process where both gas and ore / metal reach their highest temperature within the reduction process. This leads to the best possible utilization of the hydrogen in the reducing gas, and it prevents volatile elements to condense within the to be reduced ore again or to enrich within the metal output.
The DCR-process in the proposed embodiment is based on one or more basically cylindrical reduction shafts within a refractory structure. It is characterized by that both the ore and the reducing agent are loaded from the top or upper part of the shaft. It is a down-draft, co-current process. The metal ore can consist of any substance containing metal oxides, metal sulphides or metal hydroxides, or combinations thereof, that can be reduced thermally, using carbon monoxide, methane, or hydrogen as a reducing agent, to bare metal.
The process is, additionally to the down-draft co-current material flows, characterized by that, within the reduction shafts, nor upstream in the reducing gas, no oxygen is added to the reducing gas and that the necessary thermal input is added, not from the thermal energy in the reducing gas, nor from a chemical reaction inside the shaft but from outside the shaft through the wall of the reduction shaft. This can be either by heat conduction through the wall of the shaft or electromagnetically by electrical currents induced by coils or magnets outside core of the shaft.
An additional characteristic of the process can be that the reduction shaft is surrounded by a refractory structure in which the off gas is led to combustion channels that run, parallel to the reduction shaft(s), within the same refractory structure. This way, the off gas can be used, without in-between loss of thermal energy, to heat up the reducing ore mass by adding oxygen or an oxygen containing gas to the off gas within the combustion channels.
A specific use of this invention can be the reduction of iron ores to DRI metal using hydrogen as a reducing agent.
A second specific use of this invention can be the reduction of zinc containing iron (BOF-) slags to win back as much as possible both the iron and the zinc from those slags.
Detailed description of the invention
The invention is illustrated in more detail in the attached drawings.
Figure 1 represent the basic principles of the process. In this figure, the following items are depicted: 1. Input of the to be reduced material from the upper side of the reactor. 2. An entry gate where the to be reduced material can enter the reaction space without gas exiting the reaction space. 3. Entry of the reduction gas from the upper side of the reactor. 4. The enclosed reduction shaft. 5. A source of heat that can add thermal energy from outside of the reaction space into the reaction space, either by radiation, convection, conduction or a combination thereof. 6. The movement direction of the to be reduced mass, moving slowly downward. 7. The movement direction of the reducing gas, moving (much) faster downward than the to be reduced solids.
The number 6 and 7 depict the co-current, down-draft character of the process. 8. The exit of the (partially) utilized deduction gas from the reduction shaft. By applying some form of grating or sieve, or by letting the gas flow upward, or by both measures combined, it is prevented that the solid mass leaves the reduction shaft together with the reducing gas. 9. The exit of the reduced or partially reduced ore. Some form of gated exit either by mechanical slide gates or cut-off valves, or a fluid siphon shall prevent that gas exits the reduction shaft together with the reduced ore.
Figure 2 presents a possible cross section through a reduction shaft, perpendicular to its length axis in a more realistic configuration. In this figure: 10. Is the mass of ore in the form of pellets or porous lumps. Sufficient macro - permeability is important for the gas flow through the shaft. Sufficient micro — permeability (within the pellets and or lumps) is important for the gas to reach all metal oxide, metal sulphide or metal hydroxide molecules. 11. Along the edge of the reduction shaft, the dark rim represents the already reducing c.q. reduced material. 12. Is the refractory structure forming the reduction shaft. 13. Around the primary refractory structure, a layer of thermal insulating refractory material is foreseen. 14. Is a combustion channel around the reduction shaft. In this embodiment, twelve combustion channels are grouped around a single reduction shaft. Within each of the combustion channels, all or a fraction of the non-utilized reduction gas can be combusted by oxygen (or air) injection into the left-over hot reduction gas.
Figure 3 presents a possible cross section through multiple parallel shafts. Multiple shafts are a better way to increase the output in comparison to one large diameter shaft. This is because of the heat conduction towards the centreline of the shafts will take too much time in very large diameter shafts. This slows down the reaction processes and leads to low the plug stream velocities and to little gain in the amount of matter that can be processed per unit of time.
Figure 4 presents a cross section along the length axis of the reduction shaft of a possible embodiment for a single vertical shaft DCR reactor.
In this figure:
The numbers 10 to 14 are identical as the same numbers in figure 2. The other numbers indicate as follows:
15. An input funnel or hopper where the to be reduced material can be collected. 16. A gated entrance to the DCR shaft. In this figure, a “zellen rad” gate is depicted. In practice, any gated entrance or feed system can be used. 17. Entry pipe(s) for admission of the reduction gas into the DCR shaft. 18. Exit pipes for the off gas of the process. 19. Oxygen (or air) entry points where oxygen (or air) is added to or injected into the rising off gas from the reduction shaft, oxidizing or combusting (part of) the non-utilized fraction of the reduction gas. This way, heat is generated to supplement the necessary heat for the reduction process. By using entry points at different heights, the thermal profile of the reactor along its vertical axis can be controlled. 20. Channels connecting the combustion shafts with the central DCR shaft. The reduction gas enters the reactor at the entry points at the top of the reactor (17), flows trough the to be reduced ore (10) and near the lower end of the reduction shaft, the (partially utilized) reduction gas is led to the combustion channels (14) circumventing the reduction shaft. Within the combustion channels, oxygen (or air) can be added to the partially utilized reduction gas, leading to further oxidation of the gas, generating the necessary heat for the process. 21. Are rotary mills or breaker rolls, closing of the bottom end of the DCR shaft for the solid material. The rotation speed of these mills or rolls determines the speed at which the material can be let out of the reactor. The speed is adjusted such that the required degree of reduction is reached for the full cross section of the reduction shaft.
A second function of the mills can be to break the reduced, coagulated metal into smaller pieces, easier to handle in further downstream processes.
Alternative to breaker rolls, or directly below, briquetting rolls can be placed to compact the hot metal to metal briquettes, in the case of iron as metal, into HBI. 22. A gated exit lock or system to prevent gas exiting at the bottom end of the reduction shaft while letting out the reduced metal material.
Figure 5 Presents a cross section through an alternative bottom construction of a DCR reactor combined with an induction smelter. The numbers 10 to 14 and 19 to 20 are identical as described above. 23. Represent loops of an induction coil to heat up the lower part of the material inside the reduction shaft. Since the refractory structure is non-conducting for electricity, only the hot metal is heated and will melt. Because field strength vanishes with increasing distance from the coil, only the lower part of the reduced metal will melt.
24. Exit for the molten metal. A siphon is drawn to depict any means to prevent any (off- or reduction-} gas to escape the reactor together with the hot metal. This function can be placed further downstream as well. 25. Exit for molten slag. Non-metal components within the (solid) input in the reactor will melt on top or sink below of the molten hot metal. The slag exit is placed above or below the level of liquid metal inside the reactor. Here too, a siphon or any other construction shall prevent gas exiting here from the reactor.
Figure 6 Depicts a DCR shaft where heating by the off gas is combined with or even replaced by electrical heating, in this figure in the form of induction coils around the shaft. With a combined heating configuration, energy balancing can be supported by electrical heating when there is a surplus of electricity and combustion heating when there is a shortage of electricity. In the figure, the numbers 10 to 14 and 19 to 20 are identical to the previous figures. 26. Possible alternative solution with heating elements, in this example in the form of induction coil(s). Resistance heating heating elements can be used as well.
Figure 7 Depicts a DCR shaft with an integrated pellet baking top. This shaft can be fed with ‘green’ pellets that are baked (heated through at sufficient temperature) before the reducing gas is added to the ore. When green pellets would be loaded together with the reducing gas, the reduction process would alter the pellets before they get sufficient strength to maintain their shape, leading to the risk of collapsing of the pellets and clogging the shaft. In this figure, the numbers 10 to 22 depict the same components as described above. 27. “Green” pellets that are thermally baked off within a top-extension of the reduction shaft, also called the baking zone. The reducing gas is not entered before all green pellets are heated through and through to the temperature needed to bake them off.
Figure 8 Depicts heat exchangers for the off gas to preheat the solid input and / or the reducing gas before those will enter the reactor. In this figure, the numbers 10 to 22 depict the same components as described above. 28. Depicts a pre-heater for the solid input of the process; 29. Depicts a heat exchanger to pre-heat the reduction gas before entering the reduction shaft. 30. Depicts the reduction zone. 31. Depicts the housing that delimits the reaction chamber.
In all cases, (elements of) the figures 5, 6, 7 and/or 8 can be combined.
Figure 9 Equilibrium diagram iron phases with reducing gases at different temperatures
Advantages
Some of the advantages of the DCR - process are: + No oxygen is added within the reduction part of the reactor, as opposed to most other gas-based (and coal or cokes based) reduction processes. This keeps the oxygen concentration within the reduction shaft at the minimum attainable level. More of the reductant will be used this way to take away oxygen from the metal component in the ore instead of being oxidised to generate heat. This leads indirectly to a better utilization of the reductant. + With hydrogen as (one of the) reducing agents, the balance between hydrogen (Hz) on the one hand and hydrogen plus water vapor (H2O) on the other will shift to the hydrogen plus HzO side with a rising temperature (see figure 9,). The off-gas (the partial utilized reduction gas plus possible volatile elements from the ore) leaves the reduction shaft where process temperatures are highest. As long as reduction takes place, heat is drawn from the process. Therefore will the process temperatures be the highest at the downside (most reduced side) and outer circumference of the reactor channel). The high temperature where the gas leaves the reduction process results again in a higher utilisation of the hydrogen as a reducing agent within the reaction process as compared to updraft processes.
The utilized reductant still contains a certain percentage of hydrogen. This can be oxidized in the combustion channels within the same refractory structure that forms the reduction shaft(s) to generate the necessary thermal input to the process (the reduction process is overall endothermic in nature). This leads to an even higher utilization of hydrogen within a single pass through the DCR-reactor. Depending on the balance, up to 100% of the hydrogen can be utilized in one pass, avoiding the need to cool down the gas, remove the H.O component and letting the gas be heated again within the reactor.
This vastly improves the overall process energy efficiency.
More generally speaking, and particularly when only hydrogen is used as the reductant, the gas utilization within a DCR-reactor is at the maximum possible level, up to 100%. This results in low gas volumes being pumped around which strongly contributes to the high thermal efficiency of the process.
When oxygen is used as oxidiser, instead of air, gas volumes remain further at the minimum possible level.
e Some ores or metal-oxide containing slags contain low-boiling components, particularly zinc as metallic component and phosphor minerals as non-metal components. Within counter current (up-draft) processes, those low boiling components tent to condensate again within the reactor, leading to unwanted enrichment of those components within the process. These ‘volatile’ components can’t “boil off’ in current art processes since they cool down and condensate within the reactor and can only come out with the solid output of the process.
With the DCR-process, the low-boiling components remain gaseous and leave the process within the gas phase together with the other hot gasses instead of remaining with the reduced metal. The low-boiling components can be caught (condensed and/or solidified) from the off-gas after the off-gas leaves the refractory structure in dedicated condensation traps. + With pure oxygen to oxidise the remaining reductant within the reduction shaft, nitrogen levels will be extremely low. This reduces or prevents the forming of nitric oxides (NOx) and e.g. of dioxins within the off-gas. e Many ores contain salts that disintegrate to halogens when heated. By loading ore that hasn't been heated up upfront of the process, e.g. by loading green ore pellets (and bake them within the reduction shaft), the only one source of polluting off gas remains for the reduction process. When the process is configured such way that all hydrogen is fully utilised, off gas volume will be extremely low. This way, pollution from metal reduction processes can be reduces to virtual zero.
Clauses 1. A process is claimed for the reduction of a metal ore (metal oxides, metal sulfides, metal hydroxides, metal oxides containing slags or any other form) to metal or a high metal-grade product with the following characteristics:
« Metal ore [1] is loaded from the top into a shaft reactor [4] and moves slowly downwards [6] as a ‘prop-stream’ or ‘plug-stream’ through the shaft in which a reduction reaction takes place (the reduction shaft). The resulting metal or high metal-grade product is off-loaded from the downward side of the reduction shaft;
e The topside of the reduction shaft is closed off, the ore is entered into the reduction shaft through some form of an entry-lock, e.g. like [2]; e The bottom side of the reduction shaft is closed off as well while the resulting metal and possible slags are off-loaded by a gated exit system, e.g. like [9]; e Inside the reduction shaft, the ore is heated from outside the reduction shaft through the shaft's wall [5]; e Areducing gas is entered into the reduction shaft [3], higher up than where the off-gas leaves the reduction shaft [8], creating a downward draft inside the reduction shaft [7]. 2. A possible embodiment is claimed for a process according to clause 1 where the reduction shaft is made within a refractory structure [12]. 3. A possible embodiment is claimed for a process according to clause 1 where multiple reduction shafts are combined within a combined refractory structure. 4. A possible embodiment is claimed for a process according to clause 1 where the length over diameter ratio of the “active zone” has a value of 6 to 12. The “active zone” is the area where the actual reduction takes place.
The length is determined by the distance between the input level of the reducing gas into the reaction shaft and the level where the off-gas leaves the reaction zone. 5. A process is claimed according to clause 1 and clause 2 where the off gas from the reduction process, after leaving the reduction shaft, is led to and upwards through combustion channels configured around the reduction shaft within the same refractory structure that forms the reduction shaft.
Within the combustion channels, oxygen or an oxygen containing gas, e.g. air, is added to or injected into the off-gas [19], partially or wholly oxidizing the remaining reductant in the off-gas, to create the necessary thermal input to the process. 6. As alternative to clause 5, or in combination with clause 5, a process is claimed according to clause 1 where electrical or electro-magnetic heating elements [26] are used to provide the necessary or additional process heat to the material inside the reduction shaft.
7. A possible embodiment is claimed according to clause 1, where the reduced metal, instead of being broken into pieces by breaker rolls [21], is rolled between “briquetting rolls” to create hot briquetted metal, particularly HBI.
8. A possible embodiment is claimed according to clause 1 and 2, where the reduced metal in the lowest section of the reduction shaft is heated further [23], above melting temperature of the metal and possible slag components, such that a liquid exit lock can be formed and metal and slag can be off-loaded in liquid form [24] and [25].
9. A process is claimed according to clause 1 where metal ore is fed as “green” (this is non-baked) pellets and where pellets are heated to baking temperature in the upper section of the shaft, above the entry point of the reducing gas.
10. A process is claimed according to clause 1 and possible clause 5 where the high temperature of the off gas is used to pre-heat either the reducing gas, or the metal ore, or both, prior to where the reducing gas and/or the metal ore enters the reduction shaft.
11. A process is claimed according to clause 1 where, additional to the reducing gas, a solid reductant is added to the metal ore.
12. A special application of the process according to clause 1 and one or more of the other clauses is the reduction of iron ore into DRI.
13. A special application of the process according to clause 1 and one or more of the other claims is the reduction of zinc containing iron ore or zinc and iron containing slags.
14. A special application of the process according to clause 1 and one or more of the other clauses is the reduction of phosphorous minerals containing iron ore.

Claims (24)

CONCLUSIESCONCLUSIONS 1. Werkwijze voor het reduceren van een metaalhoudend materiaal, omvattende een eerste aanvoerstap van het continu of met tussenpozen aanvoeren van een metaalhoudend materiaal en een reductiemiddel naar een reactiekamer (4) met wanden (12) die een reductiezone (30) afbakenen, op een metaalhoudend materiaal aanvoerpositie en een reductiemiddel aanvoerpositie, respectievelijk, stroomopwaarts van de reductiezone, een reductiestap van het reduceren van het metaalhoudend materiaal door contact met het reductiemiddel in afwezigheid van extra/aanvullend zuurstof, terwijl zowel het metaalhoudend materiaal en het reductiemiddel in neerwaartse verplaatsingsrichting worden verplaatst door de reactiekamer (4) vanaf de aanvoerposities, en terwijl indirect thermische energie wordt toegevoerd van buiten de reactiekamer (4) door de wanden (12) van de reactiekamer (4) aan het metaalhoudende materiaal en aan het reductiemiddel in de reactiekamer(4), een eerste afvoerstap van het afvoeren van het ten minste gedeeltelijk gebruikte reductiemiddel uit de reactiekamer (4) op een eerste afvoerpositie stroomafwaarts van de reductiezone (30), en een tweede afvoerstap van het afvoeren van het gereduceerde metaalhoudende materiaal uit de reactiekamer {4) op een tweede afvoerpositie stroomafwaarts van de eerste afvoerpositie.A method of reducing a metallic material, comprising a first supply step of continuously or intermittently feeding a metallic material and a reducing agent to a reaction chamber (4) with walls (12) delimiting a reduction zone (30), at a metallic material feed position and a reductant feed position, respectively, upstream of the reduction zone, a reduction step of reducing the metallic material by contact with the reductant in the absence of additional/supplemental oxygen, while both the metallic material and the reductant are moved in the downward direction of displacement through the reaction chamber (4) from the feed positions, and while indirectly supplying thermal energy from outside the reaction chamber (4) through the walls (12) of the reaction chamber (4) to the metallic material and to the reducing agent in the reaction chamber (4) , a first discharging step of discharging the at least partially used reducing agent from the reaction chamber (4) at a first discharging position downstream of the reduction zone (30), and a second discharging step of discharging the reduced metallic material from the reaction chamber {4) at a second discharge position downstream of the first discharge position. 2. Werkwijze volgens conclusie 1, waarbij het metaalhoudende materiaal metaalerts is, bijvoorbeeld ijzererts.A method according to claim 1, wherein the metallic material is metal ore, for example iron ore. 3. Werkwijze volgens conclusie 1, waarbij het metaalhoudende materiaal een ijzer omvattende slak is.The method of claim 1, wherein the metallic material is an iron-containing slag. 4. Werkwijze volgens een van de voorgaande conclusies, waarbij de reductiestap wordt uitgevoerd bij een temperatuur die lager is dan de smelttemperatuur van het metaalhoudende materiaal.A method according to any one of the preceding claims, wherein the reduction step is carried out at a temperature lower than the melting temperature of the metal-containing material. 5. Werkwijze volgens een van de voorgaande conclusies, waarbij het reductiemiddel een reducerend gas omvat.A method according to any one of the preceding claims, wherein the reducing agent comprises a reducing gas. 6. Werkwijze volgens conclusie 5, waarbij het reducerend gas een waterstof omvattend reducerend gas is, zoals methaan, syngas, of Hz, bij voorkeur Ha.A method according to claim 5, wherein the reducing gas is a hydrogen-containing reducing gas, such as methane, syngas, or Hz, preferably Ha. 7. Werkwijze volgens een van de voorgaande conclusies, waarbij de reactiekamer (4) warmtegeleidende wanden (12) omvat, en waarbij de werkwijze verder omvat een tweede aanvoerstap van het aanvoeren van een zuurstof bevattend gas naar het afgevoerde reductiemiddel, en een verbrandingsstap van het ten minste gedeeltelijk verbranden van het afgevoerde reductiemiddel met het zuurstof bevattende gas, waardoor het metaalhoudende materiaal en het reductiemiddel in de reductiezone (30) indirect worden verwarmd door de warmtegeleidende wanden (12) van de reactiekamer (4).A method according to any one of the preceding claims, wherein the reaction chamber (4) comprises heat-conducting walls (12), and wherein the method further comprises a second supply step of supplying an oxygen-containing gas to the discharged reductant, and a combustion step of the at least partially combusting the discharged reductant with the oxygen-containing gas, whereby the metallic material and the reductant in the reduction zone (30) are indirectly heated by the heat-conducting walls (12) of the reaction chamber (4). 8. Werkwijze volgens conclusie 7, waarbij de werkwijze verder een voorverwarmingsstap omvat van het voorverwarmen van het metaalhoudende materiaal en/of het reductiemiddel met de resterende verbrandingswarmte die vrijkomt bij de verbrandingsstap.The method of claim 7, wherein the method further comprises a preheating step of preheating the metallic material and/or the reducing agent with the residual combustion heat released in the combustion step. 9. Werkwijze volgens een van de voorgaande conclusies, waarbij de wanden (12) van de reactiekamer (4) en/of het materiaal in de reactiekamer (4) ten minste gedeeltelijk worden verwarmd door elektrische verwarmingselementen of door elektromagnetisch geïnduceerde elektrische stromen.A method according to any one of the preceding claims, wherein the walls (12) of the reaction chamber (4) and/or the material in the reaction chamber (4) are at least partially heated by electric heating elements or by electromagnetically induced electric currents. 10. Werkwijze volgens een van de voorgaande conclusies, waarbij het ten minste gedeeltelijk gebruikte reductiemiddel dat is afgevoerd uit de reactiekamer in de eerste afvoerstap vluchtige metalen omvat, zoals As, Cd of Zn, en waarbij de werkwijze verder een stap omvat van het scheiden van de vluchtige metalen van het gebruikte reductiemiddel, bijvoorbeeld door condensatie.A method according to any one of the preceding claims, wherein the at least partially used reducing agent discharged from the reaction chamber in the first discharge step comprises volatile metals such as As, Cd or Zn, and wherein the method further comprises a step of separating the volatile metals of the reducing agent used, for example by condensation. 11. Werkwijze volgens een van de voorgaande conclusies, waarbij de eerste aanvoerstap verder het aanvoeren van een vast reductiemiddel naar de reactiekamer (4) omvat.A method according to any one of the preceding claims, wherein the first supplying step further comprises supplying a solid reductant to the reaction chamber (4). 12. Werkwijze volgens een van de voorgaande conclusies, waarbij in de tweede afvoerstap, tijdens het afvoeren, het gereduceerde metaalhoudende materiaal in grootte wordt verkleind en/of gebriketteerd.A method according to any one of the preceding claims, wherein in the second discharge step, during discharge, the reduced metal-containing material is reduced in size and/or briquetted. 13. Werkwijze volgens een van de voorgaande conclusies, waarbij het metaalhoudende materiaal een niet-gebakken materiaal is, en waarbij het niet-gebakken materiaal verwarmd wordt tot baktemperatuur in een bakzone (27) stroomopwaarts van de reductiemiddel toevoerpositie.A method according to any one of the preceding claims, wherein the metallic material is an unfired material, and wherein the unfired material is heated to firing temperature in a firing zone (27) upstream of the reductant feed position. 14. Werkwijze volgens een van de voorgaande conclusies, waarbij de werkwijze verder omvat, voorafgaand aan de tweede afvoerstap,A method according to any one of the preceding claims, wherein the method further comprises, prior to the second discharge step, een smeltstap van het smelten van het gereduceerde metaalhoudende materiaal, waarbij het metaalhoudende materiaal metallische en niet-metallische bestanddelen omvat, en een scheidingsstap van het scheiden van de metallische en niet-metallische bestanddelen.a melting step of melting the reduced metal-containing material, the metal-containing material comprising metallic and non-metallic components, and a separating step of separating the metallic and non-metallic components. 15. Reactorsysteem het reduceren van een metaalhoudend materiaal, in het bijzonder voor het reduceren van metaalhoudend materiaal volgens de werkwijze van een van de voorgaande conclusies, omvattende een behuizing (31) die een verticale reactiekamer (4) begrenst die een reductiezone (30) afbakent, waarbij de reactiekamer (4) is geconfigureerd om verplaatsing van het metaalhoudende materiaal en het reductiemiddel in een neerwaartse verplaatsingsrichting mogelijk te maken, waarbij de behuizing (31) omvat een metaalhoudend materiaalinlaat (2; 16) voor het aanvoeren van metaalhoudend materiaal naar de reactiekamer (4) op een metaalhoudend materiaal aanvoerpositie stroomopwaarts van de reductiezone (30), ten minste één reductiemiddelinlaat (3; 17) voor het aanvoeren van een reductiemiddel naar de reactiekamer (4) op een reductiemiddel aanvoerpositie stroomopwaarts van de reductiezone (30), ten minste één reductiemiddeluitlaat (8; 20), voor het afvoeren van het ten minste gedeeltelijk gebruikte reductiemiddel van de reactiekamer (4), waarbij de ten minste één reductiemiddeluitlaat (8; 20) is gepositioneerd op een eerste afvoerpositie stroomafwaarts van de reductiezone (30), en een metaalhoudend materiaaluitlaat (9) voor het afvoeren van het ten minste gedeeltelijk gereduceerde materiaal uit de reactiekamer (4), waarbij de metaalhoudend materiaaluitlaat is gepositioneerd op een tweede afvoerpositie stroomafwaarts van de reductiemiddeluitlaat (8; 20), een verwarmingssysteem (5) dat is geconfigureerd om het metaalhoudende materiaal en het reductiemiddel indirect te verwarmen via de wanden (12) van de behuizing (31).A reactor system for reducing a metallic material, in particular for reducing metallic material according to the method of any of the preceding claims, comprising a housing (31) delimiting a vertical reaction chamber (4) delimiting a reduction zone (30) wherein the reaction chamber (4) is configured to allow movement of the metallic material and reductant in a downward direction of travel, the housing (31) including a metallic material inlet (2; 16) for supplying metallic material to the reaction chamber (4) at a metallic material supply position upstream of the reduction zone (30), at least one reductant inlet (3; 17) for supplying a reductant to the reaction chamber (4) at a reductant supply position upstream of the reduction zone (30), at at least one reductant outlet (8; 20), for discharging the at least partially used reductant from the reaction chamber (4), the at least one reductant outlet (8; 20); 20) is positioned at a first discharge position downstream of the reduction zone (30), and a metallic material outlet (9) for discharging the at least partially reduced material from the reaction chamber (4), the metallic material outlet being positioned at a second discharge position downstream of the reductant outlet (8; 20), a heating system (5) configured to indirectly heat the metallic material and reductant through the walls (12) of the housing (31). 16. Reactorsysteem volgens conclusie 15, waarbij de behuizing (31) die de reactiekamer (4) begrenst warmtegeleidende wanden (12) omvat, zoals een vuurvaste structuur (12) geconfigureerd voor het geleiden van warmte, waarbij de vuurvaste structuur is omgeven door een laag warmte-isolerend vuurvast materiaal (13).A reactor system according to claim 15, wherein the housing (31) defining the reaction chamber (4) comprises thermally conductive walls (12), such as a refractory structure (12) configured to conduct heat, the refractory structure being surrounded by a layer heat-insulating refractory material (13). 17. Reactorsysteem volgens conclusie 15 of 16, waarbij het verwarmingssysteem (5) omvat ten minste één verbrandingskanaal (14) in warmtegeleidende verbinding met de warmtegeleidende wanden (12) van de reactiekamer (4) voor het verbranden van het ten minste gedeeltelijk gebruikte reductiemiddel, waarbij het ten minste één verbrandingskanaal (14) één of meer ingangspunten (19) omvat voor het ontvangen van een zuurstof omvattend gas, ten minste één verbindingskanaal (20) die het ten minste één verbrandingskanaal (14) met de ten minste één reductiemiddeluitlaat (8; 20) verbindt.Reactor system according to claim 15 or 16, wherein the heating system (5) comprises at least one combustion channel (14) in heat-conducting communication with the heat-conducting walls (12) of the reaction chamber (4) for burning the at least partially used reductant, wherein the at least one combustion channel (14) comprises one or more entry points (19) for receiving an oxygen-containing gas, at least one connecting channel (20) connecting the at least one combustion channel (14) with the at least one reductant outlet (8 ; 20) connects. 18. Reactorsysteem volgens conclusie 17, waarbij het verwarmingssysteem (5) twee of meer verbrandingskanalen (14) omvat, bij voorkeur 6 of meer verbrandingskanalen (14), bij voorkeur 12 of meer verbrandingskanalen (14).Reactor system according to claim 17, wherein the heating system (5) comprises two or more combustion channels (14), preferably 6 or more combustion channels (14), preferably 12 or more combustion channels (14). 19. Reactorsysteem volgens een van de voorgaande conclusies 15-18, waarbij het reactorsysteem twee of meer verticale reactiekamers (4) omvat, die parallel ten opzichte van elkaar zijn geplaatst.Reactor system according to one of the preceding claims 15-18, wherein the reactor system comprises two or more vertical reaction chambers (4) placed parallel to each other. 20. Reactorsysteem volgens een van de voorgaande conclusies 15-19, waarbij het verwarmingssysteem (14) verder elektrische weerstandsverwarmingselementen en/of elektromagnetische verwarmingsspoelen (26) omvat.A reactor system according to any one of the preceding claims 15-19, wherein the heating system (14) further comprises electrical resistance heating elements and/or electromagnetic heating coils (26). 21. Reactorsysteem volgens een van de voorgaande conclusies 15-20, waarbij de reactiekamer (4) een hoogte-diameter of hoogte-breedte verhouding heeft van 6-12.A reactor system according to any one of the preceding claims 15-20, wherein the reaction chamber (4) has a height-diameter or height-width ratio of 6-12. 22. Reactorsysteem volgens een van de voorgaande conclusies 15-21, verder omvattende een aanvoersysteem voor het aanvoeren van metaalhoudend materiaal naar de reactiekamer (4) via de metaalhoudend materiaalinlaat (2; 18).A reactor system according to any one of the preceding claims 15-21, further comprising a supply system for supplying metallic material to the reaction chamber (4) via the metallic material inlet (2; 18). 23. Reactorsysteem volgens een van de voorgaande conclusies 15-22, verder omvattende een inductiesmelter (23) voor het smelten van het ten minste gedeeltelijk gereduceerde metaalhoudende materiaal op een plaats stroomafwaarts van de reductiezone (30) en stroomopwaarts van de metaalhoudend materiaaluitlaat (9), waarbij de inductiespoelen van de inductiesmelter (23) zijn geconfigureerd om elektrische stromen te induceren in het ten minste gedeeltelijk gereduceerde metaalhoudende materiaal.Reactor system according to any of the preceding claims 15-22, further comprising an induction melter (23) for melting the at least partially reduced metallic material at a location downstream of the reduction zone (30) and upstream of the metallic material outlet (9) wherein the induction coils of the induction melter (23) are configured to induce electric currents in the at least partially reduced metallic material. 24. Reactorsysteem volgens een van de voorgaande conclusies 16-18, verder omvattende een warmtewisselaar (29) geconfigureerd voor het uitwisselen van warmte tussen het ten minste gedeeltelijk verbrande reductiemiddel en het metaalhoudende materiaal en/of het reductiemiddel, verbonden met het verbrandingskanaal.A reactor system according to any one of the preceding claims 16-18, further comprising a heat exchanger (29) configured to exchange heat between the at least partially burned reductant and the metallic material and/or reductant connected to the combustion channel.
NL2030051A 2021-12-07 2021-12-07 Down-draft co-current reduction furnace (DCR Furnace) NL2030051B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2030051A NL2030051B1 (en) 2021-12-07 2021-12-07 Down-draft co-current reduction furnace (DCR Furnace)
PCT/EP2022/084781 WO2023104881A1 (en) 2021-12-07 2022-12-07 Down-draft co-current reduction furnace (dcr furnace)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2030051A NL2030051B1 (en) 2021-12-07 2021-12-07 Down-draft co-current reduction furnace (DCR Furnace)

Publications (1)

Publication Number Publication Date
NL2030051B1 true NL2030051B1 (en) 2023-06-22

Family

ID=80625016

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2030051A NL2030051B1 (en) 2021-12-07 2021-12-07 Down-draft co-current reduction furnace (DCR Furnace)

Country Status (2)

Country Link
NL (1) NL2030051B1 (en)
WO (1) WO2023104881A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1871848A (en) 1930-03-06 1932-08-16 Gustafsson Emil Gustaf Torvald Process for producing metal sponge
DE1003776B (en) * 1954-02-02 1957-03-07 Norsk Hydro Elektrisk Vertical shaft furnace heated by means of electrical resistance heating with single-phase alternating current or direct current for endothermic reduction processes for the production of metals, in particular sponge iron
GB838067A (en) * 1955-04-12 1960-06-22 Hydrocarbon Research Inc Improvements in and relating to the reduction of iron oxide
US3761567A (en) * 1972-01-05 1973-09-25 M Parsons Vertical kiln system and process
DE20200935U1 (en) * 2002-01-23 2003-05-28 Umweltkontor Renewable Energy Co-current shaft reactor
WO2016077863A1 (en) * 2014-11-18 2016-05-26 Calix Ltd Process and apparatus for manufacture of calcined compounds for the production of calcined products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1871848A (en) 1930-03-06 1932-08-16 Gustafsson Emil Gustaf Torvald Process for producing metal sponge
DE1003776B (en) * 1954-02-02 1957-03-07 Norsk Hydro Elektrisk Vertical shaft furnace heated by means of electrical resistance heating with single-phase alternating current or direct current for endothermic reduction processes for the production of metals, in particular sponge iron
GB838067A (en) * 1955-04-12 1960-06-22 Hydrocarbon Research Inc Improvements in and relating to the reduction of iron oxide
US3761567A (en) * 1972-01-05 1973-09-25 M Parsons Vertical kiln system and process
DE20200935U1 (en) * 2002-01-23 2003-05-28 Umweltkontor Renewable Energy Co-current shaft reactor
WO2016077863A1 (en) * 2014-11-18 2016-05-26 Calix Ltd Process and apparatus for manufacture of calcined compounds for the production of calcined products

Also Published As

Publication number Publication date
WO2023104881A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
EP2542706B1 (en) Apparatus and method for producing direct reduced iron
CN107881275B (en) The method and its iron-smelting furnace of flash smelting iron
AU2021202096B2 (en) Metallurgical furnace for producing metal alloys
EP2823073B1 (en) Iron reduction process and equipment
KR930009970B1 (en) Process for smelting or melting ferrous or non-ferrous metal from self-reducing agglomerates or metal
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
WO2009114155A2 (en) Feed material compostion and handling in a channel induction furnace
NL2030051B1 (en) Down-draft co-current reduction furnace (DCR Furnace)
WO2009114159A2 (en) Feed material compostion and handling in a channel induction furnace
WO2009114156A2 (en) Feed material compostion and handling in a channel induction furnace
WO2016148555A1 (en) Method for the reduction smelting of steel and apparatus for carrying out said method
CN111918973A (en) Zinc recovery method
US10787717B2 (en) Method of utilizing furnace off-gas for reduction of iron oxide pellets
CN104831070B (en) Smelting reduction metallurgical method
RU2678557C2 (en) Metallurgical furnace
RU2380633C1 (en) Duplex-furnace for smelting of manganese alloys from ferrimanganese bases and concentrates and anthropogenic wastes of metallurgy
Cavaliere Flash Ironmaking
US20230407423A1 (en) Biomass direct reduced iron
US20230366051A1 (en) Biomass Direct Reduced Iron
US4082542A (en) Copper precipitate agglomerization process
RU2280704C1 (en) Method of processing nickel-containing iron ore material
GB2297559A (en) Smelting process
AU2022370370A1 (en) Processes and methods for the production of iron and steel
EP1604373B1 (en) Method and apparatus for controling temperature uniformity of the burden in a direct reduction shaft furnace