NL2028571A - A winch control device and a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel - Google Patents

A winch control device and a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel Download PDF

Info

Publication number
NL2028571A
NL2028571A NL2028571A NL2028571A NL2028571A NL 2028571 A NL2028571 A NL 2028571A NL 2028571 A NL2028571 A NL 2028571A NL 2028571 A NL2028571 A NL 2028571A NL 2028571 A NL2028571 A NL 2028571A
Authority
NL
Netherlands
Prior art keywords
winch
motor
hydraulic transformer
crude oil
displacement
Prior art date
Application number
NL2028571A
Other languages
Dutch (nl)
Other versions
NL2028571B1 (en
Inventor
Zhang Chunlin
Yu Jian
Xiao Tibing
Li Rong
Sun Hanzhou
Qiu Shaohua
Tang Haijun
Wu Chengen
Original Assignee
Cosco Shipping Qidong Offshore Co Ltd
Cosco Shipping Shipyard Nangtong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosco Shipping Qidong Offshore Co Ltd, Cosco Shipping Shipyard Nangtong Co Ltd filed Critical Cosco Shipping Qidong Offshore Co Ltd
Publication of NL2028571A publication Critical patent/NL2028571A/en
Application granted granted Critical
Publication of NL2028571B1 publication Critical patent/NL2028571B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/485Control devices automatic electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/52Control devices automatic for varying rope or cable tension, e.g. when recovering craft from water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/08Driving gear incorporating fluid motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/214Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being hydrotransformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

The invention relates to a winch control device for a deep-water dynamic positioning crude oil cargo transfer vessel. By the design of three key control components of main 5 controller, hydraulic transformer controller and direct-driven pump source controller, when the operating platform rises, the direct-driven pump source unloads, and the gravitational potential energy of the load is recovered into the accumulator through the hydraulic transformer, when the operating platform sinks, the direct-driven pump source and the hydraulic transformer supply oil to an actuator to release the recovered energy, 10 which greatly reduces the power consumption of the system, realizes the reasonable flow distribution and smooth switching between the direct-driven pump source and the hydraulic transformer and solves the control problem of the hydraulic transformer. Based on the above, the invention can provide a stable and reliable winch control device for the deep-water power positioning crude oil cargo transfer vessel, and then realize the 15 heave compensation function of the winch system for the deep-water power positioning crude oil cargo transfer vessel, ensuring the stable operation of the winch system for the deep-water power positioning crude oil cargo transfer vessel.

Description

-1- A WINCH CONTROL DEVICE AND A WINCH SYSTEM FOR A DEEP-
WATER DYNAMIC POSITIONING CRUDE OIL CARGO TRANSFER
VESSEL Technical Field The invention relates to the field of heave compensation system, in particular to a winch control device and a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel.
IO Background Art Against the background that the international crude oil price remains low and the global offshore oil companies greatly cut the operating costs, the deep-water dynamic positioning crude oil CTV (Cargo Transfer Vessel) has come into being for reducing FPSO oil offloading costs. The new concept of deep-water dynamic positioning crude oil CTV will challenge the existing traditional crude oil transfer ways in the market. Previously, the shuttle tanker was an important tool to undertake the offloading task of FPSO. Compared with conventional tankers of the same tonnage, the shuttle tanker has high construction cost and the dead weight capacity of only 80,000-150,000 tons, but the conventional tanker has the dead weight capacity of up to 300,000-400,000 tons.
Therefore, giving full play to the advantages of conventional tankers such as large number, low construction cost, high dead weight capacity and low transportation cost in the large-scale, long-distance exploitation and transportation of deep-water oil and gas resources, the method to engage the existing oil tankers in the deep-water oilfield crude oil transportation operation without transformation has become the upgrade direction of the international crude oil transportation equipment technologies and the objective need for the offshore oil production and transportation chain to achieve safe and efficient production and reduce cost. The winch system is a necessary system for the deep-water dynamic positioning crude oil CTV. The method to design a winch control device for the winch system of the deep-water dynamic positioning crude oil CTV is an urgent task. Contents of the Invention The invention aims to provide a winch control device and a winch system for a deep-
2-
water dynamic positioning crude oil cargo transfer vessel to solve at least one of the deficiencies of the prior art.
In order to realize the above purpose, the invention adopts the following technical proposal:
Specifically, the winch control device for the deep-water dynamic positioning crude oil cargo transfer vessel is proposed, comprising: A main controller, which comprises: A flow controller QC used to acquire the movement velocity v, the load displacement y and the desired load displacement y; and calculate the flow q of a driving motor based on the disturbance feedforward control and feedback control composite control strategy according to the movement velocity v, the load displacement y and the desired load displacement y;,
A flow distributor QA used to acquire the the working pressure signal P2 of a secondary motor and calculate the expected flow g; of a hydraulic transformer and the expected flow c of a direct-driven pump source according to the calculated flow g of the driving motor,
A flow distribution module used to distribute the corresponding flow according to the expected flow ¢; of the hydraulic transformer and the expected flow ¢: of the direct- driven pump source;
A hydraulic transformer controller, which comprises:
An L1 link calculation module, for which the input terminal is connected with the main controller, the primary motor and the secondary motor installed on the winch of the deep-water power positioning crude oil cargo transfer vessel and is used to calculate the displacement V; of the primary motor according to the data input by the main controller, the primary motor and the secondary motor,
An L2 link calculation module, for which the input terminal is connected with the output terminal of the L1 link calculation module, and which is used to calculate the speed difference A” of the hydraulic transformer according to the data output by the L1 link calculation module,
An L3 link calculation module, for which the input terminal is connected with the output terminal of the L2 link calculation module, and which is used to calculate the torque adjustment A? of the hydraulic transformer according to the data output by the L2 link calculation module,
-3- An L4 link calculation module, for which the input terminal is connected with the output terminal of the L3 link calculation module, and which is used to calculate the displacement J, of the secondary motor according to the data output by the L3 link calculation module, A control module, for which the input terminal is connected with the output terminal of the L4 link calculation module and the output terminal is connected with the primary motor and the secondary motor,and which is used to control the displacement of the primary motor and the secondary motor according to the data output by the L4 link calculation module; A DC pump source controller used to calculate the speed 72: of a servo motor for the DC pump source controller C2 according to the expected flow g: and the output flow signal q: of the direct-driven pump source.
Further, the flow controller QC specifically comprises: A disturbance feedforward controller used to calculate the output flow g, by the following formula according to the input physical movement velocity Vv, q, = may (L/min) Wherein, V is the heave speed of the operating platform in m/s; k is the velocity compensation coefficient; r is the radius of a roller in m; ki is the rate of a pulley block; V is the displacement of the driving motor of the winch in L/r; I js the transmission ratio of a gear transmission mechanism, A feedback controller used to calculate the output flow q, by the general PID algorithm according to the input physical load displacement + and the expected load displacement Yi A flow calculation module used to calculate the flow q, i.e. q=d: +4 ; The flow distributor QA specifically comprises: An expected flow determination module used to determine the expected flow ¢, of the hydraulic transformer and the expected flow q, of the direct-driven pump source by the following formula (3),
4- =k po 4 & 4, =4—4, Wherein, ky 1s the flow distribution coefficient.
When 77 0 namely, the motor is in the forward rotation, the calculation formula of K7 is shown in the formula (4), | 1 Py > Pu ky = PTP Pu < Pa Da (4 | TP 0 Py <p Wherein, PL and PH are two preset pressure thresholds.
Further. 2. =200 bar, py = 250 bar Further, the L1 link calculation module specifically calculates the displacement }, of the primary motor by the following formula (5), Sd . V, =V, + (Vn = =p) (5) Gmax , Wherein, Vw is the initial displacement of the primary motor, Pima is the maximum adjustable displacement of the primary motor, Tus ig the maximum flow of the hydraulic transformer, and * is the differential pressure-displacement compensation coefficient; Further, the L2 link calculation module specifically calculates the speed difference A? of the hydraulic transformer by the following formula (6), An = 1 Gha (6) Vi Wherein, n is the revolving speed of the hydraulic transformer; The L3 link calculation module specifically calculates the torque adjustment A7 of the hydraulic transformer by the following formula (7), AT = 1270 7) At Wherein, Af is the settling time, which can be set manually; The L4 link calculation module specifically calculates the displacement 2 of the
-5- secondary motor by the following formula (8), Vz Vipin, tE 27AT (8) Dhn Wherein, in the energy recovery phase, the sign in the middle of the formula (8) is -; in the energy release phase, the sign is +. Further, & is specifically 0.03S. The invention also proposes a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel, which uses the winch control device for the deep-water dynamic positioning crude oil cargo transfer vessel in Claims 1-5 and also comprises a winch heave compensation system controlled by the winch control device, wherein the winch heave compensation system comprises a direct-driven pump source, a driving motor, a hydraulic transformer, an accumulator, a pulley block and a roller, Wherein the direct-driven pump source comprises a servo motor and a hydraulic pump, The hydraulic transformer is a variable motor rigidly connected by two output shafts, in particular a traditional hydraulic transformer composed of a primary motor a and a secondary motor b, An output shaft of the driving motor is meshed with an inner gear of a hub at the drum end face through a gear, An output shaft of the driving motor is meshed with an inner gear of a hub at the drum end face through a gear, The winch control device of the deep-water dynamic positioning crude oil cargo transfer vessel is connected with the winch system through a signal line and controls the operation of the heave compensation system.
The invention has the following beneficial effects: The winch control device and the winch system of the deep-water dynamic positioning crude oil cargo transfer vessel proposed by the invention can realize the expected heave compensation function, meets the design requirements for the compensation accuracy, and has the function of energy recovery: when the operating platform rises, the direct-driven pump source unloads, and the gravitational potential energy of the load is recovered into the accumulator through the hydraulic transformer; when the operating platform sinks, the direct-driven pump source and the hydraulic transformer supply oil to an actuator to release the recovered energy, which greatly reduces the power consumption of the system, realizes the reasonable flow distribution and smooth
-6- switching between the direct-driven pump source and the hydraulic transformer and solves the control problem of the hydraulic transformer.
Based on the above, the invention can provide a stable and reliable winch control device for the deep-water power positioning crude oil cargo transfer vessel, and then realize the heave compensation function of the winch system for the deep-water power positioning crude oil cargo transfer vessel, ensuring the stable operation of the winch system for the deep-water power positioning crude oil cargo transfer vessel.
Drawing Description The above and other characteristics of the invention will be more obvious by describing in detail in the embodiments shown in the drawings.
The same reference label in the drawings of the invention represents the same or similar elements.
Obviously, the drawings below are just embodiments of the invention.
The general technicians in this field can obtain other drawings without creative efforts according to these drawings.
In the drawings: Fig. 1 is a control block diagram for the winch control device of the deep-water dynamic positioning crude oil cargo transfer vessel proposed by the invention; Fig. 2 is a structure block diagram of the main controller for the winch control device of the deep-water dynamic positioning crude oil cargo transfer vessel proposed by the invention; Fig. 3 is a structure block diagram of the hydraulic transformer controller for the winch control device of the deep-water dynamic positioning crude oil cargo transfer vessel proposed by the invention; Fig. 4 is a schematic block diagram for the flow calculator QC of the main controller; Fig. 5 is a function block diagram of the hydraulic transformer C1 for the winch control device of the deep-water dynamic positioning crude oil cargo transfer vessel; Fig. 6 1s a function block diagram of the DC pump source controller C2 for the winch control device of the deep-water dynamic positioning crude oil cargo transfer vessel; Fig. 7 is astructural schematic diagram for the winch system of the deep-water dynamic positioning crude oil cargo transfer vessel; Fig. 8 is a schematic diagram after the winch control device of the invention is applied to the deep-water dynamic positioning crude oil cargo transfer vessel.
<7- Embodiments The conception, specific structure and technical effect of the invention are described clearly and completely in the embodiments and drawings below, so as to fully understand the purpose, proposal and effect of the invention. It should be noted that the embodiments in this application and the characteristics may be combined without conflict. The same drawing references used throughout the drawings indicate the same or similar parts.
According to the operating principle of the system, the hydraulic flow discharged from the driving motor is required to be recovered by the hydraulic transformer during rising IO compensation, and the speed of the winch can be controlled by controlling the flow of the hydraulic transformer. In the sinking compensation stage, the hydraulic transformer and the direct-driven pump source supply oil to the driving motor.
Based on the principle, according to Fig. 1, Fig. 2 and Fig. 3 and Embodiment 1, the invention proposes a winch control device for a deep-water dynamic positioning crude oil cargo transfer vessel, comprising: A main controller, which comprises: A flow controller QC used to acquire the movement velocity v, the load displacement y and the desired load displacement y; and calculate the flow q of a driving motor based on the disturbance feedforward control and feedback control composite control strategy according to the movement velocity v, the load displacement y and the desired load displacement y;, A flow distributor QA used to acquire the the working pressure signal P2 of a secondary motor and calculate the expected flow g; of a hydraulic transformer and the expected flow c of a direct-driven pump source according to the calculated flow g of the driving motor, A flow distribution module used to distribute the corresponding flow according to the expected flow q: of the hydraulic transformer and the expected flow ¢: of the direct- driven pump source; A hydraulic transformer controller, which comprises: AnLl link calculation module, for which the input terminal is connected with the main controller, the primary motor and the secondary motor installed on the winch of the deep-water power positioning crude oil cargo transfer vessel and is used to calculate the displacement J; of the primary motor according to the data input by the main
-8- controller, the primary motor and the secondary motor, An L2 link calculation module, for which the input terminal is connected with the output terminal of the L1 link calculation module, and which is used to calculate the speed difference A of the hydraulic transformer according to the data output by the LI link calculation module, An L3 link calculation module, for which the input terminal is connected with the output terminal of the L2 link calculation module, and which is used to calculate the torque adjustment A7 of the hydraulic transformer according to the data output by the L2 link calculation module, An L4 link calculation module, for which the input terminal is connected with the output terminal of the L3 link calculation module, and which is used to calculate the displacement VJ, of the secondary motor according to the data output by the L3 link calculation module, A control module, for which the input terminal is connected with the output terminal of the L4 link calculation module and the output terminal is connected with the primary motor and the secondary motor,and which is used to control the displacement of the primary motor and the secondary motor according to the data output by the L4 link calculation module; A DC pump source controller used to calculate the speed 7: of a servo motor for the DC pump source controller C2 according to the expected flow g> and the output flow signal gs of the direct-driven pump source.
As the preferred embodiment of the invention, the main controller C is configured to complete the flow calculation and distribution, thus the main controller consists of a flow calculator QC and a flow distributor QA, and the internal structure is shown in Fig. 2.
The flow calculator QC calculates the flow q according to the three signals of movement velocity v, load displacement yv and expected load displacement yi of the drilling platform, and the block diagram of the internal control principle is shown in Fig. 4. For the winch system of the deep-water dynamic positioning crude oil cargo transfer vessel, the platform heave movement is a disturbance input. The inertia of the compensation system is large, and the dynamic response speed of the volume control is low. In order to solve the control problem, the disturbance feedforward control and feedback control composite control strategy is adopted for the flow calculator QC. It
-9- can be seen that the flow calculator QC is composed of a disturbance feedforward controller and a feedback controller.
As the preferred embodiment of the invention, the flow controller QC specifically comprises: A disturbance feedforward controller used to calculate the output flow ¢, by the following formula according to the input physical movement velocity Vv, 60k k‚vV . gq, =——"— (L/min) Dari Wherein, V is the heave speed of the operating platform in m/s; Kis the velocity compensation coefficient; r is the radius of a roller in m; Kn is the rate of a pulley block; V is the displacement of the driving motor of the winch in L/r; Î is the transmission ratio of a gear transmission mechanism, The introduction of £ is to offset the adverse effects of various parameter errors.
However, the open loop disturbance feedforward control cannot achieve complete synchronous compensation.
Therefore, it is necessary to add a closed loop feedback controller.
The closed loop feedback controller is temporarily a conventional PID controller, whose output flow is Tv , preferably, k, =105 A feedback controller used to calculate the output flow q, by the general PID algorithm according to the input physical load displacement ” and the expected load displacement Yi, A flow calculation module used to calculate the flow q, i.e. 1d: F9 ; As the preferred embodiment of the invention, the flow distributor QA specifically comprises: An expected flow determination module used to determine the expected flow ¢, of the hydraulic transformer and the expected flow q, of the direct-driven pump source by the following formula (3), q, = kg je 4 3) qd dt Wherein, kr is the flow distribution coefficient.
-10- When 47 0 namely, the motor is in the forward rotation, the calculation formula of ky is shown in the formula (4), 1 Py > Py ky = 52 P< Pi Pe € Pa Po 0 py < PL Wherein, PL and PH are two preset pressure thresholds.
Preferably, Pi =200 bar, py =250 bar As can be seen from the above formula, the system distributes the flow according to the pressure in the accumulator.
When the pressure in the accumulator 1s higher than the threshold 74 | it indicates that the pressure oil stored in the hydraulic transformer is more.
At this time, the hydraulic transformer supplies oil alone, namely, kr=1 When the pressure in the accumulator slowly drops below the threshold #t | it indicates that the pressure oil stored in the hydraulic transformer is not enough.
At this time, the direct-driven pump source supplies oil alone, namely, kr=0. When 4 <0 and the motor is in the reversed rotation, the energy is recovered, the direct-driven pump source is in non-operating state, and the hydraulic oil output by the hydraulic motor enters into the hydraulic transformer, namely, kr =1 As the preferred embodiment of the invention, the hydraulic transformer has two adjustable variables of primary motor displacement }'; and secondary motor displacement J>, and torque coupling exists between the two variables.
As the flow of the hydraulic transformer is actually the flow of the primary motor, the following design thinking is adopted in the invention: firstly, the displacement J’; of the primary motor is determined according to the expected flow qz, and then the closed loop control for the speed of the hydraulic transformer is performed by adjusting the displacement JV; of the secondary motor, which is essentially based on flow control.
The principle block diagram is shown in Fig. 5. The L1 link calculation module specifically calculates the displacement } of the primary motor by the following formula (5), Voy + Fon = Or +h (=p) (9)
-11- Wherein, Po is the initial displacement of the primary motor, Vans is the maximum adjustable displacement of the primary motor, im is the maximum flow of the hydraulic transformer, and * is the differential pressure-displacement compensation coefficient; The L2 link calculation module specifically calculates the speed difference 2 of the hydraulic transformer by the following formula (6), An =n-~ bs (6) V, Wherein, n is the revolving speed of the hydraulic transformer; The L3 link calculation module specifically calculates the torque adjustment A7 of the hydraulic transformer by the following formula (7), AT = 227M (7) At Wherein, A! is the settling time, which can be set manually. Preferable, AT is specifically 0.03s. The L4 link calculation module specifically calculates the displacement 2 of the secondary motor by the following formula (8), rr + VAT V, — VP — 22A7 (8) Patt Wherein, in the energy recovery phase, the sign in the middle of the formula (8) is -; in the energy release phase, the sign is +. The control principle block diagram of the direct-driven pump source is shown in Fig.
6. The composite control composed open-loop feedforward control and closed-loop feedback control is adopted. Therefore, the controller C2 is mainly composed of a feedforward controller and a feedback controller. As the dynamic characteristics of the servo motor are good, a P controller is used as the feedforward controller and a conventional PID controller is used as the feedback controller.
According to Fig. 7, the invention also proposes a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel, which uses the winch control device for the deep-water dynamic positioning crude oil cargo transfer vessel in Claims 1-5 and also comprises a winch heave compensation system controlled by the winch control device, wherein the winch heave compensation system comprises a
-12- direct-driven pump source, a driving motor, a hydraulic transformer, an accumulator, a pulley block and a roller, Wherein the direct-driven pump source comprises a servo motor and a hydraulic pump, The hydraulic transformer 1s a variable motor rigidly connected by two output shafts, in particular a traditional hydraulic transformer composed of a primary motor a and a secondary motor b, An output shaft of the driving motor is meshed with an inner gear of a hub at the drum end face through a gear, The winch control device of the deep-water dynamic positioning crude oil cargo transfer vessel is connected with the winch system through a signal line and controls the operation of the heave compensation system.
According to Fig. 8, 100 is the winch control device for the deep-water dynamic positioning crude oil cargo transfer vessel, which is installed in the electrical control area of the engine room and can realize the stability control of the winch system by connecting with relevant parts of the winch system through the signal line, and 200 is the winch system.
After the winch control device of the deep-water dynamic positioning crude oil cargo transfer vessel in the invention 1s applied, the expected heave compensation function can be realized, the compensation accuracy meets the design requirements, and the function of energy recovery is provided: when the operating platform rises, the direct- driven pump source unloads, and the gravitational potential energy of the load is recovered into the accumulator through the hydraulic transformer; when the operating platform sinks, the direct-driven pump source and the hydraulic transformer supply oil to an actuator to release the recovered energy, which greatly reduces the power consumption of the system, realizes the reasonable flow distribution and smooth switching between the direct-driven pump source and the hydraulic transformer and solves the control problem of the hydraulic transformer.
Based on the above, the invention can provide a stable and reliable winch control device for the deep-water power positioning crude oil cargo transfer vessel, and then realize the heave compensation function of the winch system for the deep-water power positioning crude oil cargo transfer vessel, ensuring the stable operation of the winch system for the deep-water power positioning crude oil cargo transfer vessel.
The modules described as separate parts may be or may not be physically separate, and
-13- the components shown as modules may be or may not be physical modules, namely, they may be located in one place or may be distributed over a plurality of network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the proposal in this embodiment.
In addition, each functional module in each embodiment of the invention may be integrated in a processing module, or each module may physically exist alone, or two or more modules may be integrated in a module. The above integrated modules can be realized in the form of hardware or software function module.
If the integrated modules are realized in the form of software function modules and IO sold or used as independent products, they can be stored in a computer readable memory medium. Based on this understanding, all or part of the process for realizing the embodiments in the invention can be completed by the computer program instructing the related hardware, the computer program can be stored in a computer readable memory medium, and the steps for all embodiments can be realized when the computer program is executed by the processor. Wherein, the computer program includes computer program codes, which can be in the form of source code, object code or executable file or some intermediate forms. The computer readable media may include any entity or device capable of carrying the computer program codes, a recording medium, a USB flash drive, a removable hard disk, a floppy disk, an optical disc, a computer memory, a read-only memory (ROM), a random access Memory (RAM), an electric carrier signal, a telecommunication signal and a software distribution medium, etc. It should be noted that the contents of the computer readable media may be added or deleted appropriately according to the legislative and patent practices within jurisdictions. For example, the computer readable media exclude electric carrier signals and telecommunications signals according to legislative and patent practices within some jurisdictions. Although the description of the invention is very detailed and some embodiments are described, these descriptions do not aim at limiting any of these details or embodiments, but they should be regarded as considering that the prior art provides the generalized possibility explanation for these claims by reference to the claims, so as to effectively cover the intended scope of the invention. In addition, the invention is described in the embodiments foreseen by the inventor to provide a useful description, and non-substantial changes to the invention that are not currently foreseen may still
-14- represent equivalent changes to the invention.
The above embodiments are only preferred embodiments of the invention.
The invention is not limited to the above embodiments, and the technical effects achieved by the same means of the invention shall fall under the protection of the invention.
The technical proposal and/or mode of execution may be modified and changed in various ways within the scope of protection of the invention.

Claims (6)

-15- Conclusies-15- Conclusions 1. Lierbedieningsinrichting voor een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading die wordt gekenmerkt doordat de lierbedieningsinrichting het volgende omvat: een hoofdregelaar, die het volgende omvat: een stroomregelaar QC, die wordt gebruikt om de bewegingssnelheid v, de verplaatsing van de lading y en de gewenste verplaatsing van de lading v; te verwerven en de stroom q van een aandrijfmotor te berekenen op basis van de samengestelde IO regelstrategie voor storing gerelateerde voorwaartskoppeling en terugkoppeling volgens de bewegingssnelheid v, de verplaatsing van de lading v en de gewenste verplaatsing van de lading y;, een stroomverdeler QA, die wordt gebruikt om het werkdruksignaal P2 van een secundaire motor te verkrijgen en de verwachte stroom g; van een hydraulische transformator en de verwachte stroom ¢ van een direct aangedreven pompbron te berekenen aan de hand van de berekende stroom g van de aandrijfmotor, een stroomverdelingsmodule, die wordt gebruikt om de betreffende stroom te verdelen aan de hand van de verwachte stroom ¢; van de hydraulische transformator en de verwachte stroom ¢: van de direct aangedreven pompbron; een hydraulische transformatorregelaar, die het volgende omvat: een module voor de berekening van de L1-verbinding, waarvan de ingangsterminal verbonden is met de hoofdregelaar, waarbij de primaire motor en de secundaire motor geïnstalleerd zijn op de lier van het in diepwater vermogenspositionerende vaartuig voor het verplaatsen van de ruwe-olielading en gebruikt wordt om de verplaatsing J’; van de primaire motor te berekenen aan de hand van de gegevens die ingevoerd zijn door de hoofdregelaar, de primaire motor en de secundaire motor, een module voor de berekening van de L2-verbinding, waarvan de ingangsterminal verbonden is met de uitgangsterminal van de module voor de berekening van de L1-verbinding, die gebruikt wordt om het snelheidsverschil A? van de hydraulische transformator te berekenen aan de hand van de gegevens, die uitgevoerd worden door de module voor de berekening van de L1-verbinding, een module voor de berekening van de L3-verbinding, waarvan deA winch control device for a deep-water dynamically positioning vessel for moving a crude oil cargo, characterized in that the winch control device comprises: a master controller, comprising: a flow controller QC, which is used to control the movement speed v, the displacement of the charge y and the desired displacement of the charge v; and calculate the current q of a drive motor based on the composite IO control strategy for fault related feed-forward and feedback according to the speed of movement v, the displacement of the load v and the desired displacement of the load y;, a current divider QA, which is used to obtain the operating pressure signal P2 from a secondary motor and the expected current g; of a hydraulic transformer and the expected current ¢ of a direct-driven pump source to be calculated from the calculated current g of the driving motor, a current distribution module, which is used to distribute the current in question according to the expected current ¢; from the hydraulic transformer and the expected current ¢: from the direct drive pump source; a hydraulic transformer controller, comprising: a module for calculating the L1 connection, the input terminal of which is connected to the main controller, wherein the primary motor and the secondary motor are installed on the winch of the deepwater power positioning vessel for the displacing the crude oil charge and used to move the displacement J'; of the primary motor from the data entered by the main controller, the primary motor and the secondary motor, a module for calculating the L2 connection, whose input terminal is connected to the output terminal of the module for the calculation of the L1 connection, which is used to calculate the speed difference A? of the hydraulic transformer from the data outputted by the L1 connection calculation module, a L3 connection calculation module, whose -16- ingangsterminal verbonden is met de uitgangsterminal van de module voor de berekening van de L2-verbinding, en die gebruikt wordt om de koppelinstelling AT van de hydraulische transformator te berekenen aan de hand van de gegevens, die uitgevoerd worden door een module voor de berekening van de L2-verbinding, een module voor de berekening van de L4-verbinding, waarvan de ingangsterminal verbonden is met de uitgangsterminal van de module voor de berekening van de L3-verbinding en die gebruikt wordt om de verplaatsing 2 van de secundaire motor te berekenen aan de hand van de gegevens die uitgevoerd worden door de module voor de berekening van de L3-verbinding, een regelmodule, waarvan de ingangsterminal verbonden is met de uitgangsterminal van de module voor de berekening van de L4-verbinding en de uitgangsterminal verbonden is met de primaire motor en de secundaire motor en die gebruikt wordt om de verplaatsing van de primaire motor en de secundaire motor te regelen aan de hand van de gegevens die uitgevoerd worden door de module voor de berekening van de L4-verbinding; een bronpomp met DC-regelaar, die wordt gebruikt om het toerental n2 van een servomotor voor de bronpomp met DC-regelaar C2 te berekenen aan de hand van de verwachte stroom q2 en het uitgangsstroomsignaal q3 van de direct aangedreven bronpomp.-16- input terminal is connected to the output terminal of the L2 connection calculation module, and which is used to calculate the torque setting AT of the hydraulic transformer from the data output by a module for the connection L2 connection calculation, a L4 connection calculation module, whose input terminal is connected to the output terminal of the L3 connection calculation module and which is used to calculate the displacement 2 of the secondary motor calculate from the data output from the L3 connection calculation module, a control module, whose input terminal is connected to the output terminal of the L4 connection calculation module and whose output terminal is connected to primary motor and secondary motor and used to control the displacement of the primary motor and secondary motor by reference to the data output by the L4 connection calculation module; a DC controller well pump, which is used to calculate the speed n2 of a DC controller well pump servomotor C2 from the expected current q2 and the output current signal q3 from the direct drive well pump. 2. Lierbedieningsinrichting voor een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie | die wordt gekenmerkt doordat de stroomverdeler QC specifiek het volgende omvat: een storing gerelateerde voorwaartskoppeling, die wordt gebruikt om de uitgangsstroom g, te berekenen aan de hand van de volgende formule volgens de ingevoerde fysieke bewegingssnelheid v, 4 = SO kv (L/min) 2ari , waarbij, v de hefsnelheid van het werkplatform in m/s is; k, de snelheidscompensatiecoéfficiént is; r de actieradius van een rol in m is; Ki de snelheid van een hijsblok is; V de verplaatsing van de aandrijfmotor van de lier in L/r is; 1 de overbrengingsverhouding van een tandwiel overbrengingsmechanisme is,A winch operating device for a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim | characterized in that the flow divider QC specifically includes: a fault-related feedforward, which is used to calculate the output current g, according to the following formula according to the input physical speed of movement v, 4 = SO kv (L/min) 2ari , where, v is the lifting speed of the working platform in m/s; k, is the velocity compensation coefficient; r is the action radius of a role in m; Ki is the speed of a lifting block; V is the displacement of the winch drive motor in L/r; 1 is the gear ratio of a gear transmission mechanism, -17- een terugkoppelingsregelaar, die wordt gebruikt om de uitgangsstroom ¢, te berekenen met behulp van het algemene PID-algoritme aan de hand van de ingevoerde fysieke verplaatsing van de lading ” en de verwachte verplaatsing van de lading *i | een module voor de stroomberekening, die wordt gebruikt om de stroom q te berekenen, d.w.z. 1d + Te. de stroomverdeler QA specifiek het volgende omvat: een verwachte module om de stroom te bepalen, die wordt gebruikt om de verwachte stroom ¢, van de hydraulische transformator en de verwachte stroom ¢, van de direct aangedreven bronpomp te bepalen aan de hand van de volgende formule (3), q, = kg {* 14 3 dq qd waarbij, kr de stroomverdelingscoëfficiënt is. als 47 0 oftewel, de motor in de voorwaartse rotatie staat, wordt de berekeningsformule van k, weergegeven in de formule (4), | Pr > Py ky = Dh PL <1 Pu 4) Py PL 0 PP waarbij, PL en Py twee vooraf ingestelde drukdrempelwaarden zijn.-17- a feedback controller, which is used to calculate the output current ¢, using the general PID algorithm from the input physical displacement of the load ” and the expected displacement of the load *i | a current calculation module, which is used to calculate the current q, i.e. 1d + Te. the flow divider QA specifically includes: an expected flow determination module, which is used to determine the expected flow ¢, of the hydraulic transformer and the expected flow ¢, of the direct driven well pump using the following formula (3), q, = kg {* 14 3 dq qd where, kr is the current distribution coefficient. if 47 0 that is, the motor is in forward rotation, the calculation formula of k, shown in the formula (4), is | Pr > Py ky = Dh PL < 1 Pu 4) Py PL 0 PP where, PL and Py are two preset pressure thresholds. 3. Lierbedieningsinrichting voor een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 2 die wordt gekenmerkt doordat, PL © 200 bar, py; =250 barA winch operating device for a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 2, characterized in that, PL © 200 bar, py; =250 bar 4. Lierbedieningsinrichting voor een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 2 die wordt gekenmerkt doordat de module voor de berekening van de L1-verbinding specifiek de verplaatsing }, van de primaire motor berekent met de volgende formule (5), I~ _ I~ T° _ I~ 4 k í _ 5 1 10 + ( Jinax 10) + dp (Pp: Py) (£ ) qd max ,A winch operating device for a deep-water dynamically positioning vessel for moving a crude oil cargo according to claim 2, characterized in that the L1 connection calculation module specifically calculates the displacement } i of the primary motor with the following formula ( 5), I~ _ I~ T° _ I~ 4 k í _ 5 1 10 + ( Jinax 10) + dp (Pp: Py) (£ ) qd max , -18- 7 7 waarbij, Vo de aanvankelijke verplaatsing van de primaire motor is, Vaes de maximaal instelbare verplaatsing van de primaire motor is, haa de maximale stroom . . k . . van de hydraulische transformator is en “ de compensatiecoëfficiënt voor differentiële drukverplaatsing is; waarbij de module voor de berekening van de L2-verbinding specifiek het snelheidsverschil 47 van de hydraulische transformator berekent met de volgende formule (6), An=n 7e (6) i waarbij n de omwentelingssnelheid van de hydraulische transformator is; waarbij de module voor de berekening van de L3-verbinding specifiek de koppelinstelling A7 van de hydraulische transformator berekent met de volgende formule (7), . I27An AT =22 (7) Af waarbij, Af de stabilisatietijd is, die handmatig kan worden ingesteld; waarbij de module voor de berekening van de L4-verbinding specifiek de verplaatsing "> van de secundaire motor berekent met de volgende formule (8), pn 2 I — 1270 27AT (8) Pil waarbij, in de fase van energieterugwinning het teken in het midden van de formule (8) - is; en in de fase van energie-afgifte het teken + is.-18-7 7 where, Vo is the initial displacement of the primary motor, Vaes is the maximum adjustable displacement of the primary motor, haa is the maximum current . . k . . of the hydraulic transformer and “ is the differential pressure displacement compensation coefficient; wherein the L2 connection calculation module specifically calculates the speed difference 47 of the hydraulic transformer with the following formula (6), n=n 7e (6) i where n is the rotational speed of the hydraulic transformer; where the L3 connection calculation module specifically calculates the torque setting A7 of the hydraulic transformer by the following formula (7), . I27An AT =22 (7) Af where, Af is the stabilization time, which can be set manually; where the module for calculating the L4 connection specifically calculates the displacement "> of the secondary motor with the following formula (8), pn 2 I — 1270 27AT (8) Pill where, in the energy recovery phase, the sign in the middle of the formula (8) is -; and in the energy release phase the sign is +. 5. Lierbedieningsinrichting voor een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusie 4 die wordt gekenmerkt doordat A7’ specifiek 0,03s is.A winch operating device for a deepwater dynamically positioning vessel for moving a crude oil cargo according to claim 4, characterized in that A7' is specifically 0.03s. 6. Liersysteem voor een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading dat wordt gekenmerkt doordat het liersysteem de lierbedieningsinrichting voor het in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading volgens conclusies 1-5 gebruikt, en tevens een compensatiesysteem voor het hijsen van de lier omvat, dat wordt geregeld door deA winch system for a deepwater dynamically positioning vessel for moving a crude oil cargo, characterized in that the winch system uses the winch operating device for the deepwater dynamically positioning vessel for moving a crude oil cargo according to claims 1-5, and also includes a winch hoist compensation system, which is controlled by the -19--19- lierbedieningsinrichting, waarbij het compensatiesysteem voor het hijsen van de lier een direct aangedreven bronpomp, een aandrijfmotor, een hydraulische transformator, een accumulator, een katrolblok en een rol omvat,winch control device, wherein the winch hoist compensation system comprises a direct-drive well pump, a driving motor, a hydraulic transformer, an accumulator, a pulley block and a roller, waarbij de direct aangedreven bronpomp een servomotor en een hydraulische pomp omvat,wherein the direct driven well pump comprises a servo motor and a hydraulic pump, waarbij de hydraulische transformator een variabele motor is, die stijf verbonden is door twee uitgaande assen, in het bijzonder een traditionele hydraulische transformator die samengesteld is uit een primaire motor a en een secundaire motor b,the hydraulic transformer being a variable motor rigidly connected by two output shafts, in particular a traditional hydraulic transformer composed of a primary motor a and a secondary motor b, waarbij een uitgaande as van de aandrijfmotor via een tandwiel in aangrijping is met een binnentandwiel van een naaf aan de trommeluiteinden,wherein an output shaft of the drive motor is geared to an inner gear of a hub at the drum ends, waarbij de lierbedieningsinrichting voor een in diepwater dynamisch positionerend vaartuig voor het verplaatsen van een ruwe-olielading via een signaallijn verbonden is met het liersysteem en de werking van het compensatiesysteem voor het hijsen regelt.wherein the winch control device for a deep water dynamically positioning vessel for moving a crude oil load is connected to the winch system via a signal line and controls the operation of the hoist compensation system.
NL2028571A 2020-12-31 2021-06-29 A winch control device and a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel NL2028571B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011628210.7A CN112645228B (en) 2020-12-31 2020-12-31 Winch control device and winch system of deep water dynamic positioning crude oil conveying device

Publications (2)

Publication Number Publication Date
NL2028571A true NL2028571A (en) 2022-07-21
NL2028571B1 NL2028571B1 (en) 2022-10-10

Family

ID=75366765

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2028571A NL2028571B1 (en) 2020-12-31 2021-06-29 A winch control device and a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel

Country Status (2)

Country Link
CN (1) CN112645228B (en)
NL (1) NL2028571B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104627881A (en) * 2015-03-04 2015-05-20 广东工业大学 Super deep floating type drilling multifunctional energy-saving type heavy compensation winch and operation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209302A (en) * 1991-10-04 1993-05-11 Retsco, Inc. Semi-active heave compensation system for marine vessels
NO329688B1 (en) * 2006-06-01 2010-11-29 Nat Oilwell Norway As Lift system device
CN102691484B (en) * 2012-06-06 2014-04-16 中国石油大学(华东) Winch heave compensation device of marine floating drilling platform
CN104876145B (en) * 2014-12-19 2018-11-23 上海交通大学 Electronic active compensation hoister system
CN106892368B (en) * 2015-12-17 2019-01-11 中国科学院沈阳自动化研究所 A kind of control method for deep sea equipment active compensation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104627881A (en) * 2015-03-04 2015-05-20 广东工业大学 Super deep floating type drilling multifunctional energy-saving type heavy compensation winch and operation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO TIBING ET AL: "Simulation and control of heave compensation winch for ultra-depth floating drilling", 2017 IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) AND IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), IEEE, 19 November 2017 (2017-11-19), pages 609 - 613, XP033310325, DOI: 10.1109/ICCIS.2017.8274847 *

Also Published As

Publication number Publication date
CN112645228A (en) 2021-04-13
CN112645228B (en) 2022-10-14
NL2028571B1 (en) 2022-10-10

Similar Documents

Publication Publication Date Title
CN106241633B (en) A kind of towing winch hydraulic control system peculiar to vessel and transmission device and control method
US11773664B1 (en) Variable frequency drive configuration for electric driven hydraulic fracking system
CN102005903B (en) Digital current equalizing method of power source module, power source module and communication equipment
KR101874130B1 (en) An apparatus and method for recuperation of hydraulic energy
NL2028571B1 (en) A winch control device and a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel
CN105301963A (en) Thrust optimal distribution method based on ship power management system
CN104627881A (en) Super deep floating type drilling multifunctional energy-saving type heavy compensation winch and operation method thereof
WO2023005877A1 (en) Hydraulic support intelligent liquid supply pump station and control method
NL2028572B1 (en) A hydraulic transformer controller and a winch system for a deep-water dynamic positioning crude oil cargo transfer vessel
CN102274861B (en) Double closed-loop hydraulic control system for bending and balance of working roll
CN109518112B (en) Control method of tension roller set of continuous hot galvanizing production line
CN102248006B (en) Double-closed-loop hydraulic control method for roll bending and balancing of working roll
CN109440752B (en) Intelligent control safety braking system of ship lift and safety braking method thereof
CN113184732B (en) Floating type drilling energy-saving winch type heave compensation system and method based on flow control
CN204429866U (en) A kind of medium plate cooling after rolling system
CN112678703B (en) Main controller and winch system of deep water dynamic positioning crude oil conveying device
CN112850530B (en) Control method of main controller and heave compensation system applying main controller
CN105201934A (en) Novel hydraulic control system of transfer-machine
CN111550472B (en) Distributed pump-controlled adjacent deviation coupling neural network PID hydraulic climbing formwork jacking system
CN208237033U (en) A kind of pressure stabilizing oil piping system for fluid coupling
CN114718131B (en) Dredger series relay conveying connection system, method and device and storage medium
CN115030888B (en) Self-adaptive control method applied to variable-frequency closed cooling water pump
CN118029472A (en) Micro-feeding control device, method and system of double-wheel slot milling machine
Sacre BOSCH REXROTH AND BOSCH REXROTH JAPAN ACTIVITIES IN INDUSTRIAL HYDRAULIC SYSTEMS
Xian-zhao et al. Application of neural network PID in master-slave control system