NL2029770B1 - Method for controlling dynamic compaction process by measuring compaction settlement therein and method for optimum compaction time - Google Patents

Method for controlling dynamic compaction process by measuring compaction settlement therein and method for optimum compaction time Download PDF

Info

Publication number
NL2029770B1
NL2029770B1 NL2029770A NL2029770A NL2029770B1 NL 2029770 B1 NL2029770 B1 NL 2029770B1 NL 2029770 A NL2029770 A NL 2029770A NL 2029770 A NL2029770 A NL 2029770A NL 2029770 B1 NL2029770 B1 NL 2029770B1
Authority
NL
Netherlands
Prior art keywords
compaction
phase
dynamic
time
displacement
Prior art date
Application number
NL2029770A
Other languages
Dutch (nl)
Inventor
Yang Ziling
Li Xi
Lu Yunbin
Li Ping
Qian Guoping
Wen Zhe
Zhang Jinping
Zhou Hongyu
Cai Jun
Liu Yayan
He Zuoyue
Original Assignee
Univ Changsha Science & Tech
Shanxi Jin Baodao Piles Found Co Ltd
Guangdong Communication Planning And Design Inst Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Changsha Science & Tech, Shanxi Jin Baodao Piles Found Co Ltd, Guangdong Communication Planning And Design Inst Group Co Ltd filed Critical Univ Changsha Science & Tech
Priority to NL2029770A priority Critical patent/NL2029770B1/en
Application granted granted Critical
Publication of NL2029770B1 publication Critical patent/NL2029770B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

The application discloses a method for controlling a dynamic compaction process by measuring compaction settlement therein and a method for optimum compaction time, and relates to the technical field related to the foundation treatment of civil engineering. The method for determining the compaction settlement in the dynamic compaction process comprises the steps of diViding the dynamic compaction process into an impact loading stage and an unloading rebounding stage; establishing a time history equation of rammer displacement in the impact loading stage to obtain rammer displacement in the impact loading stage; establishing a time history equation of rammer displacement in the unloading rebounding stage to obtain the rebounding displacement of the rammer in the unloading rebounding stage; and subtracting the rebounding displacement of the rammer in the unloading rebounding stage from the rammer displacement in the impact loading stage to calculate the compaction settlement in the dynamic compaction process. According to the application; the compaction settlement in the dynamic compaction process can be calculated; and the optimum compaction time in the dynamic compaction process can be further judged according to the compaction settlement.

Description

METHOD FOR CONTROLLING DYNAMIC COMPACTION PROCESS BY
MEASURING COMPACTION SETTLEMENT THEREIN AND METHOD FOR
OPTIMUM COMPACTION TIME
TECHNICAL FIELD
[01] The application relates to the technical field related to foundation treatment of civil engineering, in particular to a method for controlling a dynamic compaction process by measuring compaction settlement therein and a method for optimum compaction time.
BACKGROUND ART
[02] The dynamic compaction method is a method for freely dropping a rammer with the weight of 8-40t from the height of 10-20m to compact and strongly tamp the foundation soil body. The dynamic compaction method has the advantage that the foundation soil body tends to be compact through the great impact force generated by a rammer on the foundation soil body, and the purposes of improving the strength and the bearing capacity of the foundation are achieved. However, there are still many ambiguities in the dynamic compaction mechanism and design theory, especially for the determination of the core parameters in the dynamic compaction design and the construction process which is lack of theoretical basis and suitable calculation method, such as the compaction settlement and the optimum compaction time the determination process of which has to rely on engineering experience or the test section carried out in the field.
SUMMARY
[03] The purpose of the present application is to provide a method for controlling a dynamic compaction process by measuring compaction settlement therein, which can solve the problem that the determination of the compaction settlement in the existing dynamic compaction process lacks a theoretical basis, and the determination process needs to rely on engineering experience or a test section carried out in the field.
[04] In a first aspect, an embodiment of the application provides a method for controlling a dynamic compaction process by measuring compaction settlement therein, including:
[05] dividing the dynamic compaction process into an impact loading stage and an unloading rebounding stage;
[06] establishing a time history equation of rammer displacement in the impact loading stage to obtain rammer displacement in the impact loading stage;
[07] establishing a time history equation of rammer displacement in the unloading rebounding stage to obtain rebounding displacement of the rammer in the unloading rebounding stage;
[08] and subtracting the rebounding displacement of the rammer in the unloading rebounding stage from the rammer displacement in the impact loading stage to calculate the compaction settlement in the dynamic compaction process.
[09] The influence of soil body damping on the impact loading stage is taken into account and the time history equation of the rammer displacement in the impact loading stage is corrected.
[10] In the impact loading stage and the unloading rebounding stage, the same rammer balance equation is adopted, the influence of soil body damping is considered in both stages, and the time history equation of the rammer displacement in the impact loading stage and the unloading rebounding stage is corrected by using the soil body damping. In one possible implementation scheme, the elasticity modulus of the soil body in the impact loading stage is different from that in the unloading rebounding stage.
[11] The time history equation of the rammer displacement in the impact loading stage is: w= Des gift} 12) ee Wel,
[13] The time history equation of the rammer displacement in the unloading rebounding stage is:
[14] w= Reest; miwit +e,
[15] where wo is the initial speed of the rammer, *¢ and *2 are damping oscillation frequencies of the soil body in the impact loading stage and the unloading rebounding stage respectively, *= and **= are non-damping oscillation frequencies of the soil body in the impact loading stage and the unloading rebounding stage respectively, { and © are damping ratios of the soil body in the impact loading stage and the unloading rebounding stage respectively, and 8’ and ® are both undetermined coefficients of the equation.
[16] The time, displacement, and speed at the lowest point of the impact loading stage are determined;
[17] according to the continuity condition of the displacement and the speed at the lowest point of the impact loading stage and the unloading rebounding stage,
[18] the compaction settlement obtained is as follows:
Hy = ms & ig Lin { Wat)
[19] ©
[20] where vo is the initial speed of the rammer, ®¢ is the damping oscillation frequency of the soil body in the impact loading stage, = is the non-damping oscillation frequency of the soil body in the impact loading stage, { is the damping ratio of the soil body in the impact loading stage, ‘p is the time when the speed of the rammer is reduced to zero for the first time during a first compaction, and ks and are elastic constants of soil body stressing in the impact loading stage and the unloading rebounding stage, respectively.
[21] Calculating the compaction settlement per dynamic compaction process according to the method for determining compaction settlement in a dynamic compaction process,
[22] and determining elasticity modulus E of soil body in a current dynamic compaction process according to current compaction time: ps Eo EN
[24] correcting the current compaction settlement by utilizing the elasticity modulus E of the soil body;
[25] wherein E is the elasticity modulus of the soil body, N is the compaction times of the dynamic compaction process, Fo is the initial elasticity modulus of the soil body, and f is an empirical coefficient.
[26] Compacting positions at each of multiple compaction times are the same.
[27] On the other hand, the application provides a method for determining the optimum compaction time in a dynamic compaction process, including:
[28] performing dynamic compaction processes time after time;
[29] determining reinforcement efficiency of each of the dynamic compaction processes according to compaction settlement of each of the dynamic compaction processes, wherein the compaction settlement is determined according to the method for determining compaction settlement of a dynamic compaction process under multiple compaction times;
[30] and judging whether the compaction time in the dynamic compaction process is the optimum compaction time or not according to the reinforcement efficiency.
[31] In the implementation process, the reinforcement efficiency in each dynamic compaction process is determined according to the compaction settlement in each dynamic compaction process, and whether the compaction time in the dynamic compaction process is the optimum compaction time or not is judged according to the reinforcement efficiency so that a theoretical basis is provided for determining the optimum compaction time. The reinforcement efficiency is completely defined by the compaction settlement, the calculation and analysis mode of the reinforcement efficiency is simple, and the change rule of the reinforcement efficiency under different compaction times in the dynamic compaction process can be reflected, thereby bringing certain advantages.
[32] The calculation formula of the reinforcement efficiency is as follows:
A =x 100%
[33]
[34] where 4; is the i reinforcement efficiency, i =1, 2...n; 3 is the compaction settlement of the i compaction; $; is the cumulative compaction settlement after the i 5 compaction.
[35] Judging whether the compaction time in the dynamic compaction process is the optimum compaction time or not according to the reinforcement efficiency comprises:
[36] judging whether a current reinforcement efficiency 1s smaller than a preset critical value or not;
[37] wherein when the reinforcement efficiency is smaller than the preset critical value for the first time, previous compaction time is the optimum compaction time in the dynamic compaction process.
[38] The application has beneficial effects as follows.
[39] 1. The time history equations of rammer displacement of the impact loading stage and unloading rebounding stage are established respectively, and the compaction settlement of the dynamic compaction process is calculated according to the time history equations of rammer displacement so that the method provides a theoretical basis for determining the compaction settlement. Moreover, the theoretical value of the compaction settlement calculated by using the method is consistent with the test value, namely, the compaction settlement in the dynamic compaction process can be calculated by the method.
[40] 2. The change rule of the rammer displacement in the dynamic compaction process under multiple compaction times can be reflected, and the compaction settlement under different compaction times can be determined.
[41] 3. According to the reinforcement efficiency, the optimum compaction time is judged so that a theoretical basis is provided for determining the optimum compaction time. The reinforcement efficiency is completely defined by the compaction settlement,
the calculation and analysis mode is simple, the compacting effect of a single dynamic compaction process can be evaluated, and the change rule of the reinforcement efficiency under different compaction times in the dynamic compaction process can be reflected so that the method has certain advantages.
BRIEFT DESCRIPTION OF THE DRAWINGS
[42] Fig. 1 is a schematic view of an equivalent effect system of a dynamic compaction process according to an embodiment of the present application;
[43] Fig. 2 is a time history curve of rammer displacement according to an embodiment of the present application;
[44] Fig. 3 is a time history curve of rammer displacement according to an embodiment of the present application;
[45] Fig. 4 is a time history curve of rammer displacement according to an embodiment of the present application;
[46] Fig. 5 is a correlation curve of cumulative compaction settlement to a test value according to an experimental theory shown in an embodiment of the present application.
DETAILED DESCRIPTION OF THE EMBODIMENTS
[47] According to one aspect of the application, the application provides a method for controlling a dynamic compaction process by measuring compaction settlement therein, which takes a rammer as a research object, and simplifies the dynamic compaction process into a spring-damping model between the rammer and a soil body according to an automatic control principle, and establishes a rammer displacement time history equation in the dynamic compaction process.
[48] The method for determining the compaction settlement in a dynamic compaction process includes steps as follows:
[49] the dynamic compaction process is divided into an impact loading stage and an unloading rebounding stage; the whole dynamic compaction process is as shown in Fig.
1: after a rammer 100 freely drops from the height H and contacts with soil body 200, the speed of the rammer 100 is rapidly reduced under the action of the elasticity of the soil body 200 and the gravity of the rammer 100; when the speed of the rammer 100 is reduced to zero for the first time, the displacement of the rammer 100 in the soil body 200 is maximum; then, the rammer 100 slightly rebounds under the elastic force of the soil body 200, and finally, the rammer 100 tends to be stable. The impact loading stage is a stage in which the speed of the rammer 100 is reduced to zero for the first time after the rammer 100 is contacted with the soil body 200, and the unloading rebounding stage is a stage in which the rammer 100 rebounds under the action of the elastic force of the soil body 200.
[50] In one preferred embodiment, the time i displacement “= and speed at the lowest point of the impact loading stage are determined; [S1] According to the continuity condition of the displacement and the speed at the lowest point of the impact loading stage and the unloading rebounding stage, the expression of the compaction settlement can be obtained as follows: th, = Ennis si wet)
[52] “ow (1) [S3] where ‘> is the time when the speed of the rammer is first reduced to zero during the impact loading stage at the time of the first compact.
[54] It can be seen from formula (1) that the single compaction settlement is closely related to the elastic constants of the soil body in the impact loading stage and the unloading rebounding stage. When the soil body elastic constant Kz of the impact loading stage is small and the soil body elastic constant Kz in the unloading rebounding stage is large, it is easy to obtain large compaction settlement. [S5] According to another aspect of the application, the embodiment of the application provides a method for determining the optimum compaction time in a dynamic compaction process, including the following step: [S6] performing dynamic compaction processes time after time.
[57] Determining the reinforcement efficiency of each dynamic compaction process according to the compaction settlement of each dynamic compaction process, wherein the reinforcement efficiency calculation formula is as follows:
[58]
[89] The compaction settlement is determined according to the method for determining the compaction settlement in the dynamic compaction process under multiple compaction times;
[60] where Ais the i reinforcement efficiency, 7 =1, 2...n; ¥t is the compaction settlement of the #2 compaction; S; is the cumulative compaction settlement after the i compaction.
[61] As shown in Figs. 2-4, the rammer displacement time history curves are obtained from three groups of experimental theories of 47.94t)X20.86m, 61.98tX 16.14m, and 77.76t)X12.86m, respectively. As can be seen from Figs. 2-4, for a single dynamic compaction process, the displacement of the rammer increases rapidly at the initial stage of the compaction, a certain amount of rebound occurs when the lowest point is reached, and finally, the displacement tends to be stable to finish one-time compaction; as for the multiple times of dynamic compaction processes, the dense degree of soil body increases with the increase of compaction times, and the compaction settlement of single compaction decreases gradually, showing that the time history curve of rammer displacement rises gradually. It is also reflected that too many compaction times at the same compacting point can not achieve the purpose of infinitely increasing the compaction settlement. The time history characteristics of the rammer displacement obtained by a theory are the same as that of the general dynamic compaction process.
[62] As shown in Fig 5, it is the correlation curve of cumulative compaction settlement to a test value obtained according to three groups of experimental theories of 47.94tX20.86m, 61.98tX16.14m, and 77.76t>X12.86m, respectively. It can be seen trom Fig. 5 that the theoretical accumulative compaction settlement is consistent with the experimental compaction settlement. For the field tests with the compaction modes of 61.98tX16.14m and 77.76tX12.86m, respectively, the accumulative compaction settlements after 10 compaction times are 2.22m and 2.36m, respectively, while the corresponding theoretical compaction settlements are 2.35m and 2.19m, respectively.
Under the circumstances that the compaction mode is 47.94tX20.86m, the theoretical value of accumulative compaction settlement obtained from the previous 7 compaction times is consistent with the test value, and the theoretical value of the compaction settlement obtained from the last three compaction times is different from the test value to a certain degree. Afterl0 compaction times, the theoretical accumulative compaction settlement is 1.94m, while the actual compaction settlement is 2.10m.
[63] Taking the 47.94t)X20.86m experimental group as an example, the following table shows the theoretical value of the single compaction settlement, the test value of the accumulative compaction settlement, the theoretical value of the accumulative compaction settlement, and the single reinforcement efficiency in 10 compaction processes. It can be seen from the following table that the preset critical value of reinforcement efficiency is 5%, the theoretical values of single compaction settlement are all less than 10cm after 6 compaction times, and the reinforcement efficiency of the 7th compaction is 4.263%, which is less than the preset critical value; the results show that the contribution of the 7th compaction to the accumulative compaction settlement is less than 5%, and the contribution rate of compactions after the 7th compaction to the accumulative compaction settlement of the whole dynamic compaction process is lower. Therefore, it can be considered that 6 compaction times are the optimum compaction time in this dynamic compaction project.
[64] Table 1 data table for 10 times of compaction for 47.94t)<20.86m experimental group
Single
Cumulative compaction Cumulative Single
Compaction compaction settlement compaction reinforcement times settlement test theoretical settlement/m efficiency/% value/m value/m 1 0.685 0.497 0.497 100.000 2 0.995 0.412 0.909 45.311 3 1.285 0.321 1.230 26.098 4 1.445 0.238 1.468 16.214 1.56 0.170 1.637 10.352 6 1.675 0.117 1.754 6.648 7 1.825 0.078 1.832 4.263 8 1.93 0.051 1.883 2.698 9 2.005 0.032 1.915 1.692 2.1 0.020 1.936 1.049
[65] The method provided by the application provides a theoretical basis for determining the compaction settlement and the optimum compaction time, and the 5 theoretical value of the compaction settlement calculated by the method is consistent with the test value.

Claims (6)

Conclusies l. Werkwijze voor het besturen van een dynamischesamenpakkingsproces door het meten van samenpakkingsinklinking daarin, gekenmerkt door het omvatten van: het verdelen van het dynamischesamenpakkingsproces in een inslaglaadfase en een ontlaadterugslagfase; het tot stand brengen van een tijdsgeschiedenisvergelijking van stamperverplaatsing in de inslaglaadfase om stamperverplaatsing in de inslaglaadfase te verkrijgen, waarbij rekening wordt gehouden met een invloed van grondlichaamsdemping in de inslaglaadfase en de tijdsgeschiedenisvergelijking van de stamperverplaatsing in de inslaglaadfase gecorrigeerd wordt, waarbij een elasticiteitsmodulus van het grondlichaam in de inslaglaadfase verschillend is van die in de ontlaadterugslagfase, waarbij de tijdsgeschiedenisvergelijking van de stamperverplaatsing in de inslaglaadfase is: u= Le tsin (wat) het tot stand brengen van een tijdsgeschiedenisvergelijking van stamperverplaatsing in de ontlaadterugslagfase om terugslagverplaatsing van de stamper in de ontlaadterugslagfase te verkrijgen; waarbij de tijdsgeschiedenisvergelijking van de stamperverplaatsing in de ontlaadterugslagfase is: u = R'e Wnt sin(wit +) + ug waarbij vo een beginsnelheid van de stamper is, wg en wy respectievelijk dempingsoscillatiefrequenties van het grondlichaam in de inslaglaadfase en de ontlaadterugslagfase zijn, w, en wy, respectievelijk niet-dempingsoscillatiefrequenties van het grondlichaam in de inslaglaadfase en de ontlaadterugslagfase zijn, { en {’ respectievelijk dempingsgraden van het grondlichaam in de inslaglaadfase en de ontlaadterugslagfase zijn, en zowel R' als p' onbepaalde coëfficiënten van de vergelijking zijn. en het van de stamperverplaatsing in de inslaglaadfase aftrekken van de terugslagverplaatsing van de stamper in de ontlaadterugslagfase om de samenpakkingsinklinking in het dynamischesamenpakkingsproces te berekenen; waarbij tijdstip, een verplaatsing en een snelheid op een laagste punt van de inslaglaadfase bepaald worden; en waarbij, volgens een continuiteitsvoorwaarde van de verplaatsing en de snelheid op het laagste punt van de inslaglaadfase en de ontlaadterugslagfase, de samenpakkingsinklinking als volgt verkregen wordt: / Us = HEE tuts (Watp) waarbij Vo de beginsnelheid van de stamper is, wy de dempingsoscillatiefrequentie van het grondlichaam in de inslaglaadfase is, w, de niet- dempingsoscillatiefrequentie van het grondlichaam in de inslaglaadfase is, { de dempingsgraad van het grondlichaam in de inslaglaadfase is, ¢,, een tijdstip is waarop de snelheid van de stamper tijdens een eerste samenpakking voor het eerst tot nul teruggebracht is, en k, en Kk; respectievelijk elastische constanten van het grondlichaamsbelasten in de inslaglaadfase en de ontlaadterugslagfase zijn.Conclusions l. A method of controlling a dynamic compaction process by measuring compaction settling therein, characterized by comprising: dividing the dynamic compaction process into an impact loading phase and a discharge retrace phase; establishing a time history equation of pistil displacement in the impact loading phase to obtain pistil displacement in the impact loading phase, taking into account an influence of ground body damping in the impact loading phase and correcting the time history equation of the pistil displacement in the impact loading phase, correcting for a soil body elastic modulus in the weft charge phase is different from that in the discharge retrace phase, where the time history equation of the rammer displacement in the weft charge phase is: u= Le tsin (what) establishing a time history equation of rammer displacement in the discharge retrace phase to determine pistil displacement in the discharge retrace phase to acquire; where the time history equation of the pistil displacement in the discharge retrace phase is: u = R'e Wnt sin(white +) + ug where vo is an initial velocity of the rammer, wg and wy are damping oscillation frequencies of the ground body in the impact charge phase and the discharge retrace phase, w , and wy are, respectively, non-damping oscillation frequencies of the ground body in the impact charge phase and the discharge retrace phase, { and {' are damping degrees of the ground body in the impact charge phase and the discharge retrace phase, respectively, and both R' and p' are undetermined coefficients of the equation. and subtracting from the rammer displacement in the impact loading phase the recoil displacement of the rammer in the unloading recoil phase to calculate the compression settling in the dynamic compression process; wherein time, a displacement and a velocity are determined at a lowest point of the impact loading phase; and where, according to a continuity condition of the displacement and the velocity at the lowest point of the impact loading phase and the discharge rebound phase, the packing collapse is obtained as follows: / Us = HEE tuts (Watp) where Vo is the initial velocity of the rammer, wy is the damping oscillation frequency of the soil body in the impact loading phase, w, is the non-damping oscillation frequency of the soil body in the impact loading phase, { is the damping rate of the soil body in the impact loading phase, ¢, is a point in time at which the rammer velocity during a first compression for first reduced to zero, and k, and Kk; are elastic constants of the ground body loading in the impact charging phase and the discharge recoil phase, respectively. 2. Werkwijze voor het besturen van een dynamischesamenpakkingsproces door het meten van samenpakkingsinklinking daarin, gekenmerkt door het omvatten van: het berekenen van een samenpakkingsinklinking volgens dynamischesamenpakkingsproces volgens de werkwijze voor het besturen van een dynamischesamenpakkingsproces door het meten van samenpakkingsinklinking daarin volgens conclusie 1; het bepalen van elasticiteitsmodulus E van grondlichaam in een huidig dynamischesamenpakkingsproces volgens huidig samenpakkingstijdstip: E = E,NF en het corrigeren van de huidige samenpakkingsinklinking door het benutten van de elasticiteitsmodulus E van het grondlichaam; waarbij E de elasticiteitsmodulus van het grondlichaam is, N aantal keren van het dynamischesamenpakkingsproces is, Eg een begin-elasticiteitsmodulus van het grondlichaam is en £ een empirische coëfficiënt is.A method of controlling a dynamic compaction process by measuring compaction compaction therein, characterized by comprising: calculating a dynamic compaction process compaction compaction process according to the method of controlling a dynamic compaction process by measuring compaction compaction therein according to claim 1; determining soil body elastic modulus E in a current dynamical compaction process according to current compaction time: E = E,NF and correcting the current compaction slump by exploiting the soil body elastic modulus E; where E is the elastic modulus of the soil body, N is number of times of the dynamic compaction process, Eg is an initial elastic modulus of the soil body, and £ is an empirical coefficient. 3. Werkwijze voor het besturen van een dynamischesamenpakkingsproces door het meten van samenpakkingsinklinking daarin volgens conclusie 2, met het kenmerk dat samenpakkingsposities op elk van de meerdere samenpakkingstijdstippen hetzelfde zijn.A method of controlling a dynamic compression process by measuring compression settling therein according to claim 2, characterized in that compression positions are the same at each of the plurality of compression times. 4. Werkwijze voor het bepalen van een optimaal samenpakkingstijdstip in een dynamischesamenpakkingsproces, gekenmerkt door het omvatten van:A method for determining an optimal packing time in a dynamic packing process, characterized by comprising: het keer op keer uitvoeren van dynamischesamenpakkingsprocessen; het bepalen van verstevigingsefficiéntie van elk van de dynamischesamenpakkingsprocessen volgens samenpakkingsinklinking van elk van de dynamischesamenpakkingsprocessen, waarbij de samenpakkingsinklinking bepaald wordt volgens de werkwijze voor het besturen van een dynamischesamenpakkingsproces door het meten van samenpakkingsinklinking daarin volgens conclusie 2; en het volgens de verstevigingsefficiëntie beoordelen of het samenpakkingstijdstip in het dynamischesamenpakkingsproces wel of niet het optimale samenpakkingstijdstip is.performing dynamic compaction processes over and over again; determining stiffening efficiency of each of the dynamic compaction processes according to compaction settling of each of the dynamic compaction process, wherein the compaction compaction is determined according to the method of controlling a dynamic compaction process by measuring compaction settling therein according to claim 2; and judging whether or not the compacting time in the dynamic compacting process is the optimal compacting time according to the stiffening efficiency. 5. Werkwijze voor het bepalen van een optimaal samenpakkingstijdstip in een dynamischesamenpakkingsproces volgens conclusie 4, met het kenmerk dat de verstevigingsefficiëntieberekeningsformule als volgt is: A =Äx100% Si waarbij A; een i-e verstevigingsefficiëntie 1s, i = 1, 2...n; S; de verstevigingsinklinking van de i-esamenpakking is; en S; een cumulatieve samenpakkingsinklinking na de i-e samenpakking is.A method for determining an optimal compaction time in a dynamic compaction process according to claim 4, characterized in that the hardening efficiency calculation formula is as follows: A = Δx100% Si where A; an i-th reinforcement efficiency 1s, i = 1, 2...n; S; is the reinforcing compaction of the i-e packing; and S; is a cumulative compression settling after the i-th compression. 6. Werkwijze voor het bepalen van een optimaal samenpakkingstijdstip in een dynamischesamenpakkingsproces volgens conclusie 5, met het kenmerk dat het volgens de verstevigingsefficiëntie beoordelen of het samenpakkingstijdstip in het dynamischesamenpakkingsproces wel of niet het optimale samenpakkingstijdstip is, het volgende omvat: het beoordelen of een huidige verstevigingsefficiëntie wel of niet kleiner is dan een vooraf ingestelde kritieke waarde; waarbij, indien de verstevigingsefficiëntie voor de eerste keer kleiner is dan de vooraf ingestelde kritieke waarde, vorig samenpakkingstijdstip het optimale samenpakkingstijdstip in het dynamischesamenpakkingsproces is.A method for determining an optimal packing time in a dynamic packing process according to claim 5, characterized in that judging whether or not the packing time in the dynamic packing process is the optimal packing time according to the stiffening efficiency comprises: judging whether a current stiffening efficiency whether or not it is less than a preset critical value; where, if the stiffening efficiency is less than the preset critical value for the first time, previous compression time is the optimal compression time in the dynamic compression process.
NL2029770A 2021-11-16 2021-11-16 Method for controlling dynamic compaction process by measuring compaction settlement therein and method for optimum compaction time NL2029770B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2029770A NL2029770B1 (en) 2021-11-16 2021-11-16 Method for controlling dynamic compaction process by measuring compaction settlement therein and method for optimum compaction time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2029770A NL2029770B1 (en) 2021-11-16 2021-11-16 Method for controlling dynamic compaction process by measuring compaction settlement therein and method for optimum compaction time

Publications (1)

Publication Number Publication Date
NL2029770B1 true NL2029770B1 (en) 2023-06-09

Family

ID=86729203

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2029770A NL2029770B1 (en) 2021-11-16 2021-11-16 Method for controlling dynamic compaction process by measuring compaction settlement therein and method for optimum compaction time

Country Status (1)

Country Link
NL (1) NL2029770B1 (en)

Similar Documents

Publication Publication Date Title
Ansell Laboratory testing of a new type of energy absorbing rock bolt
Ibarra et al. Hysteretic models that incorporate strength and stiffness deterioration
EP0723616B1 (en) Control of a compacting machine with a measurement of the characteristics of the ground material
CN111898277B (en) Method for determining tamping settlement and optimal tamping times in dynamic compaction process
NL2029770B1 (en) Method for controlling dynamic compaction process by measuring compaction settlement therein and method for optimum compaction time
CN104239641B (en) A kind of matching process of pure electric vehicle dynamical system
CN102054098B (en) Method for simulating slip and slide state of locomotive
CN101537477B (en) Non-sinusoidal waveform generator used for mold oscillation
CN104150301B (en) Elevator operation curve modification method
CN109856962A (en) A kind of intelligence circular shaft type straightener main shaft adaptive-feedrate adjustment method
Mukhopadhyay et al. Testing constitutive relations by running and walking on cornstarch and water suspensions
AU2015391736A1 (en) A method for pile-driving
CN106476645A (en) A kind of automobile charging pile management method and device
CN108416092A (en) Wave-forming reinforcement RC beam explosion effect equivalent static load determination method
CN107905093B (en) Multistage bridge abutment structure for improving rear soil settlement of bridge abutment and construction method thereof
Kowalsky RC structural walls designed according to UBC and displacement-based methods
Cai et al. Research on shape optimization of CSG dams
CN103818393A (en) Compensation method for time lag characteristics of traction and brake system of train
CN206971224U (en) Suitable for the concrete self-flowing pastefill pipe of deep basal pit
CN110147643B (en) Method and device for determining residual life of coupler body
CN114459712B (en) Earthquake simulation vibrating table experimental compensation method based on autoregressive model
CN104971951B (en) The transmission speed control method and system of a kind of reversable mill
CN104080560A (en) Control device for the advancing motion of a casting plunger
Yaobao et al. Analysis of hydraulic hammer capacity under different inclination
KR101207756B1 (en) Ferro-alloy supplying apparatus and method of the same