NL2026557B1 - Calculation method of wireless body area network coexistence value based on random geometry - Google Patents

Calculation method of wireless body area network coexistence value based on random geometry Download PDF

Info

Publication number
NL2026557B1
NL2026557B1 NL2026557A NL2026557A NL2026557B1 NL 2026557 B1 NL2026557 B1 NL 2026557B1 NL 2026557 A NL2026557 A NL 2026557A NL 2026557 A NL2026557 A NL 2026557A NL 2026557 B1 NL2026557 B1 NL 2026557B1
Authority
NL
Netherlands
Prior art keywords
body area
wireless
area network
wireless body
value
Prior art date
Application number
NL2026557A
Other languages
Dutch (nl)
Inventor
Liu Ruixia
Shu Minglei
Chen Changfang
Gao Tianlei
Zhou Shuwang
Bian Lipan
Original Assignee
Shandong Artificial Intelligence Inst
Shandong Computer Science Ct Nat Supercomputer Ct Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Artificial Intelligence Inst, Shandong Computer Science Ct Nat Supercomputer Ct Jinan filed Critical Shandong Artificial Intelligence Inst
Application granted granted Critical
Publication of NL2026557B1 publication Critical patent/NL2026557B1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3912Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Abstract

A calculation method of a wireless body area network coexistence value based on random geometry, with respect to an interference problem of the wireless body area 5 network coexistence, adopts a random geometry method to establish a network Poisson cluster model of wireless body area network coexistence, analyze performance of the wireless body area network coexistence, and obtain a network value of the wireless body area network coexistence according to the calculation of the successful transmission probability when the wireless body area network coexists at a certain 10 distribution intensity and the analysis of the CSMA protocol competition channel at the MAC layer, which can be helpful to analyze the performance ofthe wireless body area network coexistence and provide theoretical basis and reference to the design of the wireless body area network.

Description

-1-
CALCULATION METHOD OF WIRELESS BODY AREA NETWORK COEXISTENCE VALUE BASED ON RANDOM GEOMETRY
TECHNICAL FIELD The present invention relates to the technical field of communication analysis of a wireless body area network, and in particular, to a calculation method of a wireless body area network coexistence value based on random geometry.
BACKGROUND The phenomenon that multiple kinds of wireless network protocols coexist in a same area is becoming more and more common, and wireless network coexistence technology has also become a research hotspot in academia and industry. Since different kinds of wireless networks are expanding their application spaces as much as possible, a phenomenon that multiple kinds of network protocols coexist in the same space has been gradually formed. Due to a large-scale application of oT systems, the phenomenon that multiple network protocols coexist in the same area has become increasingly popular. At present, before the wireless body area networks can be put into large-scale applications, there are still many technical problems that need to be resolved urgently, such as problems of materials and power supply of embedded nodes, high reliability of communication transmission, protocol optimization, network coexistence, data security and privacy protection and the like. In some application scenarios, an intensity of the wireless body area network coexistence may be very large. Since there is lack of any coordination between these randomly distributed single wireless body area networks, and spectrum resources are fixed, signal competition, conflict and mutual interference etc. between adjacent networks will greatly affect reliability of network data transmission, increase energy consumption, delay data transmission etc, thereby to cause loss of significant monitoring data. In the wireless body area network coexistence, uncertainty of a user's location causes a network structure and location distribution of network nodes relative to the user's location to have natural randomness. Thus, the corresponding wireless body area network coexistence can be
-2- modeled as a certain random spatial process model to thereby analyze performance parameters of the wireless body area network coexistence according to a related theory of random geometry.
SUMMARY OF INVENTION In order to overcome the above technical shortcomings, the present invention provides a method of establishing a network Poisson cluster model of wireless body area network coexistence to obtain a maximum number of wireless body area networks accommodated in a fixed area by adopting a random geometry method. The technical solution adopted by the present invention to overcome the technical problem is: a calculation method of a wireless body area network coexistence value based on random geometry, including: a) establishing a wireless body area network coexistence model composed of a plurality of wireless body area networks, wherein in each wireless body area network, a wireless central node deployed in a human body and respective collection nodes deployed at different positions of the human body form a star network structure; b) all the wireless central nodes in the wireless body area network model constituting a Poission point process model having an intensity of A and Ù ° Euclidean spaces independent of each other; —X I=). Ph |r) ¢) calculating according to a formula to obtain an interference value + , wherein is a transmission power of an /' collection node, ! is a channel attenuation parameter of the Ith collection node, & is an attenuation . Fr . . r th . . index, and ‘is a distance from the * collection node to the wireless central node; d) calculating a signal to interference plus noise ratio SINR through a formula Phr SINR= ~r w+1 , wherein in the formula, # is a noise, 7 is the interference value,
-3- Pp » h "is an expected value of the transmission power of all the collection nodes, is an expected value of the channel attenuation parameter of all the collection nodes, ” is an expected value of the distance from all the collection nodes to the wireless central node, and calculating according to a formula - 2 2/a yur ‘W 27 y 5 P =exp — | CXP — | ee || 7; P, (27 u i asm| == a to obtain a LL we u. successful transmission probability 5 ‚, wherein in the formula, * is a channel attenuation parameter, and 7 isa set threshold; and e) when the wireless central node transmits data wirelessly, adopting a channel competition mechanism of GSMA/CA in time slot mode at an MAC layer, a probability of successfully competing for a channel in the wireless body area network being 1 A 250-50 ‚ . . ABO-S0 © 3 , and a number of coexistence of wireless body area networks being < , wherein BO is an interval at which a coordinator node transmits a beacon frame in a channel competition mechanism algorithm of GSMA/CA in time slot mode, and 30 is a duration of a super frame active period in the channel competition mechanism algorithm of GSMA/CA in time slot mode.
Furthermore, in step a), the wireless central node is deployed at a central portion of the human body.
Furthermore, in step b}, a number of the collection nodes in each wireless body area network is ©, an intensity of the wireless central nodes is @ A and a Poisson cluster model is formed.
Furthermore, in step c}, ’ obeys a mean value that is an index distribution of 1/ pt Furthermore, in step e), a value of BO is 6, and a value of SO is 3.
-4- The advantageous effects of the present invention are as follows: With respect to an interference problem of the wireless body area network coexistence, a random geometry method is adopted to establish a network Poisson cluster model of wireless body area network coexistence, analyze performance of the wireless body area network coexistence, and obtain a network value of the wireless body area network coexistence according to the calculation of the successful transmission probability when the wireless body area networks coexist at a certain distribution intensity and the analysis of the CSMA protocol competition channel at the MAC layer, which can be helpful to analyze the performance of the wireless body area network coexistence and provide theoretical basis and reference to the design of the wireless body area network.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of wireless body area network coexistence of the present invention.
DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS Below the present invention is further described with reference to FIG. 1. In a mobile wireless communication network, a performance of a wireless network system is inseparable from location distribution of base stations and user nodes. However, locations of these nodes in the current network are somewhat uncertain, Thus, it needs to be modeled as a random distribution process in two- dimensional or three-dimensional space. In the field of mathematics, a random geometry theory is a theory that mainly studies such distribution models and related analysis methods. Random geometry is an emerging basic tool for wireless network modeling in recent years, which can use different types of spatial point process to model wireless communication networks, and analyze performances such as distribution characteristics, average rate, interference characteristics, network coverage and the like of the wireless networks by adopting the related methods and theory. The results obtained by the analysis are very similar to the real network situation.
-5- A calculation method of a wireless body area network coexistence value based on random geometry of the present invention includes: a) as shown in FIG. 1, establishing a wireless body area network coexistence model composed of a plurality of wireless body area networks, wherein in each wireless body area network, a wireless central node deployed in a human body and respective collection nodes deployed at different positions of the human body form a star network structure. b) Each collection node has the same power and communication parameters at the beginning. According to a random geometry model, it is considered that a plurality of wireless body area networks coexist in a same spatial area, and share a same frequency band. All the wireless central nodes in the wireless body area network constitute a Poission point process model having an intensity of 4 and [ ° Euclidean spaces independent of each other.
c} A success probability is an important indicator to measure link transmission performance. A successful transmission probability of the wireless central node is actually an another expression manner of link capacity. When the link capacity cannot satisfy a required user rate, a transmission interruption event will occur, and this event has a probability distribution and depends on an average signal-to-noise ratio of the link and its channel attenuation distribution model.
According to the network coexistence module in step b}, considering that the plurality of wireless body area networks coexist in the same spatial area and share the same wireless freguency band, at a certain time point, distribution of all of the network collection nodes constitutes Poisson cluster models independent of each other. Considering that a coordinator node (Ned) of any network is located at an original location, the corresponding collection node is located at (r, 0) 0 is an included angle from a transmission node to a horizontal axis of a coordinate, a cumulative interference is an interference value generated for a receiving node when the transmission nodes within all of competition thresholds transmit data, a probability generating functional method is adopted to analyze an interference situation of the wireless body area network coexistence, and according to Rayleigh fading channel model, the interference
-6- — I, i I=) Fin) oh value is calculated according to a formula u , wherein ! is transmission power of an / ™ collection node, is a channel attenuation parameter 7 th . . . . 7; . . y th of the 7" collection node, @ is an attenuation index, and is a distance from the ? collection node to the wireless central node.
d) If there is a ratio of an effective signal to an interference plus noise signal is greater than a set threshold 7, it is represented that this transmission is successful, otherwise, the transmission is interrupted. Thus, a signal to interference plus noise Phr SINR= ratio SINR is calculated through a formula W+1I , wherein in the yo P formula, is a noise, { is the interference value, is an expected value of the transmission power of all the collection nodes, h is an expected value of the channel attenuation parameter of all the collection nodes, ¥ is an expected value of the distance from all the collection nodes to the wireless central nodes, and calculating according to a formula — 2 2/a vur ‘W 27 y 2 P =exXp| —— |CXP Al || = 1; P. (27 u Î asm| == a - to obtain a successful transmission probability * , wherein in the formula, is a channel attenuation parameter, and V is a set threshold. e) A channel competition mechanism of GSMA/CA in time slot mode is adopted at an MAC layer when the wireless central node transmits data wirelessly. When a CSMA/CA mechanism of time slot is adopted, a time slot at which each node starts to retreat starts from a start point of a beacon frame, a start point of the retreat time slot must be consistent with a start point location of a super frame time slot for synchronization, a CSMA/CN algorithm of time slot means that a transmission
-7- node must perform CSMA/CA monitoring before transmitting a data frame or a command frame each time, it needs to first detect whether a channel is idle, the data frame or the command frame is immediately transmitted if the channel is idle, otherwise, it has to wait for an arbitrarily long period and then tries to access the channel again. In this algorithm, there are mainly three parameters: a first one is a number of retreats, an initial value of the number of retreats is 0, a maximum value is 5, that is, it is monitored that the channel is still busy after 5 times of retreats, and then this transmission is abandoned to avoid energy waste; a second one is a duration of delay time, an initial value thereof is 1, a maximum value is 20, and a duration for a length of a period of 20 symbols is 320 microseconds; and a third parameter is a retreat index, and a selected range is 0 to 50. BO is an interval at which the coordinator node transmits a beacon frame, 0< BO <14 3 duration of a beacon frame period is: abaseSuperframe x 2", SO describes a duration of a super frame active period, the duration time of the super frame active period is abaseSuperframe x 2% , abaseSuperfraimne is a number of symbols forming the super frame when a sequence of the super frame is 0. The coordinator generates a beacon frame periodically according to these parameters, and the collection node accesses the channel through competition to transmit data.
A probability of successfully competing for a channel in the wireless body area _ network is 2 ‚ and a number of coexistence of wireless body area networks is = , wherein BO is an interval at which a coordinator node transmits a beacon frame in a channel competition mechanism algorithm of GSMA/CA in time slot mode, and SO is a duration of a super frame active period in the channel competition mechanism algorithm of GSMA/CA in time slot mode.
With respect to an interference problem of the wireless body area network coexistence, a random geometry method is adopted to establish a network Poisson cluster model of wireless body area network coexistence, analyze performance of the wireless body area network coexistence, and obtain a network value of the wireless
-8- body area network coexistence according to the calculation of the successful transmission probability when the wireless body area networks coexist at a certain distribution intensity and the analysis of the CSMA protocol competition channel at the MAC layer, which can be helpful to analyze the performance of the wireless body area network coexistence and provide theoretical basis and reference to the design of the wireless body area network Furthermore, in step a), the wireless central node is deployed at a central portion of the human body.
Furthermore, in step b), a number of the collection nodes in each wireless body area network is? , an intensity of the wireless central nodes is oA and a Poisson cluster model is formed.
Furthermore, in step c), h obeys a mean value that is an index distribution of Vage Furthermore, in step e), a value of BO is 6, and a value of 50 is 3.

Claims (5)

-9- NL2026557 Conclusies-9- NL2026557 Conclusions 1. Berekeningswerkwijze van een draadlooslichaamgebiedsnetwerkco- existentiewaarde op basis van willekeurige geometrie, met het kenmerk dat deze het volgende omvat: a) het tot stand brengen van een draadlooslichaamgebiedsnetwerkco- existentiemodel dat is samengesteld uit een veelvoud aan draadloze lichaamgebiedsnetwerken, waarbij in elk draadloos lichaamgebiedsnetwerk een draadloos centraal knooppunt dat in een menselijk lichaam ingezet is en respectievelijke verzamelingsknooppunten die op verschillende posities van het menselijk lichaam ingezet zijn, een sternetwerkstructuur vormen; b) alle draadloze centrale knooppunten in het draadlooslichaamgebiedsnetwerkmodel die een Poissionpuntprocesmodel vormen dat een intensiteit van A en 3% Euclidische ruimtes heeft die onafhankelijk zijn van elkaar; c) het berekenen volgens een formule I = X Phi lr; 17 om een interferentiewaarde 7 te verkrijgen, waarbij P, een uitzendvermogen van een i° verzamelingsknooppunt is, 4; een kanaaldempingsparameter van het i° verzamelingsknooppunt is, a een dempingsindex is en +; een afstand is van het 7° verzamelingsknooppunt tot het draadloze centrale knooppunt; d) het berekenen van een signaal-naar-interferentie-plus-ruis-verhouding (“signal to interference plus noise ratio”, SINR) door een formule SINR = oh waarbij in de formule J¥ een ruis is, / de interferentiewaarde is, Pi een verwachte waarde van het uitzendvermogen van een alle verzamelingsknooppunten is, # een verwachte waarde van de kanaaldempingsparameter van alle verzamelingsknooppunten is, + een verwachte waarde van de afstand van alle verzamelingsknooppunten tot het draadloze centrale knooppunt is, en het, volgens een formuleA method of calculating a wireless body area network coexistence value based on arbitrary geometry, characterized in that it comprises: a) establishing a wireless body area network coexistence model composed of a plurality of wireless body area networks, wherein in each wireless body area network a wireless central node deployed in a human body and respective collection nodes deployed at different positions of the human body form a star network structure; b) all wireless hub nodes in the wireless body area network model that form a Poission point process model having an intensity of A and 3% Euclidean spaces independent of each other; c) calculating according to a formula I = X Phi Ir; 17 to obtain an interference value 7, where P 1 is a transmit power of an i° collection node, 4; is a channel attenuation parameter of the i° collection node, a is a attenuation index and +; is a distance from the 7° collection node to the wireless exchange node; d) calculating a signal-to-interference-plus-noise ratio ("signal to interference plus noise ratio", SINR) by a formula SINR = oh where in the formula J¥ is a noise, / is the interference value, Pi is an expected value of the transmit power of all collection nodes, # is an expected value of the channel attenuation parameter of all collection nodes, + is an expected value of the distance of all collection nodes from the wireless exchange node, and it, according to a formula -10 - NL2026557 coy 5 EE : “a3 Fo NAR > dd | asin) ie | ed : \ Ld JJ ) _ berekenen om een succesvolle uitzendingswaarschijnlijkheid Py te verkrijgen, waarbij in de formule, u een kanaaldempingsparameter is en y een ingestelde drempelwaarde is; en e) het, indien het draadloze centrale knooppunt data draadloos uitzendt, aannemen van een kanaalcompetitiemechanisme van GSMA/CA in tijdsvenstermodus op een MAC-laag, waarbij een waarschijnlijkheid van het succesvol concurreren voor een kanaal in het draadloze lichaamgebiedsnetwerk ST is, en waarbij een aantal co-existentie van draadloze Eet | lichaamgebiedsnetwerken 7 “ is, waarbij £ een verwachte waarde aanduidt, BO een interval is waarmee een coördinatorknooppunt een bakenframe uitzendt in een kanaalcompetitiemechanismealgoritme van GSMA/CA in tijdsvenstermodus, en SO een duur van een superframe-actieveperiode is in het kanaalcompetitiemechanismealgoritme van GSMA/CA in tijdsvenstermodus.-10 - NL2026557 coy 5 EE : “a3 Fo NAR > dd | asin) ie | ed : \ Ld JJ ) _ calculated to obtain a successful transmission probability Py, where in the formula, u is a channel attenuation parameter and y is a set threshold value; and e) if the wireless exchange node transmits data wirelessly, adopting a channel competition mechanism of GSMA/CA in time window mode on a MAC layer, wherein a probability of successfully competing for a channel in the wireless body area network is ST, and wherein a number of coexistence of wireless Eat | body area networks is 7", where £ denotes an expected value, BO is an interval at which a coordinator node transmits a beacon frame in a channel competition mechanism algorithm of GSMA/CA in time window mode, and SO is a duration of a superframe active period in the channel competition mechanism algorithm of GSMA/CA in time window mode. 2. Volgens de berekeningswerkwijze van de draadlooslichaamgebiedsnetwerkco-existentiewaarde op basis van willekeurige geometrie volgens conclusie 1, met het kenmerk dat: in stap a), het draadloze centrale knooppunt ingezet wordt bij een centraal gedeelte van het menselijk lichaam.According to the calculation method of the arbitrary geometry wireless body area network coexistence value according to claim 1, characterized in that : in step a), the wireless central node is deployed at a central portion of the human body. 3. Volgens de berekeningswerkwijze van de draadlooslichaamgebiedsnetwerkco-existentiewaarde op basis van willekeurige geometrie volgens conclusie 1, met het kenmerk dat: in stap b), een aantal van de verzamelingsknooppunten in elk draadloos lichaamgebiedsnetwerk © is, een intensiteit van de draadloze centrale knooppunten ©A 1s, en een Poissonclustermodel gevormd wordt.According to the calculation method of the arbitrary geometry wireless body area network coexistence value according to claim 1, characterized in that : in step b), a number of the collection nodes in each wireless body area network © is an intensity of the wireless center nodes ©A 1s, and a Poisson cluster model is formed. -11- NL2026557-11- NL2026557 4. Volgens de berekeningswerkwijze van de draadlooslichaamgebiedsnetwerkco-existentiewaarde op basis van willekeurige geometrie volgens conclusie 1, met het kenmerk dat: in stap c), #; een gemiddelde waarde die een indexdistributie van 1/4 opvolgt.According to the calculation method of the arbitrary geometry wireless body area network coexistence value according to claim 1, characterized in that : in step c), #; an average value following an index distribution of 1/4. 5. Volgens de berekeningswerkwijze van de draadlooslichaamgebiedsnetwerkco-existentiewaarde op basis van willekeurige geometrie volgens conclusie 1, met het kenmerk dat: in stap e), een waarde van BO 6 is, en een waarde van SO 3 is.According to the calculation method of the arbitrary geometry wireless body area network coexistence value according to claim 1, characterized in that : in step e), a value of BO is 6, and a value of SO is 3.
NL2026557A 2020-07-21 2020-09-28 Calculation method of wireless body area network coexistence value based on random geometry NL2026557B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010707542.8A CN111917490B (en) 2020-07-21 2020-07-21 Wireless body area network coexistence numerical value calculation method based on random geometry

Publications (1)

Publication Number Publication Date
NL2026557B1 true NL2026557B1 (en) 2021-05-28

Family

ID=73280581

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2026557A NL2026557B1 (en) 2020-07-21 2020-09-28 Calculation method of wireless body area network coexistence value based on random geometry

Country Status (2)

Country Link
CN (1) CN111917490B (en)
NL (1) NL2026557B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160029347A1 (en) * 2013-04-10 2016-01-28 Huawei Technologies Co., Ltd. Channel selection method and apparatus
CN105827442A (en) * 2016-03-14 2016-08-03 山东省计算中心(国家超级计算济南中心) Energy efficiency and frequency efficiency analysis method for wireless body area network
CN107770750A (en) * 2017-10-25 2018-03-06 山东省计算中心(国家超级计算济南中心) The energy efficiency optimization method that a kind of wireless body area network based on random geometry coexists
CN107969030A (en) * 2017-11-23 2018-04-27 山东省计算中心(国家超级计算济南中心) The game theory Poewr control method that a kind of wireless body area network coexists

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266416A (en) * 2019-07-01 2019-09-20 东北大学秦皇岛分校 A kind of double-deck multi-channel scheduling MAC protocol coexisted towards multiple wireless body area networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160029347A1 (en) * 2013-04-10 2016-01-28 Huawei Technologies Co., Ltd. Channel selection method and apparatus
CN105827442A (en) * 2016-03-14 2016-08-03 山东省计算中心(国家超级计算济南中心) Energy efficiency and frequency efficiency analysis method for wireless body area network
CN107770750A (en) * 2017-10-25 2018-03-06 山东省计算中心(国家超级计算济南中心) The energy efficiency optimization method that a kind of wireless body area network based on random geometry coexists
CN107969030A (en) * 2017-11-23 2018-04-27 山东省计算中心(国家超级计算济南中心) The game theory Poewr control method that a kind of wireless body area network coexists

Also Published As

Publication number Publication date
CN111917490B (en) 2021-05-18
CN111917490A (en) 2020-11-10

Similar Documents

Publication Publication Date Title
Busch et al. Contention-free MAC protocols for wireless sensor networks
Abdeddaim et al. Adaptive IEEE 802.15. 4 MAC for throughput and energy optimization
Golsorkhtabar et al. The novel energy adaptive protocol for heterogeneous wireless sensor networks
Mesodiakaki et al. Performance analysis of a cognitive radio contention-aware channel selection algorithm
Lee et al. Design and analysis of an asynchronous zero collision MAC protocol
Zhang et al. A load-based hybrid MAC protocol for underwater wireless sensor networks
Chen et al. Identifying state-free networked tags
NL2026557B1 (en) Calculation method of wireless body area network coexistence value based on random geometry
Chalhoub et al. Cluster-tree based energy efficient protocol for wireless sensor networks
Wang et al. On analysis of the contention access period of IEEE 802.15. 4 MAC and its improvement
Henna Sa-ri-mac: sender-assisted receiver-initiated asynchronous duty cycle mac protocol for dynamic traffic loads in wireless sensor networks
JP4517780B2 (en) Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
Ba et al. MoX-MAC: A low power and efficient access delay for mobile wireless sensor networks
Lei et al. Saturation throughput analysis of IEEE 802.11 DCF with heterogeneous node transmit powers and capture effect
Zhang et al. A load-adaptive CSMA/CA MAC protocol for mobile underwater acoustic sensor networks
Latiff et al. Implementation of enhanced lightweight Medium Access (eL-MAC) protocol for wireless sensor network
Tan et al. A hybrid mac protocol for wireless sensor network
Le et al. A new contention access method for collision avoidance in wireless sensor networks
Singh et al. A novel real-time MAC layer protocol for wireless sensor network applications
Al-Ghamdi et al. A dynamic slot scheduling for wireless sensors networks
Mirabella et al. Tree based routing in power line communication networks
Karmaker et al. A CSMA based intra cluster communication technique for saving cluster head energy
Lee Performance of a Receiver-initiated X-MAC Protocol for Tree-based Wireless Sensor Networks
Le et al. Over-hearing for energy efficient in event-driven wireless sensor network
Xu et al. A heuristic approach for low delay distributed MAC using successive interference cancellation in priority-based industrial wireless network