NL2029484B1 - Integrated in-situ deep-sea detection and sampling platform - Google Patents

Integrated in-situ deep-sea detection and sampling platform Download PDF

Info

Publication number
NL2029484B1
NL2029484B1 NL2029484A NL2029484A NL2029484B1 NL 2029484 B1 NL2029484 B1 NL 2029484B1 NL 2029484 A NL2029484 A NL 2029484A NL 2029484 A NL2029484 A NL 2029484A NL 2029484 B1 NL2029484 B1 NL 2029484B1
Authority
NL
Netherlands
Prior art keywords
platform
detection
sampling
seabed
integrated
Prior art date
Application number
NL2029484A
Other languages
Dutch (nl)
Inventor
Guan Yili
Huang Mu
Lv Huahua
Yang Gang
Li Chuanshun
Zhu Zhiwei
Hu Limin
Yan Shijuan
Original Assignee
Pilot National Laboratory For Marine Science And Tech Qingdao
First Institute Of Oceanography Mini Of Natural Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot National Laboratory For Marine Science And Tech Qingdao, First Institute Of Oceanography Mini Of Natural Resources filed Critical Pilot National Laboratory For Marine Science And Tech Qingdao
Priority to NL2029484A priority Critical patent/NL2029484B1/en
Application granted granted Critical
Publication of NL2029484B1 publication Critical patent/NL2029484B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8902Side-looking sonar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3808Seismic data acquisition, e.g. survey design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3817Positioning of seismic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3817Positioning of seismic devices
    • G01V1/3826Positioning of seismic devices dynamic steering, e.g. by paravanes or birds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • G01V1/3843Deployment of seismic devices, e.g. of streamers

Landscapes

  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Disclosed is an integrated in-situ deep-sea detection and sampling platform including a mechanical body of an observation platform, an acoustic detection subsystem, a water environment detection subsystem, an undenNater panoramic high-definition (including hyperspectral imaging) visualization system, a gesture adjustment system, a releasing mechanism system and a high-speed undenNater data transmission system. A beneficial effect of the invention is that it can realize accurate collection of target samples of deep seabed. The samples and data obtained not only have characteristics of in-situ collection, but also are highly consistent in time and space domains, providing very important evidence for identification and analysis of key sea areas and rapidly changing seabed activities.

Description

Integrated in-situ deep-sea detection and sampling platform Technical field The present invention belongs to a technical field of comprehensive deep-sea environmental exploration, geological sampling and precise placement of equipment, and is an integrated in-situ deep-sea detection and sampling platform.
Technology background There are some foreign universities and research institutes that have installed, designed and manufactured similar in-situ deep-water exploration platforms out of research needs.
The platforms can be customized to a high degree, and observation items and sampling equipment can be replaced at any time to achieve different scientific research purposes.
By contrast, research and development technology of related equipment in China started relatively late.
At present, there have not been similar in-situ deep-sea detection platforms yet in China's marine research frontline, and detection and sampling methods are relatively single.
Sampling, measuring and geophysical exploration are all separated.
According to different investigating methods, scientific researches are done using different vessels, voyages, winches in different times and seasons, and even in different locations.
Later, data and samples are processed in the laboratory, which makes data interpretation and sample analysis more difficult.
Therefore, in-situ comprehensive detection and sampling is extremely urgent.
At present, several integrated scientific research vessels equipped with or about to be equipped with optical cables in China, such as “Da Yang 01”, “Ke Xue", “Hai Yang 06”, “Xiang Yang Hong 10”, "Xiang Yang Hong 01, “Xiang Yang Hong 03” and new scientific research vessels such as "Xue Long 02°, “Hai Yang” and “Shen Hai” ready to be put into scientific research missions after checking and acceptance, will carry underwater equipment based on optical cable communication.
These scientific research vessels are also main force of deep-sea resource detection and ocean-going basic scientific investigation, laying a solid foundation for deep-sea scientific investigation and national ocean strategy in the future.
Summary of the invention The present invention is designed to provide an integrated in-situ deep-sea detection and sampling platform.
A beneficial effect of the present invention is that it can realize accurate collection of target samples of deep seabed.
The samples and data obtained are not only characterized by in-situ collection, but also are highly consistent in time and space domains, providing very important evidence for the identification and analysis of key sea areas and rapidly changing seabed activities.
A technical scheme adopted in the present invention includes a mechanical body of an observation platform, an acoustic detection subsystem, a water environment detection subsystem, an underwater panoramic high-definition (including hyperspectral imaging) visualization system, a gesture adjustment system, a releasing mechanism system and a high- speed underwater data transmission system, among which:
1. Acoustic detection subsystem: possessing a sub-bottom profiler instrument with ultra-high resolution, a detection depth over 50m, resolution over 0.02m and a high resolution synthetic aperture sonar with near-bottom micro-topography and geomorphology detection capability;
2. High-speed underwater data transmission system: possessing a deck control unit and a deck power supply system, so the signal transmission and the power supply can be carried out through 10,000 - meter optical cables with a transmission rate of no less than 12 m/s, and the power supply no less than 3200 W,
3. Underwater panoramic high-definition (including hyperspectral imaging visualization system: possessing a high-definition panoramic imaging and monitoring system and an off-bottom altimeter with an image resolution 1080 P or higher;
4. Water environment detection subsystem: equipped with a variety of sensors for real-time marine environment monitoring;
5. Releasing mechanism system: releasing system load is less than 5 tons and it is possible to employ a box sampler and a gravity sampler to work synchronously;
6. Gesture adjustment system: equipped with a propeller; a position and a gesture of the whole detection platform can be adjusted appropriately with an operating water depth of 0 - 6000 meters and a power supply mode of ensuring power supply through photoelectric composite cables, and the power energy is above 3200 W. Further, it is possible to lower the platform to the seabed by armoured optical cables, up to 6000 meters deep. In case sight from the deck is clear, it is possible to control the movement of the propeller and opening and closing of the releaser by instructions, carry out data transmission and communication through photoelectrical composite cables; observe the seabed and the water environment through the visual device equipped on the platform, control the releaser by the deck monitoring system and release the sampler to take the samples when needed; and the observation and sampling platform is equipped with a submarine panoramic high-definition hyperspectral imaging system, light sources and power supply devices, and the platform is connected to the ship 's control panel and monitor through armoured cables. During operation, the integrated platform is lowered to a height of 5 ~ 10 m above the seabed by a 10,000 - meter armoured optical cable winch, and dynamic positioning is started. The ship sails at a slow speed of 1 ~ 2 knots and looks for and detects the sampling target through the monitor on board; in the meantime detects the water environment, measures the topography and geomorphology on the targeted seabed using the acoustic telemeter and using the hyperspectral imaging system for optical telemetry, and adjusts gesture and position of the integrated platform through the propeller. After finding the target, the releasing mechanism can be opened immediately to send out the sampling equipment; and based on observation of the geomorphological features and sample images of the seabed, the propeller can adjust gesture and position of the sampling device by controlling the underwater operation status of the integrated in-situ deep-sea observation system platform and using the deck monitoring platform of the survey ship.
Embodiments Hereinafter, the present invention is explained in detail in combination with the specific embodiments.
The integrated in-situ deep-sea detection and sampling platform is mainly composed of a mechanical body of an observation platform, an acoustic detection subsystem, a water environment detection subsystem, an underwater panoramic high-definition (including hyperspectral imaging) visualization system, a gesture adjustment system, a release mechanism system, and a high-speed underwater data transmission system:
1. Acoustic detection subsystem: possessing a sub-bottom profiler instrument with ultra-high resolution with a detection depth over 50 m and resolution over 0.02 m; high resolution synthetic aperture sonar with near-bottom micro-topography and geomorphology detection capability;
2. High-speed underwater data transmission system: possessing a deck control unit and a deck power supply system, so the signal transmission and the power supply can be carried out through 10,000 - meter optical cables with a transmission rate no less than 12 m/s, and the power supply no less than 3200 W,
3. Underwater panoramic high-definition (including hyperspectral imaging visualization system: possessing a high-definition panoramic image monitoring system and an off-bottom altimeter with an image resolution 1080 P or higher;
4. Water environment detection subsystem: equipped with a variety of sensors for real-time marine environment monitoring;
5. Releasing mechanism system: releasing system load is less than 5 tons and it is possible to employ a box sampler and a gravity sampler to work synchronously;
6. Gesture adjustment system: equipped with a propeller; a position and a gesture of the whole detection platform can be adjusted appropriately with an operating water depth 0-6000 meters and a power supply mode of ensuring power supply through photoelectric composite cables, and the power energy is above 3200 W. Further, it is possible to lower the platform to the seabed by armoured optical cables, up to 6000 meters deep. In case sight from the deck is clear, it is possible to control the movement of the propeller and opening and closing of the releaser by instructions, carry out data transmission and communication through photoelectrical composite cables; observe the seabed and the water environment through the visual device equipped on the platform, control the releaser by the deck monitoring system and release the sampler to take the samples when needed; and the observation and sampling platform is equipped with a submarine panoramic high-definition hyperspectral imaging system, light sources and power supply devices, and the platform is connected to the ship 's control panel and monitor through armoured cables. During operation, the integrated platform is lowered to a height of 5 ~ 10 m above the seabed by a 10,000 - meter armoured optical cable winch, and dynamic positioning is started. The ship sails at a slow speed of 1 ~ 2 knots and looks for and detects the sampling target through the monitor on board; in the meantime detects the water environment, measures the topography and geomorphology on the targeted seabed using the acoustic telemeter and using the hyperspectral imaging system for optical telemetry, and adjusts gesture and position of the integrated platform through the propeller. After finding the target, the releasing mechanism can be opened immediately to send out the sampling equipment; and based on observation of the geomorphological features and sample images of the seabed, the propeller can adjust gesture and position of the sampling device by controlling the underwater operation status of the integrated in-situ deep-sea observation system platform and using the deck monitoring platform of the survey ship.
The platform is equipped with various samplers to accurately select and visualize the samples, including polymetallic sulphide, cobalt-rich crust, rocks and sediments and Marine organisms, which are located in the deep ocean in the complex topography and landform; and observing and recording the topography, hydrothermal activities and biological activities on the seabed surface by hyperspectral imaging; precise multi-beam and shallow profile measurements are made simultaneously on the seabed sampled in situ; and multi-parameter in- situ measurements and records were made for specific water bodies in key sea areas to provide a reliable scheme for laying submarine tripods and deep-sea landers in the complex seabed topography.
The present invention is mainly used for collecting special sediments, rocks, sulphides and other samples in the complex seabed topography. The successful development of this technology plays an important role in promoting the progress of integrated in-situ deep-sea detection and sampling technology, improving the level of deep-sea scientific research and promoting the implementation of marine strategy in China. In-situ sampling and observation of rare earth resources in the Indian Ocean rare earth exploration area and sampling of loose deposits in the seabed near hydrothermal activity areas on the mid-Atlantic ridge were successful, which further verifies that the equipment has stable performance, simple operation and strong practicability, and can be widely used in the in-situ investigation and sampling of various kinds of mineral resources in the ocean seabed.
The above are only some preferred embodiments of the present invention, and are not a limitation of the present invention in any form. Any simple changes, equivalent replacements and modifications of the above embodiments according to technical substances of the present invention shall fall within a scope of the technical solution of the present invention.

Claims (2)

CONCLUSIESCONCLUSIONS 1. Een geïntegreerd in-situ diepzeedetectie- en bemonsteringsplatform, met het kenmerk dat het platform een mechanisch lichaam omvat van een observatieplatform, een akoestisch 5 detectiesubsysteem, een water omgevingsdetectiesubsysteem, een onderwater panoramisch hoge-definitie visualisatiesysteem (met inbegrip van hyperspectrale beeldvorming), een positie- en oriëntatie- aanpassingssysteem, een systeem met vrijgavemechanisme en een hoge snelheid onderwatergegevensoverdrachtssysteem, waaronder: (1) akoestisch detectiesubsysteem: omvattende een sub-bodem profiler-instrument met ultrahoge resolutie, een detectiediepte van meer dan 50 m, een resolutie van meer dan 0,02 m en een synthetische apertuursonar met hoge resolutie met detectiemogelijkheden voor microtopografie en geomorfologie nabij de bodem; (2) hoge snelheid onderwatergegevensoverdrachtssysteem: omvattende een dekbesturingseenheid en een dekvoedingssysteem, zodat de signaaloverdracht en de voeding via 10.000 - meter optische kabel kan worden uitgevoerd met een transmissiesnelheid van niet minder dan 12 m/s en met de voeding niet minder dan 3200 W,; (3) onderwater panoramisch hoge-definitie visualisatiesysteem (met inbegrip van hyperspectrale beeldvorming): omvattende een hoge-definitie panoramisch beeld- en bewakingssysteem en een hoogtemeter voor het meten van hoogte vanaf de bodem met een beeldresolutie van 1080 P of hoger; (4) water omgevingsdetectiesubsysteem: voorzien van een variëteit aan sensoren voor het real-time monitoren van de mariene omgeving; (5) systeem met vrijgavemechanisme: vrijgavesysteembelasting is minder dan 5 ton en het is mogelijk om een bodemmonsternemer en een zwaartekrachtsveldmonsternemer in te zetten om synchroon te werken; (6) positie- en oriëntatie- aanpassingssysteem: voorzien van een propeller; een positie en oriëntatie van het gehele detectieplatform kan aangepast worden met een operationele waterdiepte van 0 - 6000 meter en een voedingsmodus voor het verzekeren van voeding door foto-elektrische composietkabels, en de voedingsenergie is meer dan 3200 W.1. An integrated in-situ deep-sea detection and sampling platform, characterized in that the platform includes a mechanical body of an observation platform, an acoustic detection subsystem, an aquatic environment detection subsystem, an underwater panoramic high-definition visualization system (including hyperspectral imaging), a position and orientation adjustment system, a release mechanism system and a high-speed underwater data transmission system, including: (1) acoustic detection subsystem: comprising an ultra-high-resolution sub-bottom profiler instrument, a detection depth greater than 50 m, a resolution greater than than 0.02 m and a high-resolution synthetic aperture sonar with near-bottom microtopography and geomorphology detection capabilities; (2) high-speed underwater data transmission system: comprising a deck control unit and a deck power system, so that the signal transmission and power supply can be carried out through 10,000-meter optical cable with a transmission speed of not less than 12 m/s and with the power supply not less than 3200 W, ; (3) underwater panoramic high-definition visualization system (including hyperspectral imaging): comprising a high-definition panoramic imaging and monitoring system and an altimeter for measuring height from the bottom with an image resolution of 1080P or higher; (4) water environment detection subsystem: equipped with a variety of sensors for real-time monitoring of the marine environment; (5) release mechanism system: release system load is less than 5 tons, and it is possible to employ a soil sampler and a gravity field sampler to work synchronously; (6) position and orientation adjustment system: equipped with a propeller; a position and orientation of the entire detection platform can be adjusted with an operational water depth of 0 - 6000 meters and a power supply mode for ensuring power supply by composite photoelectric cables, and the power supply energy is more than 3200 W. 2. De geïntegreerde in-situ diepzeedetectie en bemonsteringsplatform volgens conclusie 1, met het kenmerk dat het mogelijk is om het platform te laten zakken naar de zeebodem met gepantserde optische kabels, tot 6000 meter diep; waarbij wanneer het zicht vanaf het dek vrij is, het mogelijk is om de beweging van de propeller en het openen en sluiten van het vrijgavemechanisme te besturen door instructies, gegevensoverdracht en communicatie door foto-elektrische composiet kabels uit te voeren, de zeebodem en de wateromgeving te observeren door een visueel apparaat dat op het platform is aangebracht, het vrijgavemechanisme door het dekmonitoringssysteem te besturen en de monsternemer vrij te geven voor het nemen van monsters indien nodig; en waarbij het detectie-en bemonsteringsplatform is voorzien van een onderzees panoramisch hoge-definitie hyperspectraal beeldvormingssysteem, lichtbronnen en stroomvoorzieningsapparaten, en het platform is verbonden met een bedieningspaneel en monitor van het schip met de gepantserde kabels, waarbij tijdens operatie het geïntegreerde platform door een 10000 m gepantserde optische kabellier wordt verlaagd naar een hoogte van 5 à 10 m boven de zeebodem, en dynamische positionering wordt gestart; waarbij het schip met een langzame snelheid van 1 à 2 knopen vaart en het bemonsteringsdoel door de monitor aan boord wordt gezocht en gedetecteerd; waarbij ondertussen de wateromgeving wordt gedetecteerd, de topografie en geomorfologie op de beoogde zeebodem gemeten door gebruik van de akoestische telemeter en door gebruik van het hyperspectraal beeldvormingssysteem voor optische telemetrie, en wordt de oriëntatie en positie van het geïntegreerde platform aangepast via de propeller; waarbij na het vinden van het doel het vrijgavesysteem onmiddellijk kan worden geopend voor het uitsturen van de bemonsteringsapparatuur; en op basis van de observatie van de geomorfologische kenmerken van bemonsteringsbeelden van de zeebodem de propeller de oriëntatie en de positie van de bemonsteringsapparatuur kan aanpassen door het besturen van onderwaterwerkingsstatus van het geïntegreerd in-situ diepzeedetectie- en bemonsteringsplatform en met behulp van een dekmonitoringsplatform van het onderzoeksschip.The integrated in-situ deep-sea detection and sampling platform according to claim 1, characterized in that it is possible to lower the platform to the seabed with armored optical cables, up to 6000 meters deep; wherein when the view from the deck is clear, it is possible to control the movement of the propeller and the opening and closing of the release mechanism by executing instructions, data transmission and communication through photoelectric composite cables, the seabed and the aquatic environment observe by a visual device mounted on the platform, control the release mechanism by the deck monitoring system and release the sampler for sampling if necessary; and wherein the detection and sampling platform is provided with a submarine panoramic high-definition hyperspectral imaging system, light sources and power supply devices, and the platform is connected to a control panel and monitor of the ship with the armored cables, wherein during operation the integrated platform by a 10000 m armored optical cable winch is lowered to a height of 5 to 10 m above the seabed, and dynamic positioning is started; wherein the vessel is traveling at a slow speed of 1 to 2 knots and the sample target is searched and detected by the on-board monitor; meanwhile, detecting the aquatic environment, measuring the topography and geomorphology on the target seabed by using the acoustic telemeter and using the hyperspectral imaging system for optical telemetry, and adjusting the orientation and position of the integrated platform through the propeller; wherein after finding the target, the release system can be opened immediately for outputting the sampling equipment; and based on the observation of the geomorphological features of sampling images of the seabed, the propeller can adjust the orientation and position of the sampling equipment by controlling underwater operation status of the integrated in-situ deep-sea detection and sampling platform and using a deck monitoring platform of the research vessel.
NL2029484A 2021-10-21 2021-10-21 Integrated in-situ deep-sea detection and sampling platform NL2029484B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2029484A NL2029484B1 (en) 2021-10-21 2021-10-21 Integrated in-situ deep-sea detection and sampling platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2029484A NL2029484B1 (en) 2021-10-21 2021-10-21 Integrated in-situ deep-sea detection and sampling platform

Publications (1)

Publication Number Publication Date
NL2029484B1 true NL2029484B1 (en) 2022-03-11

Family

ID=80568626

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2029484A NL2029484B1 (en) 2021-10-21 2021-10-21 Integrated in-situ deep-sea detection and sampling platform

Country Status (1)

Country Link
NL (1) NL2029484B1 (en)

Similar Documents

Publication Publication Date Title
Purser et al. Ocean Floor Observation and Bathymetry System (OFOBS): a new towed camera/sonar system for deep-sea habitat surveys
Trabant Applied high-resolution geophysical methods: offshore geoengineering hazards
CN110531365A (en) A kind of comprehensive in-situ investigation sample platform in far-reaching sea
CN109870722A (en) A kind of beach shallow sea engineering geological property original position comprehensive survey platform
Bachmayer et al. Oceanographic research using remotley operated underwater robotic vehicles: Exploration of hydrothermal vent sites on the mid-Atlantic ridge at 37 (degrees) north 32 (degrees) west
Dyomin et al. Marine tests of a digital holographic module using a measuring technological platform
NL2029484B1 (en) Integrated in-situ deep-sea detection and sampling platform
Gordon et al. Canadian imaging and sampling technology for studying marine benthic habitat and biological communities
Sharma et al. Benthic disturbance and impact experiments in the Central Indian Ocean Basin
Vacchi et al. Monitoring the effectiveness of re-establishing beaches artificially: methodological and practical insights into the use of video transects and SCUBA-operated coring devices
Gohl The Expedition of the Research Vessel" Polarstern" to the Amundsen Sea, Antarctica, in 2010 (ANT-XXVI/3)
Zhang et al. Deep-sea search and recovery with and without an underwater vehicle
Rimsky-Korsakov et al. Development of technology for integrated instrumental underwater observations related to Russian Arctic ecosystems
Innangi et al. Seafloor habitat mapping on the" Pelagie Islands" MPA (Sicily Channel) using Remote Sensing Object Image Analysis supported by multibeam bathymetry and ground-truth data
Caiti et al. Innovative technologies in underwater archaeology: field experience, open problems, and research lines
Campbell et al. Marine geology and paleoceanography of Baffin Bay and adjacent areas Nain, NL to Halifax, NS August 28 September 23, 2008
Agarwala Technological trends for ocean research vessels
Olenin et al. Video Recording of the Vertical Distribution of Zooplankton In Situ
Purser et al. Peer-Reviewed Technical Communication
Bagley et al. Deep-ocean Environmental Long-term Observatory System (DELOS):-Long-term (25 year) monitoring of the deep-ocean animal community in the vicinity of offshore hydrocarbon operations
Russo et al. Monitoring the Posidonia Meadows structure through underwater photogrammetry: A case study
Zhang et al. Deep-sea search and recovery: with and without operating an underwater vehicle
Menapace et al. Long-term monitoring of fluid and solid emissions at the African-Eurasian tectonic boundary in the ALBOran Sea and the Gulf of CAdiz, Cruise No. M167, 11.10. 2020-05.11. 2020, Emden (Germany)-Emden (Germany), ALBOCA II
Limoges et al. R/V Coriolis II expedition RQM-MEOPAR–COR2007 Coastal to offshore sediment remobilization and its impacts on primary production dynamics in the Lower St. Lawrence Estuary
Kopp Conjoint Monitoring of the Ocean Bottom offshore Chile Humboldt Organic MattEr Remineralization, Cruise No. SO288, 15.01. 2022–15.02. 2022, Guayaquil (Ecuador)–Valparaiso (Chile) COMBO & HOMER