NL2025728B1 - Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system - Google Patents

Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system Download PDF

Info

Publication number
NL2025728B1
NL2025728B1 NL2025728A NL2025728A NL2025728B1 NL 2025728 B1 NL2025728 B1 NL 2025728B1 NL 2025728 A NL2025728 A NL 2025728A NL 2025728 A NL2025728 A NL 2025728A NL 2025728 B1 NL2025728 B1 NL 2025728B1
Authority
NL
Netherlands
Prior art keywords
vessel
power interface
charging
accumulator
loading
Prior art date
Application number
NL2025728A
Other languages
Dutch (nl)
Inventor
Van Keulen Tim
Original Assignee
Boskalis Bv Baggermaatschappij
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boskalis Bv Baggermaatschappij filed Critical Boskalis Bv Baggermaatschappij
Priority to NL2025728A priority Critical patent/NL2025728B1/en
Priority to PCT/NL2021/050338 priority patent/WO2021246864A1/en
Application granted granted Critical
Publication of NL2025728B1 publication Critical patent/NL2025728B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/02Buoys specially adapted for mooring a vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/007Unmanned surface vessels, e.g. remotely controlled autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/16Buoys specially adapted for marking a navigational route
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J2003/001Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam
    • B63J2003/002Driving of auxiliaries characterised by type of power supply, or power transmission, e.g. by using electric power or steam by using electric power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The invention relates to a shipping infrastructure that comprises a vessel having a first power interface, and a relay system for providing energy to the vessel, wherein. the relay systenl comprises charging' hubs 5 having a second power interface, and charging vessels having an accumulator and a third power interface, wherein the third power interface and the first power interface are connectable to each other, and the second power interface and the third power interface are connectable to each 10 other, wherein the charging vessels are configured to work in a charge mode in which the third. power interface is connected to the second power interface for charging the accumulator, a sail mode in which the charging vessel sails between a charging hub and a vessel, and a supply mode in 15 which the third power interface is connected to the first power interface for supplying electrical energy to the vessel.

Description

P127589NL00 Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system
BACKGROUND The invention relates to a method for providing electrical energy to a seagoing vessel, a shipping infrastructure, and a relay system for providing electrical energy to a seagoing vessel.
Known battery powered ships comprise an electrical propulsion system and a battery for storing the electrical energy.
SUMMARY OF THE INVENTION A disadvantage of battery powered ships is that the battery takes up space on the ship. Especially with international and intercontinental trade, where the sailing distances between ports may amount to several of thousands of nautical miles, the required battery capacity and therewith the volume that the batteries occupy would be very high. The required batteries would reduce the transport capacity of the battery powered ships and would therefore reduce the economic feasibility of battery powered ships, especially for international and intercontinental trade. Therefore the deployment of battery powered ships has been limited to fixed shipping routes for inland shipping having relative small sailing distances between the ports. An example of such a shipping route is an electrified ferry service wherein battery powered ships shuttle between ports. It is an object of the present invention to provide a method for providing electrical energy to a seagoing vessel, a shipping infrastructure, and a relay system for providing electrical energy to a seagoing vessel that makes battery powered vessels more suitable for long distance shipping.
According to a first aspect, the invention provides a method for providing energy, by means of a relay system, to a seagoing vessel that navigates a sailing route, wherein the seagoing vessel comprises a first electric propulsion system and a first power interface that is electrically connected to the first electric propulsion system, wherein the relay system comprises multiple charging hubs along and distributed over the sailing route, that have a second power interface that is electrically connected to an electrical energy source, and wherein the relay system comprises multiple charging vessels that have an accumulator for accumulating electrical energy and a third power interface that is electrically connected to the accumulator, wherein the third power interface and the first power interface are configured to connect to each other for electrically connecting the accumulator and the first electric propulsion system, and wherein the second power interface and the third power interface are configured to connect to each other for electrically connecting the electrical energy source and the accumulator, wherein each of the charging vessels is configured to work in a charge mode, a sail mode and a supply mode, wherein in the charge mode the third power interface is connected to the second power interface for charging the accumulator by the electrical energy source, wherein in the sail mode the charging vessel sails between one of the charging hubs and the seagoing vessel, and wherein in the supply mode the third power interface is connected to the first power interface for supplying electrical energy from the accumulator to the first electric propulsion system, wherein the method comprises; navigating a first seagoing vessel over the sailing route, at a first charging hub connecting the third power interface of a first charging vessel to the second power interface of the first charging hub, in the charge mode charging the accumulator of the first charging vessel by the electrical energy source of the first charging hub via the third power interface and the second power interface, disconnecting the third power interface and the second power interface, in the sail mode sailing the first charging vessel from the first charging hub to the first seagoing vessel, at the first seagoing vessel connecting the third power interface to the first power interface, in the supply mode supplying electrical energy from the accumulator of the first charging vessel to the first electric propulsion system of the first seagoing vessel via the third power interface and the first power interface while the first charging vessel sails with the first seagoing vessel along at least a part of the sailing route, and disconnecting the third power interface and first power interface.
Along the sailing route the seagoing vessel can be electrically connected to the charging vessel. While the charging vessel and the seagoing vessel are electrically connected, the accumulator supplies electrical energy to the first electric propulsion system to propel the seagoing vessel. The accumulator of the charging vessel therewith extends the sailing range of the seagoing vessel. The method for providing energy to a seagoing vessel therewith makes battery powered vessels more suitable for long distance shipping.
As the charging vessels can sail between the charging hubs and the seagoing vessels, the seagoing vessels can keep sailing along the sailing route while a sufficiently charged accumulator is electrically connected to the first electric propulsion system. The seagoing vessel does not have to call at a port or at a charging station to be charged. The method therewith increases the efficiency of supplying electric energy to the seagoing vessels as compared to conventional charging methods. In an embodiment the charging vessels comprise a second electric propulsion system that is electrically connected to the accumulator, wherein in the sail mode, the sailing of the first charging vessel from the first charging hub to the first seagoing vessel comprises sailing the first charging vessel by means of the second electric propulsion system. The second electric propulsion system of the charging vessel may be largely integrated with the electrical systems of the charging vessel. This provides an efficient, lean and potentially sustainable propulsion system to the charging vessel.
In an embodiment the method comprises at a second charging hub connecting the third power interface of a second charging vessel to the second power interface of the second charging hub, in the charge mode charging the accumulator of the second charging vessel by the electrical energy source of the second charging hub via the third power interface and the second power interface, disconnecting the third power interface and the second power interface, in the sail mode sailing the second charging vessel from the second charging hub to the first seagoing vessel, at the first seagoing vessel connecting the third power interface to the first power interface, in the supply mode supplying electrical energy from the accumulator of the second charging vessel to the first electric propulsion system of the first seagoing vessel via the third power interface and the first power interface while the second charging vessel sails with the first seagoing vessel along at least a part of the sailing route, and disconnecting the third power interface and the first power interface. In an embodiment along at least a part of the sailing route the first electric propulsion system of the first seagoing vessel is supplied with electrical energy by the accumulator of successive charging vessels.
The charging hubs and charging vessels of the relay system are distributed over the sailing route in such a way that a sufficiently charged accumulator is regularly available for the seagoing vessel along the sailing route. The relay 5 system therewith extends the sailing range of the seagoing vessel even further.
In an embodiment after connecting the third power interface of the first charging vessel to the first power interface of the first seagoing vessel, at least two accumulators of respective charging vessels are electrically connected to the first electric propulsion system of the first seagoing vessel. Successive charging vessels are, for a short period, simultaneously connected to the seagoing vessel. In an embodiment thereof the at least two accumulators of respective charging vessels are electrically connected to the first electric propulsion system of the first seagoing vessel along maximum ten percent of the sailing route, preferably along maximum five percent of the sailing route. This method prevents a gap between the two supply periods of electrical energy to the seagoing vessel by the successive charging vessels and therefore prevents that the seagoing vessel temporarily is not supplied with electrical energy by a charging vessel.
In an embodiment the first seagoing vessel comprises an accumulator for supplying electrical energy to the first electric propulsion system, wherein the accumulator of the first seagoing vessel 1s electrically connected to the first power interface, and wherein in the supply mode, the supplying electrical energy from the accumulator of the first charging vessel to the first electric propulsion system of the first seagoing vessel comprises supplying electrical energy from the accumulator of the first charging vessel to the accumulator of the first seagoing vessel to charge the accumulator of the first seagoing vessel. In an embodiment thereof the method comprises supplying electrical energy from the accumulator of the first seagoing vessel to the first electric propulsion system of the first seagoing vessel while no accumulator of the charging vessels is electrically connected to the first electric propulsion system of the first seagoing vessel. In this way the accumulator of the first seagoing vessel can cover a gap between the two supply periods of electrical energy to the seagoing vessel by the successive charging vessels and therefore prevents that the seagoing vessel temporarily is not supplied with electrical energy. When the first seagoing vessel only comprises a battery-electric propulsion system, the charging vessel can fast-charge the accumulator of the first seagoing vessel in a relatively short period of time in order to increase the sailing range of said seagoing vessel. The seagoing vessel then may navigate the majority of the sailing route using the accumulator of the first seagoing vessel.
In an embodiment the second power interface and the first power interface are configured to connect to each other for electrically connecting the electrical energy source and the accumulator of the first seagoing vessel, wherein the method comprises at the first charging hub connecting the first power interface of the first seagoing vessel to the second power interface of the first charging hub to charge the accumulator of the first seagoing vessel.
When the first seagoing vessel comprises an accumulator, the seagoing vessel can dock at the charging hub to charge the accumulator of the seagoing vessel. This may for instance be done when no charging vessels are available.
In an embodiment in the supply mode supplying electrical energy from the accumulator of the first charging vessel to the accumulator of the first seagoing vessel to charge the accumulator of the first seagoing vessel comprises charging the accumulator of the first seagoing vessel along maximum ten percent of the sailing route, preferably along maximum five percent of the sailing route. The accumulator of the seagoing vessel may be charged along a relative short section of the sailing route that is located close to a charging hub. Thereby the sailing distances of the charging vessels may be reduced whereby the charging vessels may operate in a more efficient manner.
In an embodiment the first seagoing vessel comprises a combustion engine, wherein navigating the first seagoing vessel over the sailing route comprises navigating the first seagoing vessel over the sailing route by means of the combustion engine while no accumulator of the charging vessels is electrically connected to the first electric propulsion system of the first seagoing vessel. The combustion engine may directly drive a propeller shaft of the first electric propulsion system to propel the seagoing vessel and to therewith sail the seagoing vessel over the sailing route. In an embodiment the combustion engine is configured to generate electrical energy, and wherein the method comprises supplying electrical energy from the combustion engine to the first electric propulsion system of the first seagoing vessel while no accumulator of the charging vessels is electrically connected to the first electric propulsion system of the first seagoing vessel. The combustion engine may either generate electrical energy for an electric motor of the first electric propulsion system or for the accumulator of the first electric propulsion system. The combustion engine may be used to cover the gap between the two supply periods of electrical energy to the seagoing vessel by the charging vessels. Or it may be used in locations that are not covered by the relay system.
In an embodiment the method comprises navigating a second seagoing vessel over the sailing route, in the sail mode sailing the first charging vessel from the first seagoing vessel to a subsequent second charging hub, at the second charging hub connecting the third power interface of the first charging vessel to the second power interface of the second charging hub, in the charge mode charging the accumulator of the first charging vessel by the electrical energy source via the third power interface and the second power interface, disconnecting the third power interface and the second power interface, in the sail mode sailing the first charging vessel from the second charging hub to the second seagoing vessel, at the second seagoing vessel connecting the third power interface to the first power interface, in the supply mode supplying electrical energy from the accumulator of the first charging vessel to the first electric propulsion system of the second seagoing vessel via the third power interface and the first power interface while the first charging vessel sails with the second seagoing vessel along at least a part of the sailing route, and disconnecting the third power interface and the first power interface. In an embodiment the accumulator of the first charging vessel successively supplies electrical energy to the first electric propulsion system of successive seagoing vessels. By having a supply vessel supplying electrical energy to several successive seagoing vessels and by having the charging vessels charged at various charging hubs the relay system can be used in a more efficient way.
In an embodiment the second power interface of the charging hub is electrically connected to the electrical energy source through a smart grid, wherein in the charge mode the third power interface is connected to the second power interface for charging and discharging the accumulator, and wherein the method comprises in the charge mode discharging the accumulator of the first charging vessel via the third power interface and the second power interface. The accumulator can be used to temporarily store an excess of generated electrical energy and to return it to the smart grid at a later point in time. In this way supply and demand of electrical energy in the smart grid can be better matched to each other.
According toe a second aspect, the invention provides a method for providing energy, by means of a relay system, to a seagoing vessel that navigates a sailing route, wherein the relay system comprises multiple charging hubs along and distributed over the sailing route and multiple charging vessels, wherein each of the charging vessels is configured to work in a charge mode in which the charging vessel is connected to the charge hub, a sail mode in which the charging vessel sails between one of the charging hubs and the seagoing vessel and a supply mode in which the charging vessel is connected to the seagoing vessel, and wherein the method comprises; navigating a first seagoing vessel over the sailing route, at a first charging hub charging the first charging vessel, sailing the first charging vessel from the first charging hub to the first seagoing vessel, at the first seagoing vessel supplying electrical energy from the first charging vessel to the first seagoing vessel while the first charging vessel sails with the first seagoing vessel along at least a part of the sailing route, According to a third aspect, the invention provides a shipping infrastructure that comprises a seagoing vessel that navigates a sailing route, and a relay system for providing energy to the seagoing vessel, wherein the seagoing vessel comprises a first electric propulsion system and a first power interface that is electrically connected to the first electric propulsion system, wherein the relay system comprises multiple charging hubs along and distributed over the sailing route, that have a second power interface that is electrically connected to an electrical energy source, and wherein the relay system comprises multiple charging vessels that have an accumulator for accumulating electrical energy and a third power interface that is electrically connected to the accumulator, wherein the third power interface and the first power interface are configured to connect to each other for electrically connecting the accumulator and the first electric propulsion system, and wherein the second power interface and the third power interface are configured to connect to each other {for electrically connecting the electrical energy source and the accumulator, wherein each of the charging vessels is configured to work in a charge mode, a sail mode and a supply mode, wherein in the charge mode the third power interface is connected to the second power interface for charging the accumulator by the electrical energy source, wherein in the sail mode the charging vessel sails between one of the charging hubs and the seagoing vessel, and wherein in the supply mode the third power interface is connected to the first power interface for supplying electrical energy from the accumulator to the first electric propulsion system. The shipping infrastructure and its embodiments relate to the practical implementation of the method according to any one of the aforementioned embodiments and thus have the same technical advantages, which will not be repeated hereafter. According to a fourth aspect, the invention provides a relay system for use in a method according to any one of the aforementioned embodiments or for use in a shipping infrastructure according to any one of the aforementioned embodiments. The various aspects and features described and shown in the specification can be applied, individually, wherever possible. These individual aspects, in particular the aspects and features described in the attached dependent claims, can be made subject of divisional patent applications.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be elucidated on the basis of an exemplary embodiment shown in the attached drawings, in which: Figure 1 is an isometric view of a shipping infrastructure according to an embodiment of the invention;
Figure 2A is a side view of a charging hub of the shipping infrastructure of figure 1; Figures 2B and 2C respectively are a side view and a section view transverse to the side view of a catcher of the charging hub of figure 2A; Figure 3 is an isometric view of a charging vessel of the shipping infrastructure that is connected to a seagoing vessel of the shipping infrastructure; and Figure 4 is a schematic top view of the shipping infrastructure.
DETAILED DESCRIPTION QF THE INVENTION Figures 1 and 4 show a shipping infrastructure 1 according to an embodiment of the invention that comprises one Or more seagoing vessels 10 that navigate along a sailing route 2, and a relay system 15 for providing electrical energy to the seagoing vessels 10. The relay system 15 comprises one or more charging hubs 20 along the sailing route 2, and multiple charging vessels 50 that transfer between the charging hubs 20 and the seagoing vessels 10.
The sailing route 2 extends between two or more seaports and may pass through remote areas of the world seas and oceans. The seagoing vessels 10 transport goods or passengers between the seaports over long distances of at least 50 nautical miles up to several of thousands of nautical miles. For instance, a main container liner route between Asia and North Europe extends over approximately 12000 nautical miles, along the African coast. Containers are transported along this route by very large container ships. The containers are transferred between the very large container ships and medium-size feeder ships that transport the containers between smaller ports within the continent.
The seagoing vessels 10 comprise a not shown main first electric propulsion system to propel or move the seagoing vessels 10 along at least a part of the sailing route 2. The seagoing vessels 10 comprise a first power interface 11 that is electrically connected to the first electric propulsion system. The seagoing vessel 10 may comprise a not shown accumulator or battery for storing and providing the electrical energy that is used by the first electric propulsion system, The battery of the seagoing vessel 10 is electrically connected to the first propulsion system and to the first power interface 11.
The charging hubs 20 are located along and distributed over the sailing route 2. The charging hubs 20 are each electrically connected to an electrical energy source, and have a second power interface 36 that is electrically connected to the electrical energy source.
The charging vessels 50 have a not shown internal accumulator for accumulating electrical energy and third power interfaces 52 that are electrically connected to the accumulator.
Figure 1 only shows a first seagoing vessel 10, a first charging hub 20, and a first, a second and a third charging vessel 50. The rest of the seagoing vessels 10, the charging hubs 20 and the charging vessels 50 are located further along the sailing route 2. In the text hereafter the seagoing vessels 10, the charging hubs 20, and the charging vessels 50 may be described in the singular form but it is Lo be understood that the description applies to all the seagoing vessels 10, charging hubs 20, and charging vessels 50 of the shipping infrastructure 1.
As best shown in figure 3, the charging vessel 50 comprises an elongate floating hull 51 having a port side and a starboard side, the third power interfaces 52 at both the port side and the starboard side of the hull 51, navigation and communication equipment 53 on the hull 51, and solar panels 54 on the hull 51 to charge the accumulator. The accumulator ís configured to store or accumulate electrical energy. Preferably the accumulator is an electrical battery but any type of multi cycle electrical energy storage systems may be applied. The charging vessel 50 comprises a not shown second electric propulsion system to propel or move the charging vessels
50. The second electric propulsion system is electrically connected to its accumulator and/or to its solar panels 54. The charging vessel 50 may be operated by a naval crew, it may be remotely controlled, or it may sail autonomously or semi-autonomously.
The first power interface 11 of the seagoing vessel 10 corresponds to the third power interface 52 of the charging vessel 50. The third power interface 52 of the charging vessel 50 and the first power interface 11 of the seagoing vessel 10 are configured to electrically connect the accumulator of the charging vessel 50 and the first electric propulsion system of the seagoing vessel 10. In this example the first power interface 11 and the third power interface 52 are configured to connect to each other to transfer electrical energy between the charging vessel 50 and the seagoing vessel 10, more specifically electrical energy 1s supplied from the accumulator of the charging vessel 50 to the first electric propulsion system of the seagoing vessel 10. The electrical energy may be wirelessly transferred or transmitted by for instance inductive coupling or capacitive coupling. It is to be understood that alternatively the first power interface 11 and the third power interface 52 may comprise a wired connection using plugs and sockets that are engageable with each other to electrically connect the accumulator and the first electric propulsion system to transfer electrical energy between the accumulator of the charging vessel 50 and the first electric propulsion system of the seagoing vessel 10.
As best shown in figure 2A, the charging hub 20 in this example comprises a support structure 29 having a buoyant body 21 below the water surface 3 and two vertical columns 22 that pass through the water surface 3 and that are supported by the buoyant body 21 at the bottom ends 23 thereof. The charging hub 20 comprises a housing 25 above the water surface 3 that is supported by the columns 22 at the top ends 24 thereof, and two catchers 30 for the charging vessels 50 at the water surface 3 that are supported by the columns 22. The support structure 29 of the charging hub 20 is connected to the seabed 4 by taut cables 26 that are connected to anchors 27. The taut cables 26 keep the buoyant body 21 spaced apart from the seabed 4 over a fixed distance. Alternatively the support structure 29 of the charging hub 20 may be a monopile, a jacket or any other suitable offshore support structure. The charging hub 20 is electrically connected to the electrical energy source by a power cable 6. The electrical energy source preferably is a renewable energy source that is located close to the charging hub 20 such as an offshore wind turbine 5, an offshore wind farm, a floating solar energy system or any kind of offshore power plant. The electrical energy sources may already be present along the shipping route 2 making it relatively easy to integrate them into the shipping infrastructure 1. The electrical energy sources can also be installed along with the charging hubs 20 as part of the rollout of the shipping infrastructure 1. Renewable electrical energy sources are well suited to provide the charging hubs 20 with electrical energy in remote areas of the shipping route 2. Alternatively the charging hub 20 is electrically connected to a power grid that is connected to shore and which may be connected to any kind of onshore power plant. One or more wind turbines and/or solar energy systems may be integrated in the charging hub 20.
The electrical energy source and the charging hub 20 with the charging vessel 50 may be interconnected through or may be integrated in a smart grid. The accumulator of the charging vessel 50 may then be charged when the supply of electrical energy is high and/or the demand thereof is low to temporarily store electric energy, and be discharged to return the electric energy from the accumulator to the smart grid when the supply thereof is low and/or the demand thereof is high. In this way supply and demand of electrical energy in the smart grid can be better matched to each other. As the storage capacity for electrical energy of the accumulator of the charging vessels 51 is relatively large, said accumulators may be very suitable to be used in the smart grid. As best shown in figures 2B and 2C, in this example the charging hubs 20 comprise two parallel catchers 30 that have an elongate cylindrical cage 31 that defines a through channel 32 for the charging vessel 50 and that has flared ends for guiding the charging vessel 50 into the channel 32. The catchers 30 are connected to the support structure 29 and are spaced apart from each other by an intermediate frame 28. Each cage 31 comprises parallel vertical steel tubular rings 33 that are spaced apart from each other by horizontal steel tubular girders 34. Each catcher 30 comprises two elongate bumpers 35 that are connected to the cage 31 within and along the length of the channel 32 and that are positioned at opposite sides of the cage 31 near the bottom thereof. The bumpers 35 guide, stabilize or support the charging vessel 50 that enters or is docked in the cage 31.
The catcher 30 comprises the second power interface 36 that corresponds to the third power interface 52 of the charging vessels 50. The second power interface 36 is attached to the side of the cage 31 inside the channel 32 halfway the length thereof. The second power interface 36 comprises two extendable rods 37, an abutment plate 38 at the free end of each extendable rod 37, and a hydraulic cylinder 32 between each extendable rod 37 and the cage 31 for extending and retracting the extendable rods 37. The second power interface 36 of the charging hub 20 and the third power interface 52 of the charging vessel 50 are configured to electrically connect the electrical energy source of the charging hub 20 and the accumulator of the charging vessel 50. To electrically connect the charging hub 20 and the charging vessel 50 the extendable rods 37 extend towards the charging vessel 50 until the abutment plates 38 are in abutment with the third power interface 52.
In this example the second power interface 36 and the third power interface 52 are configured to connect to each other to transfer electrical energy between the charging hub 20 and the charging vessel 50, more specifically electrical energy is supplied from the electrical energy source of the charging hub 20 to the accumulator of the charging vessel 50 to charge the accumulator. The electrical energy may be wirelessly transferred or transmitted by for instance inductive coupling or capacitive coupling. It is to be understood that alternatively the second power interface 36 and the third power interface 52 may comprise a wired connection using plugs and sockets that are engageable with each other to electrically connect the electrical energy source and the accumulator to transfer electrical energy between the electrical energy source of the charging hub 20 and the accumulator of the charging vessel 50.
The seagoing vessel 10 can also be charged directly at the charging hub 20. The second power interface 36 and the first power interface 11 are therefore configured to connect to each other to transfer electrical energy between the charging hub 20 and the seagoing vessel 10, more specifically electrical energy is supplied from the electrical energy source of the charging hub 20 to the battery of the seagoing vessel 10 to charge the battery of the seagoing vessel 10.
As best shown in figure 4, in use the relay system 15 of the shipping infrastructure 1 provides electrical energy to the seagoing vessel 10 that navigates the sailing route 2 by successively electrically connecting charging vessels 50, that were electrically charged at a charging hub 20, to the seagoing vessel 10. Therefore each of the charging vessels 50 is configured to work in a charge mode, a sail mode and a supply mode, which will be explained in more detail hereafter. The sailing route 2 is defined as the route that is navigated by a seagoing vessel between a starting point and an endpoint of a shipping voyage of the seagoing vessel. The starting point and the endpoint usually are seaports but may also be, for instance, an anchor place, an offshore platform or a 10 shipyard.
In the charge mode of the charging vessel 10, the charging vessel 10 is docked at the charging hub 20 in the catcher 30 thereof. The charging vessel 50 is electrically connected to the charging hub 20 through or via the third power interface 52 of the charging vessel 50 and the second power interface 36 of the charging hub 20. The accumulator of the charging vessel 50 is being charged by the charging hub 20 or the accumulator is sufficiently charged and the charging vessel 50 is standby for a passing seagoing vessel
10. When the charging hub is connected to the smart grid, in the charging mode the charging vessel 10 is configured to discharge the accumulator to supply or return electrical energy to the smart grid. The accumulator functions as a temporary storage of electrical energy.
When a seagoing vessel 10 that navigates the sailing route 2 approaches or passes the charging hub 20 the sufficiently charged charging vessel 50 is switched to the sail mode in which it sails from the charging hub 20 to the passing seagoing vessel 10 along a first sailing section A of the charging vessel 50. At the seagoing vessel 10 the charging vessel 50 sails closely alongside or in abutment with the seagoing vessel 10. Alternatively the sufficiently charged charging vessel 50 in the sail mode sails from the charging hub 20 to the sailing route 2. At or near the sailing route 2 the charging vessel 50 awaits the passing of the seagoing vessel 10 or it sails towards an approaching seagoing vessel 10.
Subsequently the charging vessel 50 is switched to the charge mode in which the charging vessel 50 is electrically connected to the seagoing vessel 10 through or via the third power interface 52 of the charging vessel 50 and the first power interface 11 of the seagoing vessel 10. The charging vessel 50 supplies electrical energy from the accumulator to the first electric propulsion system of the seagoing vessel 10. Alternatively the charging vessel 50 supplies electrical energy from the accumulator to the optional battery of the seagoing vessel 10 to charge the battery of the seagoing vessel 10. In the charging mode the charging vessel 50 sails together with the seagoing vessel 10 along at least a part of the sailing route 2, along a second sailing section B of the charging vessel 50.
When the remaining electric capacity of the accumulator of the charging vessel 50 reaches a predetermined lower limit or when the battery of the seagoing vessel 10 is sufficiently charged, the charging vessel 50 electrically disconnects from the seagoing vessel 10 and is switched to the sail mode. In the sail mode the charging vessel 50 sails from the passing seagoing vessel 10 to a subsequent charging hub 20, along a third sailing section C of the charging vessel 50. The subsequent charging hub 20 may be any charging hub 20 of the shipping infrastructure 1. For instance, the subsequent charging hub 20 is the first next charging hub 20 along the sailing route 2 of the seagoing vessel 10 after the charging hub 20 at which the charging vessel 50 was previously charged. Alternatively the charging vessel 50 returns to the same charging hub 20 as it was previously charged at, wherein the charging vessel 50 may be dedicated to the specific charging hub 20.
The predetermined lower limit of the remaining electric capacity of the accumulator may be based on the sailing distance for the charging vessel 50 between the passing seagoing vessel 10 and the subsequent charging hub
20. The remaining electric capacity of the accumulator needs to be sufficient for the charging vessel 50 to reach the subsequent charging hub 20. Alternatively the charging vessel 50 electrically disconnects from the seagoing vessel 10 and is switched to the sail mode when the accumulator of the charging vessel 50 is fully discharged.
The charging vessel 50 then sails to the subsequent charging hub 20 while it is energized by the solar panels 54. At the charging hub 20 the charging vessel 50 sails into the channel 32 of the catcher 30. The bumpers 35 may guide the charging vessel 50 to its docking position in which the third power interface 52 of the charging vessel 50 is aligned with the second power interface 36 of the charging hub 20. The hydraulic cylinders 39 extend the extendable rods 37 towards the charging vessel 50 until the abutment plates 38 are in abutment with the third power interface 52 to electrically connect the second power interface 36 to the third power interface 52. The accumulator of the charging vessel 50 is then recharged by the charging hub 20 until it is sufficiently charged again.
During docking of the charging vessel 50 in the catcher 30 the hydraulic cylinders 39 keep the abutment plates 38 in abutment with the third power interface 52 by applying a constant pressure while allowing the charging vessel 50 and therewith the third power interface 52 to move, for instance due to waves and wind.
During docking of the charging vessel 50 in the catcher 30 the second power interface 36 may be used to dampen the wave and wind induced motions of the charging vessel 50. The hydraulic cylinders 39 of the second power interface 36 may dampen or constrain the motions of the charging vessel 50 by constraining or damping the displacement of the rod of the hydraulic cylinders 39. As best shown in figure 4, the relay system comprises multiple charging vessels 50 and multiple charging hubs 20 along the sailing route 2. The passing seagoing vessel 10 can be successively supplied with electrical energy by successive charging vessels 10.
Therefore a first charging vessel 50 is charged at a first charging hub 20, sails to a first seagoing vessel 10 and supplies the first electrical propulsion system of the first seagoing vessel 10 with electrical energy. A second charging vessel 10 that was charged at a second charging hub 10 sails to the first seagoing vessel 10. After supplying the first seagoing vessel 10 with electrical energy, the first charging vessel 50 is electrically disconnected from the first seagoing vessel 10 and the second charging vessel 10 is electrically connected to the first seagoing vessel 10. The electrically disconnecting the first charging vessel 50 and electrically connecting the second charging vessel 50 can be carried out in different sequences as is explained in more detail hereafter.
To ensure continuous electric propulsion of the seagoing vessel 10, the seagoing vessel 10 may comprise two or more first power interfaces 11 so that two or more charging vessels 50 may be electrically connected to the seagoing vessel 10 at the same time. In this manner successive charging vessels 50 are temporarily simultaneously electrically connected to the seagoing vessel 10 to, within the simultaneous electrical connection period, switch the first electric propulsion system between the electrically connected charging vessels 50. The simultaneous electrical connection period of the charging vessels 10 may be kept as small as possible. The at least two charging vessels 50 are therefore electrically connected to the seagoing vessel 10 along maximum ten percent of the sailing route 2 that is covered by the seagoing vessel 10, preferably along maximum 5 percent of the sailing route, more preferably along maximum 2 percent of the sailing route.
Alternatively the continuous electric propulsion of the seagoing vessel 10 is ensured by the optional battery of the seagoing vessel 10. The charging vessels 50 are then electrically connected to the seagoing vessel 10 one after the other. In the period between the electrical connection of two successive charging vessels 50 the battery of the seagoing vessel 10 provides electrical energy to the first electric propulsion system. When the charging vessels 50 are electrically connected to the seagoing vessel 10, the battery of the seagoing vessel 10 can be charged by the accumulator of the charging vessel
50. The charging vessels 50 can be electrically connected to the seagoing vessel 10 along a relatively short section of the sailing route 2 near a charging hub 20 to fast- charge the battery of the seagoing vessel 10. The charging vessels 50 may be electrically connected to the seagoing vessel 10 along maximum ten percent of the sailing route, preferably along maximum five percent of the sailing route. Alternatively the first electric propulsion system of the seagoing vessel 10 comprises a combustion engine to ensure the continuous propulsion of the seagoing vessel 10. The combustion engine is connected to and drives an electric generator to either generate electrical energy for and supply electrical energy to an electric motor of the first electric propulsion system or the battery of the first seagoing vessel 10. Alternatively the combustion engine may directly drive a propeller shaft of the first electric propulsion system to propel the seagoing vessel 10 and to therewith sail the seagoing vessel 10 over the sailing route 2. The charging vessels 50 are electrically connected to the seagoing vessel 10 one after the other. In the period between the electrical connection of two successive charging vessels 50 the combustion engine of the seagoing vessel 10 provides propulsion to the seagoing vessel 10. This alternative may be favorable when existing seagoing vessels 10 are adjusted to fit in the shipping infrastructure 1. Vessels with a diesel-electric transmission or a hybrid electric transmission may be suitable for conversion. The existing seagoing vessels can therefore be retrofitted with a first power interface 11 and optionally with an electric motor. The original combustion engine of the existing seagoing vessel 10 may then be used to ensure the continuous propulsion of the seagoing vessel 10. As best shown in figure 4, multiple seagoing vessels 10 may navigate along the sailing route 2 at the same time.
The seagoing vessels 10 pass the subsequent charging hubs 20 one after the other.
One charging vessel 50 may successively supply electrical energy to the first electric propulsion system of the successively passing seagoing vessels 10. Therefore a first charging vessel 50 is charged at a first charging hub 20, sails to a first seagoing vessel 10 and supplies the first electric propulsion system of the first seagoing vessel 10 with electrical energy.
After supplying the first seagoing vessel 10 with electrical energy, the first charging vessel 50 sails to a subsequent charging hub 20. At the charging hub 20 the first charging vessel 50 docks in the catcher 30 for the accumulator to be charged.
When the accumulator is sufficiently charged the first charging vessel sails to a second seagoing vessel 10 and supplies the first electrical propulsion system of the second seagoing vessel 10 with electrical energy.
After supplying the second seagoing vessel 10 with electrical energy, the first charging vessel 50 sails to a subsequent charging hub 20. This routine may be repeated endlessly.
It is to understood that the successive passing seagoing vessels 10 may navigate in two directions along the sailing route 2 and that the first charging vessel 50 may be charged at any one of the charging hubs 20. Any one of the charging hubs 20 may be the subsequent charging hub 20. When the seagoing vessel 10 comprises a battery the seagoing vessel 10 may also dock at the charging hub 20 to recharge the battery of the seagoing vessel 10. The charging hubs 20 are then used as charging stations at sea and the seagoing vessels 10 sail from charging hub 20 to charging hub 20 along the sailing route 2. It is to be understood that the above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention.
From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the scope of the present invention.

Claims (24)

CONCLUSIESCONCLUSIONS 1. Werkwijze voor het verschaffen van energie, door middel van een aflos- of doorgeefsysteem, aan een zeegaand vaartuig dat een vaarroute navigeert, waarbij het zeegaande vaartuig is voorzien van een eerste elektrisch voortstuwingssysteem en een eerste vermogensinterface die elektrisch is verbonden met het eerste elektrische voortstuwingssysteem, waarbij het doorgeefsysteem is voorzien van meerdere laadhubs langs en verdeeld over de vaarroute, die een tweede vermogensinterface hebben die elektrisch is verbonden met een elektrische energiebron, en waarbij het doorgeefsysteem is voorzien van meerdere laadvaartuigen die een accumulator hebben voor het accumuleren van elektrische energie en een derde vermogensinterface die elektrisch is verbonden met de accumulator, waarbij de derde vermogensinterface en de eerste vermogensinterface zijn geconfigureerd om met elkaar te verbinden voor het elektrisch verbinden van de accumulator en het eerste elektrische voortstuwingssysteem, en waarbij de tweede vermogensinterface en de derde vermogensinterface zijn geconfigureerd om met elkaar te verbinden voor het elektrisch verbinden van de elektrische energiebron en de accumulator, waarbij elk van de laadvaartuigen is geconfigureerd om te werken in een laadmodus, een vaarmodus en een levermodus, waarbij in de laadmodus de derde vermogensinterface is verbonden met de tweede vermogensinterface voor het laden van de accumulator door de elektrische energiebron, waarbij in de vaarmodus het laadvaartuig vaart tussen één van de laadhubs en het zeegaande vaartuig, en waarbij in de levermodus de derde vermogensinterface is verbonden met de eerste vermogensinterface voor het leveren van elektrische energie van de accumulator aan het eerste elektrische voortstuwingssysteem, waarbij de werkwijze omvat; het navigeren van een eerste zeegaand vaartuig over de vaarroute, het bij een eerste laadhub verbinden van de derde vermogensinterface van een eerste laadvaartuig met de tweede vermogensinterface van de eerste laadhub, het in de laadmodus laden van de accumulator van het eerste laadvaartuig door de elektrische energiebron van de eerste laadhub via de derde vermogensinterface en de tweede vermogensinterface, het losmaken van de derde vermogensinterface en de tweede vermogensinterface, het in de vaarmodus varen van het eerste laadvaartuig van de eerste laadhub naar het eerste zeegaande vaartuig, het bij het eerste zeegaande vaartuig verbinden van de derde vermogensinterface met de eerste vermogensinterface, het in de levermodus leveren van elektrische energie van de accumulator van het eerste laadvaartuig aan het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig via de derde vermogensinterface en de eerste vermogensinterface terwijl het eerste laadvaartuig met het eerste zeegaande vaartuig vaart langs ten minste een deel van de vaarroute, en het losmaken van de derde vermogensinterface en de eerste vermogensinterface.A method of providing energy, by means of an offloading or relaying system, to a seagoing vessel navigating a waterway, the seagoing vessel comprising a first electric propulsion system and a first power interface electrically connected to the first electric propulsion system, the relay system comprising a plurality of charging hubs along and distributed over the shipping route, having a second power interface electrically connected to an electrical energy source, and the relay system comprising a plurality of charging vessels having an accumulator for accumulating electrical energy and a third power interface electrically connected to the accumulator, the third power interface and the first power interface configured to interconnect for electrically connecting the accumulator and the first electrical propulsion system, and wherein the t the second power interface and the third power interface are configured to interconnect for electrically connecting the electrical energy source and the accumulator, wherein each of the charging vessels is configured to operate in a charging mode, a sailing mode, and a delivery mode, wherein in the charging mode the third power interface is connected to the second power interface for charging the accumulator by the electrical power source, wherein in the sailing mode the charging vessel is sailing between one of the charging hubs and the seagoing vessel, and in the delivery mode the third power interface is connected to the first power interface for supplying electrical energy from the accumulator to the first electrical propulsion system, the method comprising; navigating a first seagoing vessel along the shipping route, connecting the third power interface of a first charging vessel to the second power interface of the first charging hub at a first charging hub, charging the accumulator of the first charging vessel in the charging mode by the electrical energy source from the first charging hub through the third power interface and the second power interface, disconnecting the third power interface and the second power interface, sailing the first loading vessel in sailing mode from the first charging hub to the first seagoing vessel, connecting at the first seagoing vessel of the third power interface to the first power interface, supplying electrical energy in the delivery mode from the accumulator of the first loading vessel to the first electric propulsion system of the first seagoing vessel via the third power interface and the first power interface while the first loading vessel is connected to the the first oceangoing vessel travels along at least a portion of the shipping route, and disconnecting the third power interface and the first power interface. 2. Werkwijze volgens conclusie 1, waarbij de laadvaartuigen zijn voorzien van een tweede elektrisch voortstuwingssysteem dat elektrisch is verbonden met de accumulator, en waarbij in de vaarmodus, het varen van het eerste laadvaartuig van de eerste laadhub naar het eerste zeegaande vaartuig het varen van het eerste laadvaartuig omvat door middel van het tweede elektrische voortstuwingssysteem.The method of claim 1, wherein the loading vessels include a second electric propulsion system electrically connected to the accumulator, and wherein in the sailing mode, sailing the first loading vessel from the first loading hub to the first seagoing vessel is sailing the first loading vessel by means of the second electric propulsion system. 3. Werkwijze volgens conclusie 1 of 2, waarbij de werkwijze omvat; het bij een tweede laadhub verbinden van de derde vermogensinterface van een tweede laadvaartuig met de tweede vermogensinterface van de tweede laadhub, het in de laadmodus laden van de accumulator van het tweede laadvaartuig door de elektrische energiebron van de tweede laadhub via de derde vermogensinterface en de tweede vermogensinterface, het losmaken van de derde vermogensinterface en de tweede vermogensinterface, het in de vaarmodus varen van het tweede laadvaartuig van de tweede laadhub naar het eerste zeegaande vaartuig, het bij het eerste zeegaande vaartuig verbinden van de derde vermogensinterface met de eerste vermogensinterface, het in de levermodus leveren van elektrische energie van de accumulator van het tweede laadvaartuig aan het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig via de derde vermogensinterface en de eerste vermogensinterface terwijl het tweede laadvaartuig met het eerste zeegaande vaartuig vaart langs ten minste een deel van de vaarroute, en het losmaken van de derde vermogensinterface en de eerste vermogensinterface.The method of claim 1 or 2, wherein the method comprises; connecting the third power interface of a second charging vessel to the second power interface of the second charging hub at a second charging hub, charging the accumulator of the second charging vessel in the charging mode by the electrical power source of the second charging hub via the third power interface and the second power interface, disconnecting the third power interface and the second power interface, sailing the second loading vessel from the second loading hub to the first seagoing vessel in sailing mode, connecting the third power interface to the first power interface at the first seagoing vessel, the delivery mode of supplying electrical energy from the accumulator of the second loading vessel to the first electrical propulsion system of the first seagoing vessel through the third power interface and the first power interface while the second loading vessel navigates with the first seagoing vessel along at least a portion of the sailing path, and disconnecting the third power interface and the first power interface. 4, Werkwijze volgens één der voorgaande conclusies, waarbij langs ten minste een gedeelte van de vaarroute het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig wordt voorzien van elektrische energie door de accumulator van opeenvolgende laadvaartuigen.A method according to any one of the preceding claims, wherein along at least a portion of the shipping route the first electric propulsion system of the first seagoing vessel is supplied with electric energy by the accumulator of successive loading vessels. 5. Werkwijze volgens één der voorgaande conclusies, waarbij na het verbinden van de derde vermogensinterface van het eerste laadvaartuig met de eerste vermogensinterface van het eerste zeegaande vaartuig, ten minste twee accumulatoren van respectievelijke laadvaartuigen elektrische zijn verbonden met het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig.A method according to any one of the preceding claims, wherein after connecting the third power interface of the first loading vessel to the first power interface of the first seagoing vessel, at least two accumulators of respective loading vessels are electrically connected to the first electric propulsion system of the first seagoing vessel vessel. 6. Werkwijze volgens conclusie 5, waarbij de ten minste twee accumulatoren van respectievelijke laadvaartuigen elektrisch zijn verbonden met het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig langs maximaal tien procent van de vaarroute, bij voorkeur langs maximaal vijf procent van de vaarroute.A method according to claim 5, wherein the at least two accumulators of respective loading vessels are electrically connected to the first electrical propulsion system of the first seagoing vessel along a maximum of ten percent of the sailing route, preferably along a maximum of five percent of the sailing route. 7. Werkwijze volgens één der voorgaande conclusies, waarbij het eerste zeegaande vaartuig is voorzien van een accumulator voor het leveren van elektrische energie aan het eerste elektrische voortstuwingssysteem, waarbij de accumulator van het eerste zeegaande vaartuig elektrisch is verbonden met de eerste vermogensinterface, en waarbij in de levermodus, het leveren van elektrische energie van de accumulator van het eerste laadvaartuig aan het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig het leveren van elektrische energie omvat van de accumulator van het eerste laadvaartuig aan de accumulator van het eerste zeegaande vaartuig om de accumulator van het eerste zeegaande vaartuig te laden.The method of any preceding claim, wherein the first seagoing vessel includes an accumulator for supplying electrical power to the first electrical propulsion system, the accumulator of the first oceangoing vessel being electrically connected to the first power interface, and wherein in the delivery mode, supplying electrical energy from the accumulator of the first loading vessel to the first electrical propulsion system of the first seagoing vessel comprises supplying electrical energy from the accumulator of the first loading vessel to the accumulator of the first seagoing vessel to operate the accumulator of load the first seagoing vessel. 8. Werkwijze volgens conclusie 7, waarbij de werkwijze het leveren van elektrische energie omvat van de accumulator van het eerste zeegaande vaartuig aan het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig terwijl er geen accumulator van de laadvaartuigen elektrisch is verbonden met het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig.The method of claim 7, wherein the method comprises supplying electrical energy from the accumulator of the first seagoing vessel to the first electrical propulsion system of the first marine vessel while no accumulator of the loading vessels is electrically connected to the first electrical propulsion system of the first seagoing vessel. 9, Werkwijze volgens conclusie 7 of 8, waarbij de tweede vermogensinterface en de eerste vermogensinterface zijn geconfigureerd om met elkaar te verbinden voor het elektrisch verbinden van de elektrische energiebron en de accumulator van het eerste zeegaande vaartuig, en waarbij de werkwijze het bij de eerste laadhub verbinden van de eerste vermogensinterface van het eerste zeegaande vaartuig met de tweede vermogensinterface van de eerste laadhub omvat om de accumulator van het eerste zeegaande vaartuig te laden.The method of claim 7 or 8, wherein the second power interface and the first power interface are configured to interconnect for electrically connecting the electrical power source and the accumulator of the first seagoing vessel, and wherein the method is at the first loading hub connecting the first power interface of the first seagoing vessel to the second power interface of the first charging hub to charge the accumulator of the first seagoing vessel. 10. Werkwijze volgens één der conclusies 7-9, waarbij het leveren van elektrische energie van de accumulator van het eerste laadvaartuig aan de accumulator van het eerste zeegaande vaartuig om de accumulator van het eerste zeegaande vaartuig te laden het laden van de accumulator van het eerste zeegaande vaartuig omvat langs maximaal tien procent van de vaarroute, bij voorkeur langs maximaal vijf procent van de vaarroute.The method of any one of claims 7-9, wherein supplying electrical energy from the accumulator of the first loading vessel to the accumulator of the first seagoing vessel to charge the accumulator of the first seagoing vessel and charging the accumulator of the first seagoing vessel along a maximum of ten percent of the shipping route, preferably along a maximum of five percent of the shipping route. 11. Werkwijze volgens één der voorgaande conclusies, waarbij het eerste zeegaande vaartuig is voorzien van een verbrandingsmotor, en waarbij het navigeren van het eerste zeegaande vaartuig over de vaarroute het navigeren omvat van het eerste zeegaande vaartuig over de vaarroute door middel van de wverbrandingsmotor terwijl er geen accumulator van de laadvaartuigen elektrisch is verbonden met het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig.A method according to any one of the preceding claims, wherein the first seagoing vessel is provided with a combustion engine, and wherein navigating the first seagoing vessel over the navigation route comprises navigating the first seagoing vessel along the navigation route by means of the combustion engine while no accumulator of the loading vessels is electrically connected to the first electrical propulsion system of the first seagoing vessel. 12. Werkwijze volgens conclusie 11, waarbij de verbrandingsmotor is verbonden met een elektrische generator voor om elektrische energie te genereren, en waarbij de werkwijze het leveren omvat van elektrische energie van de elektrische generator aan het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig terwijl er geen accumulator van de laadvaartuigen elektrisch is verbonden met het eerste elektrische voortstuwingssysteem van het eerste zeegaande vaartuig.The method of claim 11, wherein the internal combustion engine is connected to an electrical generator for generating electrical energy, and wherein the method includes supplying electrical energy from the electrical generator to the first electrical propulsion system of the first seagoing vessel while there is no accumulator of the loading vessels is electrically connected to the first electrical propulsion system of the first seagoing vessel. 13. Werkwijze volgens één der voorgaande conclusies, waarbij de werkwijze omvat; het navigeren van een tweede zeegaand vaartuig over de vaarroute, het in de vaarmodus varen van het eerste laadvaartuig van het eerste zeegaande vaartuig naar een volgende tweede laadhub, het bij de tweede laadhub verbinden van de derde vermogensinterface van het eerste laadvaartuig met de tweede vermogensinterface van de tweede laadhub, het in de laadmodus laden van de accumulator van het eerste laadvaartuig door de elektrische energiebron via de derde vermogensinterface en de tweede vermogensinterface, het losmaken van de derde vermogensinterface en de tweede vermogensinterface, het in de vaarmodus varen van het eerste laadvaartuig van de tweede laadhub naar het tweede zeegaande vaartuig, het bij het tweede zeegaande vaartuig verbinden van de derde vermogensinterface met de eerste vermogensinterface, het in de levermodus leveren van elektrische energie van de accumulator van het eerste laadvaartuig aan het eerste elektrische voortstuwingssysteem van het tweede zeegaande vaartuig via de derde vermogensinterface en de eerste vermogensinterface terwijl het eerste laadvaartuig met het tweede zeegaande vaartuig vaart langs ten minste een deel van de vaarroute, en het losmaken van de derde vermogensinterface en de eerste vermogensinterface.A method according to any one of the preceding claims, wherein the method comprises; navigating a second seagoing vessel along the shipping route, sailing the first loading vessel of the first seagoing vessel in sailing mode to a subsequent second loading hub, connecting the third power interface of the first loading vessel at the second loading hub to the second power interface of the second charging hub, charging the accumulator of the first charging vessel in the charging mode by the electrical energy source through the third power interface and the second power interface, detaching the third power interface and the second power interface, sailing the first charging vessel of the second loading hub to the second seagoing vessel, connecting the third power interface to the first power interface at the second seagoing vessel, supplying electrical energy in the delivery mode from the accumulator of the first loading vessel to the first electric propulsion system of the second seagoing vessel through the third power interface and the first power interface while the first loading vessel is cruising with the second seagoing vessel along at least a portion of the shipping route, and disconnecting the third power interface and the first power interface. 14. Werkwijze volgens één der voorgaande conclusies, waarbij de accumulator van het eerste laadvaartuig opeenvolgend elektrische energie levert aan het eerste voortstuwingssysteem van opeenvolgende zeegaande vaartuigen.A method according to any one of the preceding claims, wherein the accumulator of the first loading vessel sequentially supplies electrical energy to the first propulsion system of successive seagoing vessels. 15. Werkwijze volgens één der voorgaande conclusies, waarbij de tweede vermogensinterface van de laadhub elektrisch is verbonden met de elektrische energiebron door een smartgrid, waarbij in de laadmodus de derde vermogensinterface is verbonden met de tweede vermogensinterface voor het laden en ontladen van de accumulator, en waarbij de werkwijze het in de laadmodus ontladen van de accumulator van het eerste laadvaartuig via de derde vermogensinterface en de tweede vermogensinterface omvat.The method of any preceding claim, wherein the second power interface of the charging hub is electrically connected to the electrical energy source through a smart grid, in the charging mode, the third power interface is connected to the second power interface for charging and discharging the accumulator, and the method comprising discharging the accumulator from the first loading vessel in the charging mode through the third power interface and the second power interface. 16. Werkwijze volgens één der voorgaande conclusies, waarbij het eerste laadvaartuig met het eerste zeegaande vaartuig vaart langs ten minste 0,5 procent van de vaarrouteA method according to any one of the preceding claims, wherein the first loading vessel sails with the first seagoing vessel along at least 0.5 percent of the shipping route 17. Werkwijze voor het verschaffen van energie, door middel van een aflos- of doorgeefsysteem, aan een zeegaand vaartuig dat een vaarroute navigeert, waarbij het doorgeefsysteem is voorzien van meerdere laadhubs langs en verdeeld over de vaarroute en meerdere laadvaartuigen, waarbij elk van de laadvaartuigen is geconfigureerd om te werken in een laadmodus waarin het laadvaartuig is verbonden met de laadhub, een vaarmodus waarin het laadvaartuig tussen één van de laadhubs en het zeegaande vaartuig vaart en een levermodus waarin het laadvaartuig 1s verbonden met het zeegaande vaartuig, en waarbij de werkwijze omvat; het navigeren van een eerste zeegaand vaartuig over de vaarroute, het bij een eerste laadhub laden van het eerste laadvaartuig, het varen van het eerste laadvaartuig van de eerste laadhub naar het eerste zeegaande vaartuig, het bij het eerste zeegaande vaartuig leveren van elektrische energie van het eerste laadvaartuig aan het eerste zeegaande vaartuig terwijl het eerste laadvaartuig met het eerste zeegaande vaartuig vaart langs ten minste een deel van de vaarroute.A method of supplying energy, by means of an offloading or relaying system, to a seagoing vessel navigating a shipping route, the relaying system comprising a plurality of loading hubs along and distributed among the shipping route and a plurality of loading vessels, each of the loading vessels configured to operate in a loading mode in which the loading vessel is connected to the loading hub, a sailing mode in which the loading vessel sails between one of the loading hubs and the seagoing vessel, and a delivery mode in which the loading vessel is connected to the seagoing vessel, and wherein the method comprises ; navigating a first seagoing vessel along the shipping route, loading the first loading vessel at a first loading hub, sailing the first loading vessel from the first loading hub to the first seagoing vessel, supplying the first seagoing vessel with electrical energy from the first loading vessel to the first seagoing vessel while the first loading vessel sails with the first seagoing vessel along at least a portion of the shipping route. 18. Scheepvaartinfrastructuur die is voorzien van een zeegaand vaartuig dat een vaarroute navigeert, en een aflos- of doorgeefsysteem voor het verschaffen van energie aan het zeegaande vaartuig, waarbij het zeegaande vaartuig is voorzien van een eerste elektrisch voortstuwingssysteem en een eerste vermogensinterface die elektrisch is verbonden met het eerste elektrische wvoortstuwingssysteem, waarbij het doorgeefsysteem is voorzien van meerdere laadhubs langs en verdeeld over de vaarroute, die een tweede vermogensinterface hebben die elektrisch is verbonden met een elektrische energiebron, en waarbij het doorgeefsysteem is voorzien van meerdere laadvaartuigen die een accumulator hebben voor het accumuleren van elektrische energie en een derde vermogensinterface die elektrisch is verbonden met de accumulator, waarbij de derde vermogensinterface en de eerste vermogensinterface zijn geconfigureerd om met elkaar te verbinden voor het elektrisch verbinden van de accumulator en het eerste elektrische voortstuwingssysteem, en waarbij de tweede vermogensinterface en de derde vermogensinterface zijn geconfigureerd om met elkaar te verbinden voor het elektrisch verbinden van de elektrische energiebron en de accumulator, waarbij elk van de laadvaartuigen is geconfigureerd om te werken in een laadmodus, een vaarmodus en een levermodus, waarbij in de laadmodus de derde vermogensinterface is verbonden met de tweede vermogensinterface voor het laden van de accumulator door de elektrische energiebron, waarbij in de vaarmodus het laadvaartuig vaart tussen één van de laadhubs en het zeegaande vaartuig, en waarbij in de levermodus de derde vermogensinterface is verbonden met de eerste vermogensinterface voor het leveren van elektrische energie van de accumulator aan het eerste elektrische voortstuwingssysteem.18. Shipping infrastructure comprising a seagoing vessel navigating a waterway and a relay or relay system for providing energy to the seagoing vessel, the seagoing vessel comprising a first electrical propulsion system and a first power interface electrically connected with the first electric propulsion system, the relay system comprising a plurality of charging hubs along and distributed over the waterway, having a second power interface electrically connected to an electric power source, and the relay system comprising a plurality of charging vessels having an accumulator for the accumulating electrical energy and a third power interface electrically connected to the accumulator, the third power interface and the first power interface configured to connect together for electrically connecting the accumulator and the first cell electrical propulsion system, and wherein the second power interface and the third power interface are configured to interconnect for electrically connecting the electrical energy source and the accumulator, wherein each of the loading vessels is configured to operate in a charging mode, a sailing mode, and a delivery mode wherein in the charging mode the third power interface is connected to the second power interface for charging the accumulator by the electrical power source, wherein in the sailing mode the charging vessel is sailing between one of the charging hubs and the seagoing vessel, and wherein in the delivery mode the third power interface is connected to the first power interface for supplying electrical energy from the accumulator to the first electrical propulsion system. 19. Scheepvaartinfrastructuur volgens conclusie 18, waarbij de laadvaartuigen zijn voorzien van een tweede elektrisch voortstuwingssysteem dat elektrisch is verbonden met de accumulator.The shipping infrastructure of claim 18, wherein the loading vessels are provided with a second electrical propulsion system electrically connected to the accumulator. 20. Scheepvaartinfrastructuur volgens conclusie 18 of 19, waarbij het zeegaande vaartuig is voorzien van een accumulator voor het leveren van elektrische energie aan het eerste elektrische voortstuwingssysteem, en waarbij de accumulator van het zeegaande vaartuig elektrisch is verbonden met de eerste vermogensinterface.A marine infrastructure according to claim 18 or 19, wherein the seagoing vessel includes an accumulator for supplying electrical power to the first electrical propulsion system, and wherein the accumulator of the oceangoing vessel is electrically connected to the first power interface. 21. Scheepvaartinfrastructuur volgens conclusie 20, waarbij de tweede vermogensinterface en de eerste vermogensinterface zijn geconfigureerd om met elkaar te verbinden voor het elektrisch verbinden van de elektrische energiebron en de accumulator van het zeegaande vaartuig.The marine infrastructure of claim 20, wherein the second power interface and the first power interface are configured to interconnect for electrically connecting the electrical power source and the accumulator of the seagoing vessel. 22. Scheepvaartinfrastructuur volgens één der conclusies 18-21, waarbij het zeegaande vaartuig is voorzien van een verbrandingsmotor die is verbonden met een elektrische generator om elektrische energie te leveren aan het eerste elektrische wvoortstuwingssysteem of aan de accumulator van het zeegaande vaartuig.A shipping infrastructure according to any one of claims 18-21, wherein the seagoing vessel comprises a combustion engine connected to an electrical generator for supplying electrical energy to the first electrical propulsion system or to the accumulator of the seagoing vessel. 23. Scheepvaartinfrastructuur volgens één der conclusies 18-22, waarbij de tweede vermogensinterface van de laadhub elektrisch is verbonden met de elektrische energiebron door een smartgrid, en waarbij in de laadmodus de derde vermogensinterface is verbonden met de tweede vermogensinterface voor het laden en ontladen van de accumulator.A marine infrastructure according to any one of claims 18-22, wherein the second power interface of the charging hub is electrically connected to the electrical energy source through a smart grid, and wherein in the charging mode the third power interface is connected to the second power interface for charging and discharging the accumulator. 24. Aflos- of doorgeefsysteem voor gebruik in een werkwijze volgens één der conclusies 1-17 of voor gebruik in een scheepvaartinfrastructuur volgens één der conclusies 18-24. A release or transfer system for use in a method according to any one of claims 1-17 or for use in a shipping infrastructure according to any one of claims 18- 23. -O-0-0-0-0-0-0-0-23. -O-0-0-0-0-0-0-0-
NL2025728A 2020-06-02 2020-06-02 Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system NL2025728B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2025728A NL2025728B1 (en) 2020-06-02 2020-06-02 Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system
PCT/NL2021/050338 WO2021246864A1 (en) 2020-06-02 2021-05-27 Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2025728A NL2025728B1 (en) 2020-06-02 2020-06-02 Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system

Publications (1)

Publication Number Publication Date
NL2025728B1 true NL2025728B1 (en) 2022-01-20

Family

ID=72179109

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2025728A NL2025728B1 (en) 2020-06-02 2020-06-02 Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system

Country Status (2)

Country Link
NL (1) NL2025728B1 (en)
WO (1) WO2021246864A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067107A (en) * 2014-09-24 2016-04-28 国立大学法人東京海洋大学 Battery driven mobile body system
JP3226252U (en) * 2019-03-06 2020-05-14 ワルトシラ フィンランド オサケユキチュア Power system for waterborne vessels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016067107A (en) * 2014-09-24 2016-04-28 国立大学法人東京海洋大学 Battery driven mobile body system
JP3226252U (en) * 2019-03-06 2020-05-14 ワルトシラ フィンランド オサケユキチュア Power system for waterborne vessels

Also Published As

Publication number Publication date
WO2021246864A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP5583683B2 (en) Self-propelled propulsion ship
US8193651B2 (en) Method and apparatus for ocean energy conversion, storage and transportation to shore-based distribution centers
CA2704310C (en) Floating harbor power supply
KR101826366B1 (en) System for wave energy harvesting employing transport of stored energy
US20080209234A1 (en) Water-Based Data Center
CN216861215U (en) Energy storage system
CN103334868B (en) Magnetofluid wave energy underwater charge platform
CN104608880A (en) Large floating liquefied natural gas production, storage and unloading device
WO2007122376A1 (en) Offshore apparatus for capturing energy
Hoang Aalyzing and selecting the typical propulsion systems for ocean supply vessels
CN108860481B (en) Omnibearing floating fuel oil supply system and operation method thereof
CN201254266Y (en) Multifunctional water surface robot
NL2025728B1 (en) Method for providing energy to a seagoing vessel, shipping infrastructure, and relay system
CN212605688U (en) Modularized oil conveying system quickly constructed by barge carrier
CN105836089A (en) Energy storage ship
CN206878513U (en) A kind of inland river feeder vessel
JP5127974B1 (en) Ship
KR101680321B1 (en) ESS control apparatus
CN107069895A (en) A kind of inland river feeder vessel
US20240042877A1 (en) Marine charging system
CN112533822B (en) Battery electric propulsion ship power supply system, offshore power supply equipment and battery electric propulsion ship
CN214958725U (en) Ship hybrid power supply system and ship
US20240034443A1 (en) Offshore charging station
GB2594310A (en) Apparatus and method
KR20240055032A (en) Devices, systems, and methods for hydrogen generation, collection, and distribution

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230701