NL2026497B1 - Method, system and parts for enabling navigation in a scanning probe microscopy system. - Google Patents

Method, system and parts for enabling navigation in a scanning probe microscopy system. Download PDF

Info

Publication number
NL2026497B1
NL2026497B1 NL2026497A NL2026497A NL2026497B1 NL 2026497 B1 NL2026497 B1 NL 2026497B1 NL 2026497 A NL2026497 A NL 2026497A NL 2026497 A NL2026497 A NL 2026497A NL 2026497 B1 NL2026497 B1 NL 2026497B1
Authority
NL
Netherlands
Prior art keywords
encoder
substrate
optical sensor
sensor
reference grid
Prior art date
Application number
NL2026497A
Other languages
Dutch (nl)
Inventor
Sadeghian Marnani Hamed
Cornelius Antonius Couweleers Godefridus
Original Assignee
Nearfield Instr B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nearfield Instr B V filed Critical Nearfield Instr B V
Priority to NL2026497A priority Critical patent/NL2026497B1/en
Priority to PCT/NL2021/050560 priority patent/WO2022060224A1/en
Priority to EP21794211.9A priority patent/EP4214519A1/en
Application granted granted Critical
Publication of NL2026497B1 publication Critical patent/NL2026497B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q40/00Calibration, e.g. of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/02Non-SPM analysing devices, e.g. SEM [Scanning Electron Microscope], spectrometer or optical microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/06Probe tip arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

The present document relates to a method of calibrating a scanning probe microscopy system for enabling navigation. The system comprises one of more scan heads, a coordinate reference grid and a substrate carrier. The substrate carrier includes a carrier surface arranged opposite the coordinate reference grid and remotely therefrom such as to define a working space for the one or more scan heads. For enabling navigation between the scan heads and the substrate carrier, a relation is determined, using a sensor encoder cooperating with the coordinate reference grid, between a relative position of an optical sensor and the coordinate reference grid. This provides coordinate system data indicative of a coordinate system for the optical sensor relative to the grid, the optical sensor being fixed relative to the sensor encoder. Furthermore, a relative offset location of the probe tip and the head encoder of the scan head is determined, in order to allow positioning of the probe tip using the coordinate system obtained. The document also relates to a method of wafer alignment, an optical sensor, a support therefore, an assembly, a scanning probe microscopy system and a computer program product.

Description

P119661NL00 Title: Method, system and parts for enabling navigation in a scanning probe microscopy system.
Field of the invention The present invention is directed at a method of calibrating a scanning probe microscopy system for enabling navigation, wherein the scanning probe microscopy system comprises one of more scan heads, a coordinate reference grid and a substrate carrier, wherein each of the one or more scan heads comprises a probe including a probe tip for scanning of a substrate surface for performing measurements, and a head encoder cooperating with the coordinate reference grid; wherein, for supporting a substrate, the substrate carrier includes a carrier surface, the carrier surface being arranged opposite the coordinate reference grid and remotely therefrom such as to define a working space for the one or more scan heads between the coordinate reference grid and the carrier surface.
The invention is further directed at a method of performing substrate alignment that is based on such a calibration, an optical sensor, a support therefore, an assembly, a scanning probe microscopy system and a computer program product.
Background Conventional calibration methods and method of performing wafer alignment to allow navigation of a scan head of a scanning probe microscopy (SPM) system relative to a substrate surface, for example rely on cooperation between an optical microscope or imaging device and a scan head in an SPM system.
The optical system is used to obtain a rough overall image of an area on a substrate or substrate carrier, such as to provide a rough determination of a location and an orientation of the substrate.
The scan head and probe tip are then used to scan a smaller area that can be recognized and that can be used to determine a fine positioning.
Typically,
these methods use the imaging and scanning of a marker on a substrate, and in many cases a number of such markers to obtain an accurate alignment and positioning. The calibration, as accurate as it needs to be, is not a speedy process. However, once it has been done for a substrate it can be relied upon for the duration of the measurements, as long as ambient and system temperatures remain stable.
The calibration method, however, is not very suitable to be used in SPM systems wherein multiple scan heads are available to scan several sites or areas on a surface of a substrate simultaneously. A disadvantage, in this respect, is that calibration needs to be performed for each scan head which therefore considerably slows down the process of scanning the substrate. This in itself is already problematic because it significantly diminishes the advantage of scanning several sites simultaneously. However, in an industrial setting where throughput is important, this disadvantage even more problematic.
Summary of the invention It is an object of the present invention to overcome the abovementioned drawbacks of the prior art and to provide a calibration method that can be performed quickly for an arbitrary number scan heads of an SPM system.
To this end, there 1s provided herewith a method as described earlier, wherein for enabling navigation between at least one of the scan heads and a substrate carrier, the method comprises the steps of: a) determining, using a sensor encoder cooperating with the coordinate reference grid, a relation between a relative position of an optical sensor and the coordinate reference grid, such as to provide coordinate system data indicative of a coordinate system for the optical sensor, wherein the optical sensor 1s fixed relative to the sensor encoder; and b) determining, for the at least one scan head, a relative offset location of the probe tip and the head encoder of the scan head.
The present invention, in accordance with a first aspect, applies an optical sensor with a sensor encoder.
The sensor encoder cooperates with the coordinate reference grid to form a grid encoder.
Furthermore, each of the scan heads includes a head encoder in order to cooperate with the coordinate reference grid for enabling navigation.
In the first step, using the sensor encoder, a relation between a relative position of the optical sensor and the coordinate reference grid is determined.
This, for example, can be done by sensing or imaging references (e.g. structures or marks) of which the location is known, while obtaining location data using the position signal from the sensor encoder.
Relating the obtained location data to the known locations of these references allows to provide coordinate system data that 1s indicative of a coordinate system wherein the optical sensor is moving in relation to the coordinate reference grid.
Prerequisite for this is that the optical sensor is fixed relative to the sensor encoder, such that there is a direct and stable relation between the read-out position signal from the encoder and the actual position of the optical sensor.
The grid encoder is a positioning sensor consisting of the coordinate reference grid and the one or more encoders applied in the present system.
In a two dimensional grid encoder, the movable encoders read a geometric pattern (grid) encoded in the grid plate to determine their location on the grid.
Location data can be acquired from the position signal provided by the encoder.
The coordinate system obtained in the first step above maps the real locations within the SPM system to XY coordinates in the plane of the grid plate.
In a next step in accordance with the invention, a relative offset location of the probe tip and the head encoder of each scan head (or at least the scan heads to be used later) is established.
This enables to use the encoder readings from each of the head encoders to exactly determine the locations of the probe tips in the plane of the grid.
Hence, the determined coordinate system can be applied directly to the position data obtained from each head encoder to determine exactly the current location of the probe tip in the system. A controller of the system, e.g. a central controller of the SPM system or a local controller on each scan head, may then be applied to navigate the probe tip to e.g. a desired location in the system.
As probe tips need to be replaced frequently in operation due to wear thereof during scanning, the offset distance of the probe tip relative to the encoder is not fixed. Therefore, step b) will be repeated for each scan head after each probe tip replacement. There are various ways to implement the step of determining the relative offset location of the probe tip and the head encoder. In some embodiments, step b) is performed by the steps of: b1) determining, using the optical sensor and the sensor encoder cooperating with the coordinate reference grid, location data of a location of a fiducial marker in the coordinate system, wherein the fiducial marker is included on the substrate carrier; and b2) determining, for the at least one scan head, the relative offset location of the probe tip and the head encoder of the scan head by scanning, using the probe tip of the respective scanner, the fiducial marker while obtaining head location data via the head encoder. A fiducial marker located on the substrate carrier may consist of both a rough pattern to be recognized by the optical sensor and a fine pattern to be recognizer from a scan by a probe tip. Step b1) will provide the exact location of the fiducial marker in the coordinate system, whereas step b2) enables to determine therefrom the offset of the probe. The latter may for example be done by recognizing the pattern obtained using the probe tip, and relate it to the image obtained using the optical sensor. From this and from the location data provided by the head encoder at each pixel measured by the probe tip, the exact relative offset between the probe tip and the head encoder can be determined.
In conventional methods, the recalibration of each scan head after probe replacement further slows down the process considerably.
The present invention enables this to be done very quickly.
In the above embodiments, by relating the location of the fiducial marker to the coordinate system, and 5 then sensing the fiducial marker with the probe tip, each scan head can be quickly recalibrated after probe replacement by determining the relative offset of the probe tip in relation to the head encoder using the images of the fiducial marker, for example in the above manner.
This manner of quickly determining the probe tip offset is however not the only manner in which this offset may be obtained by the present invention, as will be made clear further down below with respect to some further embodiments.
First, in accordance with some embodiments of the method of the invention, the optical sensor and the sensor encoder are included on a sensing element, wherein the sensing element is operating separate and individually from the one or more scan heads.
In these embodiments, the sensor element is an individual element operating independently from the scan heads within the system.
Such an independent sensing element may be moved around the system and placed in certain locations using a positioning unit module, e.g. a placement arm that is controlled from outside the working space between the grid plate and the carrier surface.
However, in other embodiments, such an individual sensor element comprises other driving means or may even be e.g. self-propelled using for example a gas bearing and precision motion actuators.
In some further embodiments, the optical sensor is included on at least one of the scan heads, and the sensor encoder is provided by the head encoder of the scan head.
Here, one or more of the available scan heads may be equipped with an additional optical sensor, which uses the head encoder of the scan head as sensor encoder.
One of the advantages is that a separate sensor element in this case 1s not needed, thereby saving working space and allowing for the use of an additional scan head.
Another advantage is that steps b1) and b2) described with respect to the embodiments above, can be carried out at once for the scan head supporting the optical sensor. In some particular of these embodiments, the system comprises a plurality of scan heads, and at least two of the scan heads include an optical sensor, wherein for each of the at least two scan heads the sensor encoder is provided by the head encoder of the respective scan head. The application of an optical sensor on multiple or even each scan head has various advantages. As will be understood, this enables the use of multiple optical sensors during the calibration process, which shortens the time to carry out the calibration.
A particular advantage that may be achieved with using an optical sensor fixed to a scan head, is that the optical sensor can be used as a distance sensor to obtain information about the distance to the substrate surface in relation to a reference point (e.g. the probe tip) on the scan head. This information can be used to roughly control the height positioning.
Furthermore, in an optical sensor suitable to carry out the invention, in a particular embodiment thereof, the sensor includes an additional capacitive sensor to aid in the focusing of the imaging sensor on the surface. The information of the capacitive sensor likewise enables to determine the distance to the substrate surface.
In accordance with some particular embodiments, the optical sensor is included on at least one of the scan heads, and the optical sensor is placed such that the probe tip is within a field of view of the optical sensor, wherein step b) is performed by determining the relative offset of the probe tip and the head encoder from image data obtained with the optical sensor.
In this particular class of embodiments, wherein any of one of the scan heads, multiple scan heads or all scan heads may include an optical sensor, the probe tip(s) are within sight — i.e. within the field of view — of the optical sensor such that from the images taken with the optical sensor, the relative offset of the probe tip in relation to the encoder can directly be obtained.
In some embodiments of the invention, step a) is performed by sensing, using the optical sensor, the or each location of one or more calibration markers that are distributed across the carrier surface. The scanning of calibration markers distributed across the work space at several locations, enables to obtain accurate coordinate system data. In some embodiments, the one or more calibration markers may be provided on a calibration substrate surface to be loaded onto the carrier surface for carrying out step a). Here, a calibration substrate (e.g. a calibration wafer) may be loaded onto the substrate carrier on which a plurality of calibration marker is provided. This calibration substrate may be removed again after step a). In other or further embodiments, the one or more calibration markers are included on the carrier surface of the substrate carrier, wherein step a) is performed by scanning the carrier surface in absence of a substrate. Here the calibration markers are already present on the substrate carrier, fixing their positions to the metrology frame. In this case, no calibration substrate is needed and the system is enabled to perform a self-calibration after replacing a mark sensor or grid plate.
In accordance with a second aspect, there is provided a method of performing substrate alignment for establishing a relation between a relative positions on a substrate and a coordinate system provided by coordinate system data in a scanning probe microscopy system, wherein the coordinate system data is obtained using a method according to the first aspect, wherein the scanning probe microscopy system comprises one of more scan heads, a coordinate reference grid and a substrate carrier, wherein each of the one or more scan heads comprises a probe including a probe tip for scanning of a substrate surface for performing measurements, and a head encoder cooperating with the coordinate reference grid; wherein, for supporting a substrate, the substrate carrier includes a carrier surface, the carrier surface being arranged opposite the coordinate reference grid and remotely therefrom such as to define a working space for the one or more scan heads between the coordinate reference grid and the carrier surface; wherein the method comprises: providing a substrate on the carrier surface, the substrate comprising a plurality of alignment marks; determining, using an optical sensor fixed to a sensor encoder, first location data of a location of a first alignment mark on the substrate and orientation data of the first alignment mark with respect to the coordinate system; predicting, using the first location data, the orientation data and substrate layout data, one or more second location data of locations of one or more second alignment marks with respect to the coordinate system; and mapping, by sensing with the optical sensor, the one or more second alignment marks to the coordinate system by moving the optical sensor to the locations provided by the predicted second location data, and providing alignment data of an alignment of the substrate to the coordinate system.
The method in accordance with the first aspect calibrated the SPM system in order to provide a coordinate system and a direct relation between position readings from an encoder cooperating with the coordinate reference grid and the exact XY position of a probe tip in the SPM system for each scan head. As a next step, upon loading of each substrate onto the substrate carrier, the substrate needs to be aligned relative to the coordinate system (or vice versa). As may be appreciated, in order to accurately perform surface measurements, the orientation and position of the substrate on the carrier surface needs to be mapped to the coordinate system. To this end, in accordance with the second aspect, the optical sensor determines first location data of a location of a first alignment mark on the substrate and orientation data of the first alignment mark with respect to the coordinate system. For example, the optical sensor may start by sensing a center alignment mark if the substrate is a wafer. From this the position may be determined and as well as an estimate of the orientation of the substrate. Then, based on the first location data, the orientation data and substrate layout data, one or more second location data of locations of one or more second alignment marks are predicted with respect to the coordinate system. The optical sensor will then be moved to the predicted locations to perform a sensing of the second alignment marks. The one or more second alignment marks may then be mapped to the coordinate system by obtaining their positions with the encoder (i.e. the sensor encoder, or the head encoder in case the optical sensor is fixed to a scan head). From this alignment data of an alignment of the substrate to the coordinate system can be determined, e.g. by a controller of the SPM system. The substrate is thereby mapped onto the coordinate system, such that a probe tip of one of the scan heads may be placed at any desired location on the substrate surface, using the grid encoder.
In some embodiments, the substrate layout data may be obtained by loading the substrate layout data into a memory of the scanning probe microscopy system, wherein the memory is communicatively connected to a controller of the system. Alternatively, or additionally, the substrate layout data may be obtained from a data communication network, such as from a remote data storage location or a remote server. Furthermore, the substrate layout data may also be obtained from input by an operator of the scanning probe microscopy system. For example, in that event, relative location data of alignment markers may be received via manual input, or in addition to substrate layout data already present in the memory (e.g. as a correction or to provide details of an additional marker). Furthermore, in some embodiments, the substrate layout data may be obtained from a further optical instrument, such as a camera. In that case, a camera imaging a large area of the substrate may be providing an image form which alignment markers can be recognized and their rough locations can be determined. Any of these embodiments are possible alone or in combinations with others.
In accordance with a third aspect, there is provided a method of navigating at least one scan head of a plurality of scan heads of a scanning probe microscopy system to a location of interest on a substrate, wherein the method includes a method of performing substrate alignment according to the second aspect, wherein each of the one or more scan heads includes a head encoder, and wherein the method comprises: obtaining, for the at least one scan head, a point of interest location indication of a point of interest on the substrate; determining, using the alignment data, location data of the point of interest indicative of a coordinate in the coordinate system; and moving the at least one scan head to the coordinate indicated by the location data of the point of interest.
The invention further provides an optical sensor for use in any of the methods described above.
Therefore, in accordance with a fourth aspect, there is provided an optical sensor for use in a scanning probe microscopy system, comprising a structural element supporting an imaging sensor, one or more focusing objectives, and at least one actuator for adapting a distance between the imaging sensor and the focusing objectives, for enabling focusing of the imaging sensor onto a surface to be imaged, such as a substrate surface, a carrier surface of a substrate carrier, or a fiducial marker on the substrate carrier; wherein the structural element comprises fixation structures for enabling fixation of the optical sensor to a support including an encoder configured for cooperating with a coordinate reference grid of the scanning probe microscopy system, for enabling fixing of the optical sensor relative to the encoder for enabling the encoder to serve as a sensor encoder in a method according to the first, second or third aspect.
In some embodiments, the imaging sensor is a complementary metal oxide semiconductor (CMOS) camera.
An advantage of a CMOS is the low energy consumption thereof, which makes it suitable for use in mobile entities such as e.g. a sensing element as mentioned herein.
Alternatively, a CCD chip may likewise be applied dependent on preferences in the design.
In some embodiments, the actuator includes one or more piezo elements cooperating with flexures.
This provides a miniature but precise actuator structure for adjusting the focusing of the imaging sensor.
Furthermore, in some embodiments, the one or more focusing objectives include a tube lens. Together a compact design of the optical sensor may be obtained. To this end, in some embodiments, the optical sensor further includes a redirection mirror for enabling placement of the imaging sensor and the one or more focusing objectives along an optical axis parallel to the coordinate reference grid in use, while obtaining images with the imaging sensor in an off axis direction relative to the optical axis. The requirements in terms of size of the sensor between the grid and the carrier surface are far more strict than in a direction parallel to the grid plate. Hence, using a mirror or other redirection optical element to perform off axis imaging with respect to an optical axis (or longitudinal axis) of the optical sensor enables to make use of the less strict size requirements in this parallel direction.
In accordance with a fifth aspect, there is provided a support, wherein the support is configured to be used in a scanning probe microscopy system, the support further comprising an encoder configured for cooperating with a coordinate reference grid of the scanning probe microscopy system, wherein the encoder is fixed relative to the optical sensor upon fixing of the optical sensor to the support for enabling the encoder to serve as a sensor encoder in a method according to the first, second or third aspect, wherein the support is further configured for moving in a working space of the scanning probe microscopy system defined between the coordinate reference grid and a carrier surface of a substrate carrier, such as to enable imaging of substrate surface supported by the substrate carrier while simultaneously obtaining location data of a current location of the support relative to the coordinate reference grid. The support enables fixing of the optical sensor relative to the encoder as required in the method in accordance with the first aspect.
In some embodiments, the support is comprised by at least one of a groups comprising: a positioning arm of the scanning probe microscopy system; a scan head including a probe and a probe tip, wherein the encoder is provided by a head encoder of the scan head; a support structure suitable for being placed by a placement arm of the scanning probe microscopy system; and a support structure comprising a motion driver or actuator for enabling independent movement of the support relative to a coordinate reference grid, such as by using or providing a gas bearing. The support enables to integrate the optical sensor in different ways into the SPM system, as is clear from the above embodiments. In accordance with a sixth aspect, there 1s provided an assembly comprising an optical sensor according to the fourth aspect and a support according to the fifth aspect.
Yet in accordance with a seventh aspect, there is provided a scanning probe microscopy system comprising one of more scan heads, a coordinate reference grid and a substrate carrier, wherein each of the one or more scan heads comprises a probe including a probe tip for scanning of a substrate surface for performing measurements, and a head encoder cooperating with the coordinate reference grid; wherein, for supporting a substrate, the substrate carrier includes a carrier surface, the carrier surface being arranged opposite the coordinate reference grid and remotely therefrom such as to define a working space for the one or more scan heads between the coordinate reference grid and the carrier surface; wherein the system further comprises an optical sensor fixed relative to a sensor encoder, the sensor encoder being configured for cooperating with the coordinate reference grid; and wherein the system further comprises a memory and a controller, wherein the controller is configured for performing the steps of: a) determining, using a location signal from the sensor encoder cooperating with the coordinate reference grid, a relation between a relative location of the optical sensor and the coordinate reference grid, such as to provide coordinate system data indicative of a coordinate system for the optical sensor; b) determining, for the at least one scan head, a relative offset location of the probe tip and the head encoder of the scan head. The SPM system of this type may be applied in any of the above methods.
In particular, in some embodiments, the controller is further configured for performing the step b) by the steps of: bl) determining, using the optical sensor and the sensor encoder cooperating with the coordinate reference grid, location data of a location of a fiducial marker in the coordinate system, wherein the fiducial marker is included on the substrate carrier; and b2) determining, for the at least one scan head, the relative offset location of the probe tip and the head encoder of the scan head by scanning, using the probe tip of the respective scanner, the fiducial marker while obtaining head location data via the head encoder.
In accordance with an eighth aspect, there is provided a computer program product comprising instructions which, when loaded into a memory of a scanning probe microscopy system according to the seventh aspect, enable the controller of the system to perform a method according to the first, second or third aspect.
Brief description of the drawings The invention will further be elucidated by description of some specific embodiments thereof, making reference to the attached drawings. The detailed description provides examples of possible implementations of the invention, but is not to be regarded as describing the only embodiments falling under the scope. The scope of the invention is defined in the claims, and the description is to be regarded as illustrative without being restrictive on the invention. In the drawings: Figures 1a through 1c schematically illustrate a method in accordance with the present invention performed on a system in accordance with an embodiment of the present invention;
Figure 2a through 2c schematically illustrate a method of aligning a substrate, in accordance with a further embodiment of the present invention; Figure 3 schematically illustrates an optical sensor in accordance with an embodiment of the present invention; Figure 4 schematically illustrates a support in accordance with an embodiment of the present invention, bearing an optical element in accordance with an embodiment and a scan head, in a system in accordance with an embodiment of the invention.
Detailed description In figures 1a through 1c, a method in accordance with an embodiment of the first aspect of the present invention is schematically illustrated by showing a system in accordance with an embodiment of the invention wherein the method is applied step by step. In figure 1a, a scanning probe microscopy system 1 comprises a base 5 and a substrate carrier 3. The base 5 comprises a coordinate reference grid plate 6. The coordinate reference grid plate is part of a grid encoder, which consists of the plate 6 and at least one encoder 15. Typically, in the system 1 in accordance with the present invention, a plurality of encoders cooperate with the grid plate 6. For example, each element that is moving within the working space 2 between the sample carrier 3 and the grid plate 6 may comprise an encoder 15 that cooperates with the grid plate 6 in order to determine its position on the grid plate 6. The encoder 15, and each other encoder cooperating with the coordinate reference grid plate 6, (reads) the reference grid in order to obtain the coordinate data of its current location on the grid 6.
In figure 1a, the encoder 15 is mounted on a support 13 which is part of an arm 12 of a positioning unit module. The support 13 comprises an optical sensor 14 and the encoder 15. The optical sensor 14 provides an important aspect of the invention and, in the illustrated embodiment, includes a miniature camera unit 20 having a field of view 19 through its sensor opening 17. The optical sensor 14 further comprises an aperture 21, a focusing lens 22 and actuators 24. The actuators 24 enable to adjust the distance between the camera 20 and the focusing optics 22 for enabling focusing of the image on the surface of the substrate 8. Furthermore, in order to make use of the available space parallel to the surface of the grid plate 6 in the working space 2, a mirror 25 redirects the field of view of the camera 20 from a horizontal into a vertical direction as illustrated in figure la. The optical sensor 14 is mechanically fixed to the support 13 and the arm 12, as will be described later. Furthermore, electrical connections for data transfer to the system 1 are provided via the electrical connection interface 18.
The camera 20 must be accurate enough to be able to recognize alignment marks on the wafer. The sizes of such marks are typically within a range of 20*20 micrometer up to 50*50 micrometer, but of course the size these marks may vary and may become smaller over time. The resolution of the image features of alignment marks may typically be down to 1 micrometer, which may likewise be subject to change (i.e. decrease) over time. The camera 20 may be adapted accordingly dependent on the size and/or resolution of the alignment marks, and should be able to distinguish the necessary image features in order to carry out its task. For example, pixel resolution of camera 20 in the object plane (e.g. surface to be read, bearing the marks) may be smaller than or equal to 2 micrometer, preferably smaller than or equal to 1.0 micrometer, more preferable smaller than or equal to 0.5 micrometer. Furthermore, magnification of the camera may be 5 to 100 times, preferably 10 to 50 times, and the camera may be able to operate with at least two magnification factors for low and high magnification. The camera must be able to detect alignment features on a wafer surface, which may be placed as close as 1 millimeter from the edge of the wafer. Power consumption of the camera is preferably as low as possible to reduce thermal dissipation and unwanted effects on the accuracy. The field of view 19 of camera 20 may be at least 0.5 millimeter, preferably at least 0.9 millimeter.
In figure 1a, a calibration wafer 8, which is provided by a special wafer with alignment marks 9 (i.e. 9-1...9-5...9-n) is provided on the sample carrier, thereby providing the substrate surface that can be used for calibration of the system 1. Furthermore, the sample carrier 3 comprises, e.g. on an edge thereof, a fiducial marker 4.
In a method in accordance with an embodiment of the present invention, as illustrated in figure 1a, as a first step the system must be calibrated in order to obtain a coordinate system which enables any element in the working space 2 to be properly navigated in use. The coordinate system to be determined is associated with the SPM system, reference grid plate 6 and the optical sensor 14. If any of these latter elements: the optical sensor 14 or the grid plate 6, is to be replaced, a new calibration of the system 1s needed in order to obtain a correct coordinate system associated with the elements. However, because typically neither the grid plate 6, nor the optical sensor 14 requires frequent replacement, the calibration step is typically performed on first use of the system 1, and occasionally after replacement of any of these elements. As may be appreciated, a skilled person is free to perform the calibration step as often as deemed necessary or desired, and the invention is not limited to performing the calibration step only at the times indicated hereinabove.
The first step illustrated in figure 1a is the sensing, or imaging, of a sufficient number of calibration markers 9-n by the optical sensor 14. This is done by moving the optical sensor 14 across the surface of the grid 6 while obtaining location data of the current location of encoder 15 of the support
13. For example at each of the locations 9-1, 9-2, 9-3, 9-4 and 9-5 illustrated in figure la, the optical sensor 14 obtained an image of the calibration marker, e.g. calibration marker 9-4, while registering, associated therewith, the current location data obtained from the encoder 15. The layout of the calibration wafer 8 is exactly known in the system 1, and therefore by taking the images from the calibration markers 9-n and registering these associated with the location data obtained from the encoder 15, a relation between the positions of the calibration markers 9-n and the location data from the coordinate reference grid 6 can be established.
This provides the coordinate system data which is indicative of the coordinate system for the optical sensor.
As may be appreciated, it is important herein that the optical sensor 14 is fixed relative to the encoder 15 such that the location data obtained from the encoder 15 can be reliably related to the images obtained with the optical sensor 14. Although in figure 1a, the step of obtaining a relation between the relative positioning of the optical sensor 14 and a coordinate reference grid 6 is performed using a calibration wafer 8, the skilled person may appreciate that it is not an essential step to the invention to use a calibration wafer such as wafer 8. Alternatively, known fixed references in the system 1 may likewise be used for determining such a relation.
For example, in an alternative embodiment the substrate carrier 3 may for example include scannable calibration references directly on its bearer surface 7, such that the loading of a calibration wafer 8 is not required.
Also the calibration wafer 8 not necessarily needs to be a special wafer comprising special marks, but may also be a wafer of which the layout is exactly known in the system 1, and which comprises distinguishable marks on its surface.
The skilled person may recognize the various alternatives for implementing this step.
After performing the first calibration step illustrated in figure 1a, the method of the present invention may continue by performing a determination of a relative offset location of the probe tip and the head encoder of the scan head 30. Figures 1b and 1c illustrate this step in an embodiment of the present invention. However, the steps illustrated in figures 1b and 1c are merely examples in accordance with one embodiment of the invention, and in an alternative embodiment this relative offset location of the probe tip may be determined in a different manner. Briefly referring to figure Ic, the relative offset location of the probe tip 37 with respect to the head encoder 31 defines a relation between the location data obtained with the head encoder 31 and the exact location of the probe tip 37 at that moment. This information is needed in order to be able to properly navigate the probe tip to a desired location for scanning a substrate surface, as will be explained later. A scan head 30 may comprise a variety of different elements, but at least includes the encoder 31 and the miniature atomic force microscope unit 32. The miniature AFM unit 32 includes a probe 35 including a cantilever 36 and a probe tip 37. The probe tip 37 is used to scan across the surface of e.g. a substrate, in order to determine the geometry of the surface topography of the substrate or the exact locations of embedded structures underneath the surface of the substrate using e.g. an acoustic signal applied to the substrate or the probe 35 or both. In the example illustrated in figure 1c a regular topography measurement is illustrated schematically. The miniature AFM 32 thus comprises a probe 35, alaser 41 (e.g. a semiconductor laser) and an optical sensor 38. The laser 41 and the optical sensor 38 together form an optical beam deflection unit (OBD unit) which enables to exactly determine the deflection of the probe tip 37 due to surface structures sensed with the AFM. The laser 41 and the optical sensor 38 are controlled by controller 40 which also obtains the sensor signal from optical sensor 38 and e.g. location data from the encoder
31. This is transmitted to the system electronics 1. In the embodiment illustrated in figure 1c, the scan head 30 comprises an onboard processor 40 that is used as a controller of a scan head. The skilled person may appreciate that a decentral controller may be located somewhere in the SPM system to perform the same and/or additional tasks as described herein.
Back to figure 1b, the step of determining irrelative offset location for the probe tip 37 is performed by a first performing... step of determining, using the optical sensor 14 described above, location data of a fiducial marker 4 which is located on the substrate carrier 3. This 1s done by imaging the fiducial marker 4 with the optical sensor 14, while taking a current location of the support 13 by the encoder 15. The step of scanning the fiducial marker 4 with the optical sensor 14 is needed each time when the system 1 is used because the location of the fiducial marker 4 in the SPM system 1 is not fixed. The reason for this is that temperature differences in and around the SPM system 1 result in miniature differences in the exact location of the fiducial marker 4. Therefore, at least each time when the system 1 is used, but more preferably as often as necessary, this calibration step may be performed. Thereafter, the step illustrated in figure Ic is performed. Here, the fiducial marker 4 is again imaged, by scanning the surface of the fiducial marker with the probe tip 37 in order to obtain an AFM image thereof. The scanning of the fiducial marker 4 is performed in an area including the location for the fiducial marker 4 obtained with encoder 15 of the optical sensor 14 in the preceding step. This will provide a detailed AFM image of the fiducial marker 4, or a fraction thereof, which may be related to the image obtained with the optical sensor 14 in the preceding step by image recognition. From the data obtained with the encoder 31 and the image recognition step, the exact relation between the location data obtained from the encoder 31 and the position of the probe tip 37 can be obtained. From this, using the coordinate system already obtained during the calibration step illustrated in figure 1a, the scan head 30 including the encoder 31 and miniature AFM 32, can be navigated through the working space 2 to any location relative to the grid plate 6 in order to obtain images of the substrate.
Figures 1b and 1c illustrate the calibration wafer 8 in the sample carrier 3. This calibration wafer 8 is not needed during the steps illustrated in figures 1b and 1c, and may be completely absent while performing these steps. The determination of the relative offset of the probe tip in the example illustrated in figures 1b and 1c is completely based on the location of the fiducial marker 4 which is located on the substrate carrier 3, and thus not on the substrate therein.
The data obtained with the steps illustrated in figures 1a, 1b and 1c forms the basis for enabling navigation through the working space 2. As indicated hereinabove, the step of determining relative offset position of the probe tip 37 with respect to the encoder 31 may be performed in a different manner than is illustrated in figures 1b and lc. For example, in accordance with an embodiment of the present invention, the optical sensor 14 may be jointly mounted to a support arm 12 including an atomic force microscope
32. The both systems may be integrated in such a way that the field of view 19 of the optical sensor 14 includes at least the probe tip 37. In this way, each image that is taken with the optical sensor 14 includes the location of the probe tip, and therefore the exact offset between the encoder 31 (which due to this integration also provides the encoder 15) and the location of the probe tip can be obtained directly from this image.
Once the coordinate system is available, and the location of each probe tip of each scan head 30 in the system 1 relative to the associated encoder 31 is known, the elements can be navigated throughout a working space 2 to each location relative to the substrate carrier 3 and the grid plate 6 using the coordinate system. However, in order to properly enable navigation to a desired location on an arbitrary wafer loaded into the substrate carrier 3, one more step is needed in order to align such a production wafer 48 with the coordinate system: i.e. a relation needs to be defined between the exact position and orientation of the production wafer 48 in a substrate carrier 3 relative to the coordinate system obtained. This step may also easily be performed using the optical sensor 14 in accordance with the present invention. Reference is made to figures 2a through 2c.
figure 2a schematically illustrates a production wafer 48 onto which schematically a reference grid is illustrated intended to provide a reference to the coordinate reference grid plate 6 illustrated in the system 1 of figures la through lc.
In order to properly align the production wafer 48 to the coordinate system obtained through calibration, we first perform a sensing or imaging of the center alignment mark 49 in the center of the wafer 48. Figure 2b provides an example image of an alignment marker 49. The alignment marker 49 provides a pattern of measurable structures 53, including a cross hair type structure 54 in the middle thereof.
The illustration in figure 2b is just an example of an alignment marker on a wafer, such as wafer 48. In reality many different types of alignment markers are used in the industry, and the alignment marker of an arbitrary wafer 48 may have a completely different design than the design illustrated in figure 2b.
Figure 2b merely illustrates an example that enables to explain the present invention.
Schematically, a copy of the center 53 of alignment marker 49 is illustrated in figure 2c.
On the left side of figure 2c, the alignment marker 49 is exactly aligned with a coordinate system reference axis 55 of the coordinate system obtained during the calibration steps.
However, on the right side of figure 2c, the same alignment marker 49’ is illustrated with a slightly different orientation angle.
The axis 55’ 1s the notional axis through the cross hairs 54 in the middle of the alignment mark 49 and the angular difference between the axis 55 and axis 55 is the angle R. 58, the rotation around the height axis in the system 1. Once a new production wafer 58 is loaded into the substrate carrier 3, in order to determine the alignment of the production wafer 48, the center alignment marker 49 is imaged using the optical sensor 14. For example an image is illustrated on the right side of figure 2 may be obtained with the optical sensor.
From this image, and based on the coordinate system data in the system 1, the orientation angle R; 58 may be determined, as well as the exact x and y position data of the coordinates of alignment marker 49 with respect to the reference grid 6. In the memory of the system 1, blue print data or data of the design of the wafer 48, and in particular the location of alternative alignment markers 50-1, 50-2, 50-3 and 50-4 may be available.
Because the exact position xg, yo and r,o of alignment marker 49 are known from the determination step with the optical sensor 14, the exact locations of the alignment markers 50-1 through 50-4 can be determined.
The optical sensor 14 can then be moved to the determined locations in order to scan the other alignment markers 50-1 through 50-4. From this, an exact orientation of the wafer 48 with respect to the coordinate system can be determined, which can be used in order to navigate each of the scan heads to a desired location of the wafer.
Figure 3 illustrates a see-through impression of an optical sensor 14, for example the optical sensor 14 illustrated in figures 1a and 1b.
The optical sensor 14 consists of a camera 20, for example a CMOS camera to obtain images of the substrate surface.
Alternatively, a CCD camera may be applied or a different type of optical sensor unit.
The sensor further consists of an aperture 21, and a focusing lens 22 which in the present example is a tube lens.
The focusing lens 22 connects to an actuator 24 suspending with flexures 23 from a structure of the optical sensor.
The actuator 24 and flexures 23 enable to adjust the distance between the camera 20 and the focusing lens 22 in order to focus the image of camera 20 on the substrate surface or the surface to be imaged (e.g. the surface of the substrate carrier carrying the fiducial marker 4). The optical sensor 14 further consists of a sensor opening 17 and includes a redirection mirror 25 which makes an angle of /4 with the longitudinal axis through the sensor 14 in order to redirect the imaging plain onto the surface of the substrate.
The optical sensor 14 further comprises a printed circuit board 26 onto which for example a plurality of light emitting diodes (LED's) provide illumination of the substrate surface for imaging.
Also, capacitive sensor 28 enables to determine the distance to the substrate surface in order to perform correct focusing of the image quickly. The capacitive sensor 28 may further be applied to perform additional measurements from which e.g. a tilting of the substrate relative to the grid plate 6 may be determined. Furthermore, the optical sensor 14 comprises an infinity corrected microscopy objective 29 with along working distance. The numeric aperture of this objective 29 for example may be 0,28. The magnification of the tube lens 22 for example may be three times to eight times, and in the present example provides a five time magnification. The actuator 24 may be a piezo actuator and the flexures 23 may be provided by bending elements or leaf springs or a system of leaf springs to allow very accurate focusing adjustment and stability. Figure 4 shows an example of a placement arm 12 with integrated supporter 13 onto which an optical sensor 14 is mounted. The optical sensor 14 is mounted with dow pins 64 and screws 62 to the arm 12 and support
13. The screws 62 are connected to the reference point 60 on the opposite side, extending through holes in the optical sensor 14. This allows a very stable and precisely adjustable fixation that allows to accurately position and fix the optical sensor 14 in six degrees of freedom. The screws 62 and references 60 enable to fix the optical sensor 14 in a stable way in the direction A and the rotation dimensions Rs and R.. The dow pins 64 enable fixing and positioning in the positions X and Z, and in the rotation dimension Ry. Therewith, the optical sensor 14 is firmly fixed relative to the encoder 15 underneath the support 13 (not visible in figure 4). In the figure, also the locations of the sensor opening 17 and the electrical interface 18 is illustrated. Also fixed to the positioning arm 12 and support 13 is a scan head 30 including a probe 35. In the illustrated embodiment, the probe tip 37 (not shown) is not visible in the field of view of the camera 20. However, in different embodiments, as explained hereinabove, the scan head 30 and the optical sensor 14 may be integrated in such a way that the probe tip 37 of the probe 25 will be visible in the field of view of the camera, somewhere in the region 17 in figure 4.
The present invention has been described in terms of some specific embodiments thereof. It will be appreciated that the embodiments shown in the drawings and described herein are intended for illustrated purposes only and are not by any manner or means intended to be restrictive on the invention. It is believed that the operation and construction of the present invention will be apparent from the foregoing description and drawings appended thereto. It will be clear to the skilled person that the invention 1s not limited to any embodiment herein described and that modifications are possible which should be considered within the scope of the appended claims. Also kinematic inversions are considered inherently disclosed and to be within the scope of the invention. Moreover, any of the components and elements of the various embodiments disclosed may be combined or may be incorporated in other embodiments where considered necessary, desired or preferred, without departing from the scope of the invention as defined in the claims.
In the claims, any reference signs shall not be construed as limiting the claim. The term ‘comprising’ and ‘including’ when used in this description or the appended claims should not be construed in an exclusive or exhaustive sense but rather in an inclusive sense. Thus the expression ‘comprising’ as used herein does not exclude the presence of other elements or steps in addition to those listed in any claim. Furthermore, the words ‘a’ and ‘an’ shall not be construed as limited to ‘only one’, but instead are used to mean ‘at least one’, and do not exclude a plurality. Features that are not specifically or explicitly described or claimed may be additionally included in the structure of the invention within its scope. Expressions such as: "means for ...” should be read as: "component configured for ..." or "member constructed to ..." and should be construed to include equivalents for the structures disclosed. The use of expressions like: "critical", "preferred", "especially preferred" etc. is not intended to limit the invention. Additions, deletions, and modifications within the purview of the skilled person may generally be made without departing from the spirit and scope of the invention, as is determined by the claims.
The invention may be practiced otherwise then as specifically described herein, and is only limited by the appended claims.

Claims (18)

ClaimsClaims 1. Werkwijze voor het kalibreren van een scanning-probe- microscopiesysteem voor het vrijgeven van navigatie, waarbij het scanning- probe-microscopiesysteem een of meer scankoppen, een coördinatenreferentieraster en een substraatdrager omvat, waarbij elk van de een of meer scankoppen een sonde omvat die is voorzien van een sondepunt voor het scannen van een substraatoppervlak voor het uitvoeren van metingen, en een kop-encoder die samenwerkt met het coördinatenreferentieraster; waarbij, voor het ondersteunen van een substraat, de substraatdrager een drageroppervlak omvat, waarbij het drageroppervlak tegenover het coördinatenreferentierooster en op afstand daarvan is gelegen om een werkruimte te definiëren voor de een of meer scankoppen tussen het coördinatenreferentierooster en het drageroppervlak, waarbij voor het vrijgeven van navigatie tussen ten minste één van de scankoppen en de substraatdrager, de werkwijze de volgende stappen omvat: a) het bepalen, met behulp van een sensor-encoder die samenwerkt met het coördinatenreferentierooster, van een relatie tussen een relatieve positie van een optische sensor en het coördinatenreferentierooster, om coördinatensysteemgegevens te verschaffen die indicatief zijn voor een coördinatensysteem voor de optische sensor, waarbij de optische sensor vast is ten opzichte van de sensor-encoder; b) het bepalen, voor de ten minste ene scankop, van een relatieve offsetlocatie van de sondetip en de kop-encoder van de scankop.A method of calibrating a scanning probe microscopy system for navigation release, wherein the scanning probe microscopy system comprises one or more scan heads, a coordinate reference grid, and a substrate carrier, each of the one or more scan heads comprising a probe comprising includes a probe tip for scanning a substrate surface for taking measurements, and a head encoder that cooperates with the coordinate reference grid; wherein, for supporting a substrate, the substrate support comprises a support surface, the support surface being opposed to the coordinate reference grid and spaced therefrom to define a working space for the one or more scan heads between the coordinate reference grid and the support surface, wherein for releasing navigation between at least one of the scan heads and the substrate carrier, the method comprises the following steps: a) determining, using a sensor encoder interacting with the coordinate reference grid, a relationship between a relative position of an optical sensor and the coordinate reference grid, to provide coordinate system data indicative of a coordinate system for the optical sensor, the optical sensor being fixed relative to the sensor encoder; b) determining, for the at least one scan head, a relative offset location of the probe tip and the head encoder of the scan head. 2. Werkwijze volgens conclusie 1, waarbij stap b) wordt uitgevoerd door de stappen van: b1) het bepalen, met behulp van de optische sensor en de sensor-encoder die samenwerken met het coördinatenreferentierooster, van locatiegegevens van een locatie van een ijkpuntmarkering in het coördinatensysteem, waarbij de ijkpuntmarkering is opgenomen op de substraatdrager; en b2) bepalen, voor de ten minste ene scankop, van de relatieve offsetlocatie van de sondetip en de kop-encoder van de scankop middels het scannen, met behulp van de sondetip van de respectievelijke scanner, van de ijkpuntmarkering terwijl koplocatiegegevens worden verkregen via de kop-encoder.The method of claim 1, wherein step b) is performed by the steps of: b1) determining, using the optical sensor and the sensor encoder cooperating with the coordinate reference grid, location data of a location of a checkpoint mark in the coordinate system, wherein the checkpoint mark is recorded on the substrate carrier; and b2) determining, for the at least one scan head, the relative offset location of the probe tip and the head encoder of the scan head by scanning, using the probe tip of the respective scanner, the checkpoint marker while obtaining head location data via the head encoder. 3. Werkwijze volgens een of meer van de voorgaande conclusies, waarbij ten minste een van: de optische sensor en de sensor-encoder zijn opgenomen op een sensorelement, waarbij het sensorelement gescheiden en individueel werkzaam is ten opzichte van de één of meer scankoppen; waarbij de optische sensor 1s opgenomen op ten minste één van de scankoppen, en waarbij de sensor-encoder wordt geleverd door de kop- encoder van de scankop; waarbij het systeem een veelheid scankoppen omvat, waarbij ten minste twee van de scankoppen een optische sensor bevatten, en waarbij voor elk van de ten minste twee scankoppen de sensor-encoder wordt verschaft door de kop-encoder van de respectievelijke scankop.A method according to any one of the preceding claims, wherein at least one of: the optical sensor and the sensor encoder are incorporated on a sensor element, the sensor element operative separately and individually with respect to the one or more scan heads; wherein the optical sensor 1s is included on at least one of the scan heads, and the sensor encoder is supplied by the head encoder of the scan head; wherein the system comprises a plurality of scan heads, at least two of the scan heads including an optical sensor, and wherein for each of the at least two scan heads, the sensor encoder is provided by the head encoder of the respective scan head. 4. Werkwijze volgens een of meer van de voorgaande conclusies, waarbij de optische sensor zich bevindt op ten minste één van de scankoppen, en waarbij de optische sensor zodanig is geplaatst dat de sondepunt zich binnen een gezichtsveld van de optische sensor bevindt, waarbij stap b) wordt uitgevoerd door het bepalen van de relatieve offset van de sondepunt en de kop-encoder uit beeldgegevens die zijn verkregen met de optische sensor.A method according to any one of the preceding claims, wherein the optical sensor is located on at least one of the scan heads, and wherein the optical sensor is positioned such that the probe tip is within a field of view of the optical sensor, step b ) is performed by determining the relative offset of the probe tip and head encoder from image data acquired with the optical sensor. 5. Werkwijze volgens een of meer van de voorgaande conclusies, waarbij stap a) wordt uitgevoerd door met behulp van de optische sensor de of elke locatie van één of meer ijkmarkeringen die over het drageroppervlak zijn verdeeld, te detecteren.Method according to one or more of the preceding claims, wherein step a) is performed by detecting with the aid of the optical sensor the or each location of one or more calibration marks distributed over the support surface. 6. Werkwijze volgens conclusie 5, waarbij ten minste één van: de één of meer ijkmarkeringen worden aangebracht op een ijksubstraatoppervlak om op het drageroppervlak te worden geladen voor het uitvoeren van stap a); of de één of meer ijkmarkeringen zijn opgenomen op het drageroppervlak van de substraatdrager, waarbij stap a) wordt uitgevoerd door het drageroppervlak te scannen in afwezigheid van een substraat.The method of claim 5, wherein at least one of: the one or more calibration marks are applied to a calibration substrate surface to be loaded onto the support surface before performing step a); or the one or more calibration marks are recorded on the support surface of the substrate support, wherein step a) is performed by scanning the support surface in the absence of a substrate. 7. Werkwijze voor het uitvoeren van substraatuitlijning om een relatie tot stand te brengen tussen relatieve posities op een substraat en een coördinatensysteem dat wordt verschaft door coördinatensysteemgegevens in een scanning-probe-microscopiesysteem, waarbij de coördinatensysteemgegevens worden verkregen met behulp van een werkwijze volgens een of meer van de voorgaande conclusies, waarbij het scanning-probe-microscopiesysteem één of meer scankoppen, een coördinatenreferentieraster en een substraatdrager omvat, waarbij elk van de één of meer scankoppen een sonde omvat voorzien van een sondepunt voor het scannen van een substraatoppervlak voor het uitvoeren van metingen, en een kop-encoder die samenwerkt met het coördinatenreferentierooster; waarbij, voor het ondersteunen van een substraat, de substraatdrager een drageroppervlak omvat, waarbij het drageroppervlak tegenover het coördinatenreferentierooster en op afstand daarvan is gelegen om een werkruimte te definiéren voor de één of meer scankoppen tussen het coördinatenreferentierooster en het drageroppervlak; waarbij de werkwijze omvat: het verschaffen van een substraat op het drageroppervlak, waarbij het substraat een veelheid uitlijnmerktekens omvat; het bepalen, met gebruikmaking van een optische sensor die is bevestigd aan een sensor-encoder, van eerste locatiegegevens van een locatie van een eerste uitlijnmerkteken op het substraat en oriëntatiegegevens van het eerste uitlijnmerkteken met betrekking tot het coördinatensysteem; het voorspellen, gebruikmakend van de eerste locatiegegevens, de oriëntatiegegevens en substraatontwerpgegevens, van één of meer tweede locatiegegevens van locaties van één of meer tweede uitlijnmerktekens met betrekking tot het coördinatensysteem; en het in kaart brengen, door het detecteren met de optische sensor, van de een of meer tweede uitlijnmerktekens naar het coördinatensysteem door de optische sensor te verplaatsen naar de locaties die worden verschaft door de voorspelde tweede locatiegegevens, en het verstrekken van uitlijningsgegevens van een uitlijning van het substraat naar het coördinatensysteem.A method of performing substrate alignment to establish a relationship between relative positions on a substrate and a coordinate system provided by coordinate system data in a scanning probe microscopy system, wherein the coordinate system data is obtained by a method according to one or more of any of the preceding claims, wherein the scanning probe microscopy system comprises one or more scan heads, a coordinate reference grid, and a substrate support, each of the one or more scan heads comprising a probe having a probe tip for scanning a substrate surface to perform measurements, and a header encoder cooperating with the coordinate reference grid; wherein, for supporting a substrate, the substrate support comprises a support surface, the support surface being located opposite the coordinate reference grid and spaced therefrom to define a working space for the one or more scan heads between the coordinate reference grid and the support surface; the method comprising: providing a substrate on the support surface, the substrate comprising a plurality of alignment marks; determining, using an optical sensor attached to a sensor encoder, first location data of a location of a first alignment mark on the substrate and orientation data of the first alignment mark with respect to the coordinate system; predicting, using the first location data, the orientation data and substrate design data, one or more second location data of locations of one or more second alignment marks with respect to the coordinate system; and mapping, by detecting with the optical sensor, the one or more second alignment marks to the coordinate system by moving the optical sensor to the locations provided by the predicted second location data, and providing alignment data of an alignment from the substrate to the coordinate system. 8. Werkwijze volgens conclusie 7, waarbij de substraatontwerpgegevens worden verkregen door ten minste één van: de substraatontwerpgegevens te laden in een geheugen van het scanning-probe-microscopiesysteem, waarbij het geheugen communicatief is verbonden met een controller van het systeem; het verkrijgen van de substraatontwerpgegevens van een datacommunicatienetwerk, zoals van een externe gegevensopslaglocatie of een externe server; het verkrijgen van de substraatontwerpgegevens van invoer door een operator van het scanning-probe-microscopiesysteem;The method of claim 7, wherein the substrate design data is obtained by at least one of: loading the substrate design data into a memory of the scanning probe microscopy system, the memory being communicatively connected to a controller of the system; obtaining the substrate design data from a data communication network, such as from an external data storage location or an external server; obtaining the substrate design data from input by an operator of the scanning probe microscopy system; het verkrijgen van de substraatontwerpgegevens van een ander optisch instrument, zoals een camera.obtaining the substrate design data from another optical instrument, such as a camera. 9. Werkwijze voor het navigeren van ten minste één scankop van een veelheid scankoppen van een scanning-probe-microscopiesysteem naar een interesselocatie op een substraat, waarbij de werkwijze een werkwijze omvat voor het uitvoeren van substraatuitlijning volgens conclusie 7, waarbij elk van de één of meer scankoppen een kop-encoder omvat, en waarbij de werkwijze omvat: het verkrijgen, voor de ten minste ene scankop, van een interessepunt locatie-indicatie van een interessepunt op het substraat; het bepalen, met gebruikmaking van de uitlijningsgegevens, locatiegegevens van het interessepunt die indicatief zijn voor een coördinaat in het coördinatensysteem; en het verplaatsen van de ten minste ene scankop naar de coördinaat die wordt aangegeven door de locatiegegevens van het interessepunt.A method of navigating at least one scanhead of a plurality of scanheads of a scanning probe microscopy system to a location of interest on a substrate, the method comprising a method of performing substrate alignment according to claim 7, wherein each of the one or a plurality of scan heads comprises a head encoder, and the method comprising: obtaining, for the at least one scan head, a point of interest location indication of a point of interest on the substrate; determining, using the alignment data, location data of the point of interest indicative of a coordinate in the coordinate system; and moving the at least one scan head to the coordinate indicated by the location data of the point of interest. 10. Optische sensor voor gebruik in een scanning-probe- microscopiesysteem, omvattende een structureel element dat een beeldsensor ondersteunt, een of meer focusseerobjectieven en ten minste één actuator voor het aanpassen van een afstand tussen de beeldsensor en de focusseerobjectieven, voor het vrijgeven van het scherpstellen van de beeldsensor op een af te beelden oppervlak, zoals een substraatoppervlak, een drageroppervlak van een substraatdrager of een ijkpuntmerkteken op de substraatdrager; waarbij het structurele element fixatiestructuren omvat voor bevestiging van de optische sensor aan een steun, omvattende een encoder die is geconfigureerd om samen te werken met een coördinatenreferentie- rooster van het scanning-probe-microscopiesysteem, voor het vrijgeven van bevestiging van de optische sensor ten opzichte van de encoder, zodat de encoder kan dienen als een sensor-encoder in een werkwijze volgens een of meer van de voorgaande conclusies.An optical sensor for use in a scanning probe microscopy system, comprising a structural element supporting an image sensor, one or more focusing objectives, and at least one actuator for adjusting a distance between the image sensor and the focusing objectives, to release the said focusing the image sensor on a surface to be imaged, such as a substrate surface, a support surface of a substrate support or a calibration point mark on the substrate support; wherein the structural element comprises fixation structures for mounting the optical sensor to a support, comprising an encoder configured to cooperate with a coordinate reference grid of the scanning probe microscopy system, to release fixation of the optical sensor relative to of the encoder, so that the encoder can serve as a sensor encoder in a method according to one or more of the preceding claims. 11. Optische sensor volgens conclusie 10, waarbij ten minste één van: de beeldsensor een CMOS-camera is; de actuator één of meer piëzo-elementen omvat die samenwerken met buigelementen; en de één of meer focusseerobjectieven een buislens omvatten.The optical sensor of claim 10, wherein at least one of: the image sensor is a CMOS camera; the actuator comprises one or more piezo elements cooperating with bending elements; and the one or more focusing objectives comprise a tubular lens. 12. Optische sensor volgens een van de conclusies 10 of 11, verder voorzien van een spiegel voor richtingsverandering voor het vrijgeven van plaatsing van de beeldsensor en de een of meer focusseerobjectieven langs een optische as welke in gebruik evenwijdig is aan het coördinatenreferentieraster, terwijl beelden worden verkregen met de beeldsensor in een richting buiten de as ten opzichte van de optische as.An optical sensor according to any one of claims 10 or 11, further comprising a direction change mirror for enabling placement of the image sensor and the one or more focusing objectives along an optical axis parallel to the coordinate reference grid in use while taking images. obtained with the image sensor in an off-axis direction with respect to the optical axis. 13. Steunelement voor het ontvangen, voor bevestiging daaraan, van een optische sensor volgens een der conclusies 10-12, waarbij het steunelement is ingericht om te worden gebruikt in een scanning-probe- microscopiesysteem, waarbij het steunelement verder een encoder omvat die is ingericht om samen te werken met een coördinatenreferentieraster van het scanning-probe-microscopiesysteem, waarbij de encoder wordt gefixeerd ten opzichte van de optische sensor bij bevestiging van de optische sensor aan de steun om de encoder in staat te stellen als sensor-encoder te dienen in een werkwijze volgens een of meer van de conclusies 1-9, waarbij het steunelement verder is ingericht om te bewegen in een werkruimte van het scanning-probe-microscopiesysteem gedefinieerd tussen het coördinaten- referentierooster en een drageroppervlak van een substraatdrager, om beeldvorming mogelijk te maken van het substraatoppervlak ondersteund door de substraatdrager terwijl tegelijkertijd locatiegegevens van een huidige locatie van de ondersteuning ten opzichte van het coördinaten- referentieraster worden verkregen.A support element for receiving, for attachment thereto, an optical sensor according to any one of claims 10-12, wherein the support element is adapted for use in a scanning probe microscopy system, the support element further comprising an encoder adapted to cooperate with a coordinate reference grid of the scanning probe microscopy system, fixing the encoder relative to the optical sensor when attaching the optical sensor to the bracket to enable the encoder to act as a sensor encoder in a method according to any one of claims 1-9, wherein the support element is further adapted to move in a working space of the scanning probe microscopy system defined between the coordinate reference grid and a support surface of a substrate support, to allow imaging of the substrate surface supported by the substrate support while simultaneously providing location data from a current location of the support relative to the coordinate reference grid. 14. Steunelement volgens claim 13, waarbij het steunelement deel uitmaakt van ten minste één van een groep omvattende: een positioneringsarm van het scanning-probe-microscopiesysteem; een scankop omvattende een sonde en een sondepunt, waarbij de encoder wordt verschaft door een kop-encoder van de scankop; een steunstructuur die geschikt is om te worden geplaatst door een plaatsingsarm van het scanning-probe- microscopiesysteem; en een ondersteuningsstructuur omvattende een bewegingsaandrijver of actuator voor het vrijgeven van onafhankelijke beweging van het steunelement ten opzichte van een coördinatenreferentie- rooster, zoals door middel van of door het verschaffen van een gaslager.The support element of claim 13, wherein the support element is part of at least one of a group comprising: a positioning arm of the scanning probe microscopy system; a scan head comprising a probe and a probe tip, the encoder being provided by a head encoder of the scan head; a support structure adapted to be placed by a deployment arm of the scanning probe microscopy system; and a support structure comprising a motion driver or actuator for enabling independent movement of the support member relative to a coordinate reference grid, such as by means of or by providing a gas bearing. 15. Samenstel dat een optische sensor omvat volgens een of meer van de conclusies 10-12 en een drager volgens een of meer van de conclusies 13-An assembly comprising an optical sensor according to one or more of the claims 10-12 and a carrier according to one or more of the claims 13- 14.14. 16. Scanning probe microscopie systeem bestaande uit een of meer scankoppen, een coördinatenreferentierooster en een substraatdrager, waarbij] elk van de een of meer scankoppen een probe omvat voorzien van een probepunt voor het scannen van een substraatoppervlak voor het uitvoeren van metingen, en een kop-encoder die samenwerkt met het coördinatenreferentierooster; waarbij, voor het ondersteunen van een substraat, de substraatdrager een drageroppervlak omvat, waarbij het drageroppervlak tegenover het coördinatenreferentierooster en op afstand daarvan is gelegen voor het definiëren van een werkruimte voor de een of meer scankoppen tussen het coördinatenreferentierooster en de drager oppervlak;A scanning probe microscopy system comprising one or more scan heads, a coordinate reference grid, and a substrate support, wherein] each of the one or more scan heads comprises a probe having a probe tip for scanning a substrate surface for making measurements, and a head encoder that interacts with the coordinate reference grid; wherein, for supporting a substrate, the substrate support comprises a support surface, the support surface being located opposite the coordinate reference grid and spaced therefrom to define a working space for the one or more scan heads between the coordinate reference grid and the support surface; waarbij het systeem verder een optische sensor omvat die is gefixeerd ten opzichte van een sensor-encoder, waarbij de sensor-encoder is ingericht om samen te werken met het coördinatenreferentieraster; en waarbij het systeem verder een geheugen omvat en een controller, waarbij de controller is ingericht voor het uitvoeren van de volgende stappen: a) het bepalen, met behulp van een locatiesignaal van de sensor- encoder die samenwerkt met het coördinatenreferentierooster, van een relatie tussen een relatieve locatie van de optische sensor en het coördinatenreferentierooster, zoals het verstrekken van coördinatensysteemgegevens die indicatief zijn voor een coördinatensysteem voor de optische sensor; b) het bepalen, voor de ten minste ene scankop, een relatieve offset locatie van de sondepunt en de kop-encoder van de scankop.the system further comprising an optical sensor fixed with respect to a sensor encoder, the sensor encoder adapted to cooperate with the coordinate reference grid; and wherein the system further comprises a memory and a controller, the controller being adapted to perform the following steps: a) determining, using a location signal from the sensor encoder cooperating with the coordinate reference grid, a relationship between a relative location of the optical sensor and the coordinate reference grid, such as providing coordinate system data indicative of a coordinate system for the optical sensor; b) determining, for the at least one scan head, a relative offset location of the probe tip and the head encoder of the scan head. 17. Scanning sonde microscopiesysteem volgens conclusie 16, waarbij de controller verder is ingericht voor het uitvoeren van stap b) door de stappen van: bl) bepalen, met behulp van de optische sensor en de sensor- encoder die samenwerken met het coördinatenreferentieraster, van locatiegegevens van een locatie van een ijkpunt in het coördinatensysteem, waarbij een ijkpuntmerkteken is opgenomen op de substraatdrager; en b2) het bepalen, voor de ten minste ene scankop, van de relatieve offsetlocatie van de sondepunt en de kop-encoder van de scankop, door het scannen, met behulp van de sondepunt van de respectievelijke scanner, van het ijkpuntmerkteken terwijl locatiegegevens van de kop worden verkregen via de kop-encoder.The scanning probe microscopy system of claim 16, wherein the controller is further configured to perform step b) by the steps of: b1) determining, using the optical sensor and the sensor encoder cooperating with the coordinate reference grid, location data of a location of a checkpoint in the coordinate system, wherein a checkpoint mark is recorded on the substrate carrier; and b2) determining, for the at least one scan head, the relative offset location of the probe tip and the head encoder of the scan head, by scanning, using the probe tip of the respective scanner, the fiducial mark while viewing location data from the header are obtained through the header encoder. 18. Computerprogrammaproduct met instructies die, wanneer deze zijn geladen in een geheugen van een scanning probe microscopiesysteem volgens conclusie 16 of 17, de controller van het systeem in staat stellen om een methode uit te voeren volgens een van de conclusies 1-9.A computer program product having instructions which, when loaded into a memory of a scanning probe microscopy system according to claim 16 or 17, enable the controller of the system to perform a method according to any one of claims 1-9.
NL2026497A 2020-09-17 2020-09-17 Method, system and parts for enabling navigation in a scanning probe microscopy system. NL2026497B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL2026497A NL2026497B1 (en) 2020-09-17 2020-09-17 Method, system and parts for enabling navigation in a scanning probe microscopy system.
PCT/NL2021/050560 WO2022060224A1 (en) 2020-09-17 2021-09-16 Method, system and parts for enabling navigation in a scanning probe microscopy system
EP21794211.9A EP4214519A1 (en) 2020-09-17 2021-09-16 Method, system and parts for enabling navigation in a scanning probe microscopy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2026497A NL2026497B1 (en) 2020-09-17 2020-09-17 Method, system and parts for enabling navigation in a scanning probe microscopy system.

Publications (1)

Publication Number Publication Date
NL2026497B1 true NL2026497B1 (en) 2022-05-23

Family

ID=73793769

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2026497A NL2026497B1 (en) 2020-09-17 2020-09-17 Method, system and parts for enabling navigation in a scanning probe microscopy system.

Country Status (3)

Country Link
EP (1) EP4214519A1 (en)
NL (1) NL2026497B1 (en)
WO (1) WO2022060224A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682759A1 (en) * 2012-07-06 2014-01-08 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO High throughput microscopy device
EP3599470A1 (en) * 2018-07-24 2020-01-29 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO System and method of performing scanning probe microscopy on a substrate surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682759A1 (en) * 2012-07-06 2014-01-08 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO High throughput microscopy device
EP3599470A1 (en) * 2018-07-24 2020-01-29 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO System and method of performing scanning probe microscopy on a substrate surface

Also Published As

Publication number Publication date
WO2022060224A1 (en) 2022-03-24
EP4214519A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
US10751883B2 (en) Robot system with supplementary metrology position coordinates determination system
US10415955B2 (en) Measuring system
US7385671B2 (en) High speed lithography machine and method
US10871366B2 (en) Supplementary metrology position coordinates determination system for use with a robot
US10913156B2 (en) Robot system with end tool metrology position coordinates determination system
US9081028B2 (en) Scanning probe microscope with improved feature location capabilities
US6678058B2 (en) Integrated alignment and calibration of optical system
US8495759B2 (en) Probe aligning method for probe microscope and probe microscope operated by the same
US6677579B2 (en) Method and apparatus for phase correction of position and detection signals in scanning microscopy, and scanning microscope
CN106997159B (en) Wafer pre-alignment mechanism, exposure device and exposure method
NL2026497B1 (en) Method, system and parts for enabling navigation in a scanning probe microscopy system.
TWI525718B (en) System and method for picking and placement of chip dies
NL2028090B1 (en) Method of calibrating in a scanning probe microscopy system an optical microscope, calibration structure and scanning probe microscopy device.
JP4033468B2 (en) Nozzle tip position measuring device and spotting device using the same
JP7431216B2 (en) Supplementary metrology position coordinate determination system including alignment sensors used with robots
US20240210442A1 (en) Method of calibrating in a scanning probe microscopy system an optical microscope, calibration structure and scanning probe microscopy device
JP2005172610A (en) Three-dimensional measurement apparatus
US20090059243A1 (en) Method for determining the absolute thickness of non-transparent and transparent samples by means of confocal measurement technology
US9594230B2 (en) On-axis focus sensor and method
JP4862396B2 (en) Edge position measuring method and apparatus, and exposure apparatus
NL2028376B1 (en) Method of and arrangement for verifying an alignment of an infinity-corrected objective.
US20230252672A1 (en) Methods and apparatus for use in the spatial registration of objects
TW202417845A (en) Method of calibrating in a scanning probe microscopy system an optical microscope,calibration structure and scanning probe microscopy device
JPH0980059A (en) Scanner system
JP2003004620A (en) Scanning probe microscope