NL2025487B1 - Solar panel and solar system - Google Patents

Solar panel and solar system Download PDF

Info

Publication number
NL2025487B1
NL2025487B1 NL2025487A NL2025487A NL2025487B1 NL 2025487 B1 NL2025487 B1 NL 2025487B1 NL 2025487 A NL2025487 A NL 2025487A NL 2025487 A NL2025487 A NL 2025487A NL 2025487 B1 NL2025487 B1 NL 2025487B1
Authority
NL
Netherlands
Prior art keywords
solar
flexible
electrode
strip
mesh
Prior art date
Application number
NL2025487A
Other languages
Dutch (nl)
Inventor
Elizabeth Johanna Van Der Heijden Antonius
Original Assignee
Elizabeth Johanna Van Der Heijden Antonius
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elizabeth Johanna Van Der Heijden Antonius filed Critical Elizabeth Johanna Van Der Heijden Antonius
Priority to NL2025487A priority Critical patent/NL2025487B1/en
Application granted granted Critical
Publication of NL2025487B1 publication Critical patent/NL2025487B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/62Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of fences, balustrades or handrails
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar panel and to a solar system comprising the same. According to the invention, the solar panel comprises a rigid mesh comprising a plurality of mesh 5 openings, and a flexible solar strip comprising a plurality of solar cells that is woven into the mesh. FIG. 1

Description

Solar panel and solar system The present invention relates to a solar panel and to a solar system comprising the same. Solar panels are known in the art. These panels use photovoltaic material to convert incoming light into electricity. Known solar panels may for example use monocrystalline or polycrystalline silicon that is supported and/or protected by glass panels. These panels offer high efficiency but are relatively heavy. Other known solar panels are based on thin-film technology in which a thin layer of photovoltaic material is deposited on a flexible substrate, or based on thinned down monocrystalline or polycrystalline solar cells arranged on a flexible substrate.
Although being less heavy than the monocrystalline or polycrystalline silicon panels, flexible solar panels generally have a lower efficiency than the former panels. In addition, the flexible solar panels require a rigid supporting surface on which the panels are mounted to guarantee sufficient mechanical stability during operation. In addition, it is known that the conversion efficiency of solar panels decreases with increasing temperature. This poses a problem when mounting the flexible solar panels to walls or other surfaces of buildings that tend to heat up during summer.
An object of the present invention is to provide a relatively light-weight solar panel in which the problems described above do not occur or at least to a lesser extent.
This object is achieved with a solar panel as defined by claim 1, which comprises a rigid mesh comprising a plurality of mesh openings, and a flexible solar strip comprising a plurality of solar cells that is woven into the mesh.
Compared to the prior art, the solar panel of the present invention does not obtain the necessary mechanical stiffness by mounting the flexible solar panel onto a rigid supporting surface but rather by weaving a flexible solar strip into a rigid mesh.
A rigid mesh is much lighter than a fully solid supporting structure. Moreover, by weaving the flexible solar strip into the mesh, air-cooling is possible on both sides of the solar panel contrary to prior art flexible solar panels of which one side is fully blocked by the supporting structure to which it is mounted.
The rigid mesh may have a first side and a second side oppositely arranged relative to the first side. Moreover, the flexible solar strip may have a plurality of first segments that are each arranged next to the first side of the rigid mesh, a plurality of second segments that are each arranged next to the second side of the rigid mesh, and a plurality of connecting segments that each extend through a respective mesh opening among the plurality of mesh openings and that each connect a respective first segment to a respective second segment.
The flexible solar strip may have a rectangular shape with a first surface and a second surface opposite to the first surface, wherein the plurality of solar cells is provided on at least one of the first surface and second surface.
In an embodiment, solar cells are provided on both the first and second surface.
The flexible solar strip may comprise a flexible substrate onto which a thin layer of photovoltaic material has been deposited or otherwise arranged for forming the plurality of solar cells.
The photovoltaic material may preferably comprise cadmium telluride, copper indium gallium di-selenide, or amorphous thin-film silicon.
The flexible substrate may comprise a metal foil such as aluminum or stainless steel, or a polymeric foil such as ethylene propylene diene monomer rubber foil as used for example in rubber roofing membranes.
Alternatively, the flexible solar panel may comprise a thin layer of monocrystalline or polycrystalline silicon arranged on a flexible substrate, wherein the flexible substrate preferably comprises a metal foil such as aluminum or stainless steel, or a polymeric foil such as ethylene propylene diene monomer rubber foil as used for example in rubber roofing membranes.
The flexible solar strip can be woven into the mesh using mesh openings among the plurality of mesh openings that are adjacently arranged.
For example, the mesh may comprise multiple rows of adjacently arranged mesh openings.
The flexible solar strip may be woven in the mesh using mesh openings that arranged in the same row.
Moreover, a respective flexible solar strip may be woven into the mesh for each row or for multiple rows.
The mesh can be formed using a plurality of first ribs, bars, or wires that are arranged in parallel and that extend in a first direction and a plurality of second ribs, bars, or wires that are arranged in parallel and that extend in a second direction, wherein the first direction is preferably perpendicular to the second direction.
The ribs, bars, wires can be made from a suitably rigid material such as metal, steel, or polymeric material.
The rigid mesh may for example comprise a mesh fence panel.
The mesh fence panel may comprise a wire mesh fence panel, more in particular a double bar fence panel.
Mesh fence panels are commonly used.
These panels are often only used to provide a barrier, e.g. between different properties, or to provide a security barrier.
By equipping these mesh fence panels with a flexible solar strip in accordance with the present invention, a relatively large area can be made available for harvesting green electricity.
The flexible solar strip may have dimensions that correspond to readily available double bar fence panels.
For example, the flexible solar strip may have a width in a range between 15 and 40 cm and a length in a range between 2 and 6.5 meter.
The flexible solar strip may have an elongated shape with two oppositely arranged longer sides and two oppositely arranged shorter sides.
The flexible solar strip may comprise a first electrode and a second electrode for allowing the flexible solar strip to be electrically connected, preferably to an inverter.
Furthermore, the first electrode and second electrode can be arranged on a same side of the flexible solar strip.
Additionally, the solar panel may further comprise a further first electrode and a farther second electrode that are electrically connected to the first electrode and second electrode, respectively, and that are arranged on a same side of the flexible solar strip, preferably oppositely with respect to the side on which the first electrode and second electrode are arranged. For example, the first electrode and second electrode may be arranged on one short side of a rectangular-shaped strip, and the further first electrode and the further second electrode on the other short side. Alternatively, the first and second electrodes and the further first and second electrodes are arranged on opposite long sides. In other embodiments, the first and second electrodes are arranged on a short side and the further first and second electrodes on a long side.
In some flexible solar strips in which solar cells are provided on one side of the flexible solar strip only, the backside may act as a single electrical contact. In such case, the second electrode and further second electrode are electrically connected to the backside contact. Furthermore, in such embodiments, the flexible substrate should be at least partially electrically conducting to allow electrical contact between the backside contact and the solar cells.
The flexible solar strip may further comprise a third electrode arranged on the same side as the first and second electrodes, a further third electrode arranged on the same side as the further first electrode and the further second electrode, and an electrical through connection that electrically connects the third electrode and the further third electrode. When multiple solar panels are connected together, it may, depending on how the solar panels are electrically connected, be necessary to use an electrical line or wire to carry the return current. By implementing a through connection as described above, no additional electrical wiring is required.
The solar panel may comprise a plurality of the flexible solar strips, wherein at least two among the plurality of flexible solar strips are connected in series, wherein the second electrode of one of said at least two flexible solar strips is connected to the first electrode of another of said at least two flexible solar strips. Additionally or alternatively, the solar panel may comprise a plurality of the flexible solar strips, wherein at least two among the plurality of flexible solar strips are connected in parallel, wherein the first and second electrode of one of the at least two flexible solar strips are connected to the first and second electrode of another of the at least two flexible solar strips, respectively.
The flexible solar strip may be provided in a roll. In such case, a desired length could be cut from the roll and the required electrodes could be connected to the piece of flexible solar strip that has been cut from the roll. In this manner, the flexible solar strips can be manufactured in great volumes thereby reducing the overall costs.
According to a second aspect, the present invention provides a solar system that comprises a plurality of solar panels as defined above, wherein the solar panels are electrically interconnected.
At least two flexible solar strips arranged on adjacent solar panels can be connected in series or in parallel.
The system may further comprise mounting members, each mounting member being connected to at least one solar panel.
The mounting members may for example each comprise an upright or a post that is mounted or mountable to a supporting surface, such as the ground.
In an embodiment, a row of solar panels can be provided with the mounting members providing intermediate support.
For example, the solar panels can be combined to form a fence or part thereof.
The solar system or the solar panel including multiple flexible solar strips may further comprise a monitoring unit for monitoring an electrical parameter obtained from the flexible solar strips, wherein the monitoring unit is configured to detect that an electrical connection of a flexible solar strip to the remaining flexible solar strip(s) is broken based on the monitored electrical parameter, said electrical parameter including a current, a voltage, a power, or mixture thereof.
The monitoring unit may further be configured to generate a warning signal in accordance with the detection.
In this manner, the monitoring unit may be used as an alarm system.
For example, the solar system may be embodied as a fence surrounding a perimeter.
An intruder may cut through the fence thereby breaking an electrical connection between one or more flexible solar strips and the other flexible solar strips.
By monitoring the electrical behavior of the flexible solar strips, for example by monitoring current, voltage, or power, or a mixture thereof, such intrusion may be detected.
Each solar panel may further comprise at least one flexible strip woven into the mesh, wherein the at least one flexible strip comprises a channel for transporting a liquid, such as water.
The system may further comprise a pump for pumping the liquid received at a pump inlet to a pump outlet, a distributor for distributing the liquid from the pump outlet to the channel of the flexible strip(s) of a first solar panel of the solar system.
In addition, the system may further comprise a collector for collecting liquid from the channel of the flexible strip(s) of a last solar panel of the solar system, and a plurality of fluid tight connections for connecting the channels of the solar panels.
In this embodiment, the solar panels are not only used for collecting sunlight for the purpose of generating electrical power but also to heat liquid that is transported through channels in the flexible strips.
Alternatively, depending on the available sunlight and ambient temperature, the same solar panel could be used to cool liquid that is transported through the channels.
As an example, the solar system as described above could be used to heat water in a swimming pool during summer.
In such a system, a conduit would connect the swimming pool to the pump inlet.
The pump would then pump water from the swimming pool via the distributor into the solar system.
More in particular, the distributor would guide the water from the pump towards the channel(s) of the flexible strip(s) of a first solar panel of the solar system. Similar to the flexible solar strips, the channels in the flexible strips could be connected in series or in parallel. The same holds for the channels between adjacent solar panels. At the last channel, the collector will collected the heated water and guide it to the swimming pool. In a further embodiment, each 5 flexible strip could comprise a plurality of said channels being arranged in a spaced apart manner.
According to a third aspect, the present invention provides a building having a roof and a plurality of walls, the building further comprising at least one solar panel or solar system as defined above mounted to the roof or a wall among the plurality of walls.
According to a fourth aspect, the present invention provides a method for manufacturing a solar panel, comprising providing a rigid mesh comprising a plurality of mesh openings, providing a flexible solar strip comprising a plurality of solar cells, and weaving the flexible solar strip into the rigid mesh.
The method may additionally comprise manufacturing a plurality of said solar panels and electrically interconnecting the plurality of solar panels.
Next, the present invention will be described in more detail referring to the appended drawings, wherein: Figure 1 illustrates an embodiment of a solar system in accordance with the present invention; Figures 2 and 3 illustrate a detailed schematic view and a top view of the solar system of figure 1, respectively; and Figures 4A-4C illustrate different solutions for connecting multiple flexible solar strips.
Figure 1 illustrates a perspective view of an embodiment of a solar system 1 in accordance with the present invention. Solar system } comprises a plurality of solar panels 2 of which two are shown in figure 1. Solar panels 2 are connected to uprights 11 which are fixedly mounted to or in a supporting surface, such as the ground.
Each solar panel 2 comprises a wire fence mesh 8 and a flexible solar strip 3 that is woven into wire fence mesh 8. The particular configuration of wire fence mesh 8 and uprights 11 shown is known as a double bar fence panel or a double bar mat panel. However, other configurations for wire fence mesh 8 are equally possible provided that the mesh provides a sufficiently rigid structure to support flexible solar strips 3.
As shown in figure 2, wire fence mesh 8 comprises vertically and horizontally arranged wires 9, which together define a plurality of mesh openings 10 through which a flexible solar strip 3 may pass. As shown in figures 2 and 3, each flexible solar strip 3 can be divided into a plurality of first segments 7A that are arranged on one side of mesh 8, a plurality of second segments 7B that are arranged on the other side of mesh 8, and a plurality of connecting segments 7C that each connect a first segment 7A to a second segment 7B. It is noted that the division of flexible solar strip 3 into segments 7A, 7B, 7C is generally only used to indicate the position of those segments relative to mesh 8. It generally does not mean that segments 7A, 7B, 7C have a different structure and/or function.
Each first segment 7A may extend over a portion of a mesh opening 10 or over a plurality of mesh openings 10. Accordingly, some mesh openings 10 will only be covered by a flexible solar strip 3 rather than a connecting segment 7C extending there through.
Flexible solar strip 3 is provided with solar cells 14 on at least one side of strip 3. This side may be chosen based on the Sun’s trajectory during the day. When a fence is arranged around a particular property it may therefore be that on one segment of the fence, flexible solar strips 3 are mounted reversed compared to an opposing segment of the fence.
In figure 1, four flexible solar strips 3 are shown. The upper two strips are connected in parallel whereas the bottom two strips are connected in series. To facilitate electrical connection to flexible solar strips 3, each strip 3 is provided with a first electrode 4A and a further first electrode 4B which are both connected to a first terminal of solar cells 14. Each strip 3 is further provided with a second electrode SA and a further second electrode 5B which are both connected to a second terminal of solar cells 14. It should be noted that first electrode 4A and further first electrode 4B are typically each connected to a connecting bus or line that extends over strip 3 making connection to the first terminal available on opposite sides of strip 3. Similar considerations may hold for second electrode 5A and further second electrode 5B, although these latter electrodes could also be connected to the backside of strip 3 if a backside contact is used.
As shown in figure 1, for the parallel connection of upper solar strips 3, further first electrode 4B and further second electrode 5B of first strip 3 are connected to a first electrode 4A and second electrode SA of adjacent second strip 3, respectively. Further first electrode 4B and further second electrode 5B of second strip 3 need not be connected provided that no additional strips are connected.
As shown in figure 1, for the series connection of bottom solar strips 3, further second electrode 5B of first strip 3 is connected to first electrode 4A of adjacent second strip 3. Further second electrode SB of second strip 3 is connected to a return wire 13 for bringing the connection back to first electrode 4A of first strip 3. Further first electrode 4B and second electrode 5A of the first strip 3, and second electrode SA and first further electrode 4B of the second strip 3 need not be connected.
In figure 1, two inverters 15 are shown that are connected to upper and lower strips 3, respectively. This is for illustrative purposes only, as in most cases a single inverter 15 will be used.
Instead of a dedicated return wire 13 that is guided via mesh 8 or which is arranged below mesh 8, e.g. above or below ground, an electrical through 6C can be provided on flexible solar strips 3 themselves. This electrical through is made available via a third electrode 6A and a further third electrode 6B as exemplified by figures 4A-4C that illustrate how three adjacent flexible solar strips 3 can be electrically connected.
In figure 4A, the first two strips 3 are connected in parallel and this parallel combination is in series with the third strip 3. In this case, further second electrode 5B of the center strip is connected to first electrode 4A of the last strip 3. For the last strip 3, further second electrode 5B is connected to return wire 13. The inverter will in this case be connected to electrode 4A and electrode 6A of the first strip 3.
Figures 4B and 4C correspond to the upper and lower strips 3 in figure 1, respectively, and illustrate how return wire 13 can be omitted by implementing the electrical through on strips 3 using third electrode 6A, further third electrode 6B, and through connection 6C. Here, it is noted that in figure 4B, through connections 6A are not used. More in particular, in figure 4B, the inverter will be connected to electrode 4A and electrode SA of the first strip 3, and in figure 4C electrodes 4A and 6A of the first strip 3 are used.
In the above, the present invention has been explained using detailed embodiments. However, the present invention is not limited to these embodiments. Rather, various modifications can be made to the embodiments without departing from the scope of the invention which is defined by the appended claims and their equivalents.
The inventive concept of the present invention can be applied to the solar heating of water.
In this case, the flexible solar strip of the invention is replaced by a flexible strip that comprises aa channel for transporting water or another liquid. Also this strip is woven into the mesh similar to the flexible solar strip of the present invention. Instead of using electrical connections, fluid tight connections between channels of adjacently arranged strips must be used. In addition, for the first solar panel, a pump system must be used to divide the water or other liquid over the channels of the flexible strips of the first solar panel. Similarly, for the last solar panel, which may also be the first panel in case a single solar panel is used, a collector must be used to collect the water emerging out of the channels of the flexible strips of the last solar panel. The collected water must be transported to a device to be heated, such as a swimming pool. At the same time, water to be heated, e.g. the water in the device to the heated that has cooled down, must be collected and must be fed to the pump system.
List of reference signs
1. Solar system
2. Solar panel 3 Flexible solar strip 4A. First electrode 4B. Further first electrode SA. Second electrode 5B. Further second electrode 1) 6A. Third electrode 6B. Further third electrode 6C. Through connection TA. First segment 7B. Second segment 7C. Connecting segment
8. Wire fence mesh
9. Wire
10. Mesh opening
11. Upright
12. Electrical connection
13. Return wire
14. Solar cells
15. Inverter

Claims (28)

CONCLUSIES i. Zonnepaneel, omvattende: een stijve maas (“mesh”) omvattende een veelvoud aan maasopeningen; een flexibele zonnestrip omvattende een veelvoud aan zonnecellen welke gevlochten is in de maas.CONCLUSIONS i. Solar panel comprising: a rigid mesh comprising a plurality of mesh openings; a flexible solar strip comprising a plurality of solar cells braided in the mesh. 2. Zonnepaneel volgens conclusie 1, waarbij de stijve maas een eerste zijde en een tegenover de eerste zijde gerangschikte tweede zijde heeft, waarbij de flexibele zonnestrip een IO veelvoud aan eerste segmenten heeft welke elk gerangschikt zijn naast de eerste zijde van de stijve maas, een veelvoud aan tweede segmenten heeft welke elk verschaft zijn naast de tweede zijde van de stijve maas, en cen veelvoud aan verbindende segmenten heeft welke zich elk uitstrekken door een respectievelijke maasopening onder het veelvoud aan maasopeningen en welke elk een respectievelijk eerste segment met een respectievelijk tweede segment verbindt.The solar panel of claim 1, wherein the rigid mesh has a first side and a second side arranged opposite the first side, the flexible solar strip having a plurality of first segments each arranged adjacent the first side of the rigid mesh, a a plurality of second segments each provided adjacent the second side of the rigid mesh, and a plurality of connecting segments each extending through a respective mesh opening among the plurality of mesh openings and each having a respective first segment with a respective second segment connects. 3. Zonnepaneel volgens conclusie 1 of 2, waarbij de flexibele zonnestrip een rechthoekige vorm heeft met een eerste oppervlak en een tweede oppervlak tegenovergesteld aan het eerste oppervlak, waarbij het veelvoud aan zonnecellen is verschaft op ten minste één van het eerste oppervlak en tweede oppervlak.The solar panel of claim 1 or 2, wherein the flexible solar strip has a rectangular shape having a first surface and a second surface opposite to the first surface, the plurality of solar cells being provided on at least one of the first surface and second surface. 4. Zonnepaneel volgens één van de voorafgaande conclusies, waarbij de flexibele zonnestrip een flexibel substraat omvat waarop een dunne laag van fotovoltaïsch materiaal is gedeponeerd voor het vormen van het veelvoud aan zonnecellen, het fotovoltaïsch materiaal bij voorkeur omvattende cadmium-telluride , koper-indium-gallium di-selenide, of amorf dunne-film silicium.A solar panel according to any one of the preceding claims, wherein the flexible solar strip comprises a flexible substrate on which is deposited a thin layer of photovoltaic material to form the plurality of solar cells, the photovoltaic material preferably comprising cadmium telluride, copper-indium, gallium diselenide, or amorphous thin film silicon. 5. Zonnepaneel volgens conclusie 4, waarbij het flexibele substraat een metaalfolie omvat zoals aluminium of roestvrij staal, of een polymeerfolie zoals ethyleen-propyleen- monomeer-rubberfolie.The solar panel of claim 4, wherein the flexible substrate comprises a metal foil such as aluminum or stainless steel, or a polymer foil such as ethylene-propylene-monomer-rubber foil. 6. Zonnepaneel volgens één van de conclusies 1-3, waarbij het flexibele zonnepaneel een dunne laag monokristallijn of polykristallijn silicium omvat welke verschaft is op een flexibel substraat, waarbij het flexibele substraat bij voorkeur een metaalfolie omvat zoals aluminium of roestvrij staal, of een polymeerfolie zoals ethyleen-propyleen-monomeer-rubberfolie.A solar panel according to any one of claims 1 to 3, wherein the flexible solar panel comprises a thin layer of monocrystalline or polycrystalline silicon provided on a flexible substrate, the flexible substrate preferably comprising a metal foil such as aluminum or stainless steel, or a polymer foil such as ethylene propylene monomer rubber film. 7. Zonnepaneel volgens één van de voorafgaande conclusies, waarbij de flexibele zonnestrip is gevlochten in de maas gebruikmakende van maasopeningen uit het veelvoud aan maasopeningen welke naast elkaar zijn gerangschikt.The solar panel of any preceding claim, wherein the flexible solar strip is braided into the mesh using mesh openings from the plurality of mesh openings arranged side by side. 8. Zonnepaneel volgens één van de voorafgaande conclusies, waarbij de maas is gevormd gebruikmakende van een veelvoud aan eerste ribben, staven of draden welke parallel aan elkaar gerangschikt zijn en welke zich uitstrekken in een eerste richting, en een veelvoud aan tweede ribben, staven of draden welke parallel aan elkaar gerangschikt zijn en welke zich uitstrekken in een tweede richting, waarbij de eerste richting bij voorkeur loodrecht staat op de tweede richting.The solar panel of any preceding claim, wherein the mesh is formed using a plurality of first ribs, rods or wires arranged parallel to each other and extending in a first direction, and a plurality of second ribs, rods or wires. wires which are arranged parallel to each other and which extend in a second direction, the first direction being preferably perpendicular to the second direction. 9. Zonnepaneel volgens één van de voorafgaande conclusies, waarbij de stijve maas een maas-hekwerkpaneel omvat.A solar panel according to any one of the preceding claims, wherein the rigid mesh comprises a mesh fencing panel. 10. Zonnepaneel volgens conclusie 9, waarbij het maas-hekwerkpaneel een draadmaas-hekwerkpaneel omvat, meer in het bijzonder een dubbelstaafmat hekwerk.10. Solar panel according to claim 9, wherein the mesh fencing panel comprises a wire mesh fencing panel, more in particular a double wire mesh fencing. 11. Zonnepaneel volgens één van de voorafgaande conclusies, waarbij de flexibele zonnestrip een langwerpige vorm heeft met twee tegenovergesteld gerangschikte langere zijdes en twee tegenovergesteld gerangschikte kortere zijdes.A solar panel according to any one of the preceding claims, wherein the flexible solar strip has an elongated shape with two oppositely arranged longer sides and two oppositely arranged shorter sides. 12. Zonnepaneel volgens één van de voorafgaande conclusies, waarbij de flexibele zonmnestrip een eerste elektrode en een tweede elektrode omvat voor het elektrisch aansluiten van de zonnestrip, bij voorkeur aan een omvormer, “inverter”.A solar panel according to any one of the preceding claims, wherein the flexible solar strip comprises a first electrode and a second electrode for electrically connecting the solar strip, preferably to an inverter, "inverter". 13. Zonnepaneel volgens conclusie 12, waarbij de eerste elektrode en tweede elektrode gerangschikt zijn op eenzelfde zijde van de flexibele zonnestrip.A solar panel according to claim 12, wherein the first electrode and second electrode are arranged on a same side of the flexible solar strip. 14. Zonnepaneel volgens conclusie 13, verder omvattende een verdere eerste elektrode en een verdere tweede elektrode welke elektrisch verbonden zijn aan respectievelijk de eerste elektrode en tweede elektrode, en welke gerangschikt zijn op eenzelfde zijde van de flexibele zonnestrip, bij voorkeur tegenovergesteld aan de zijde waarop de eerste elektrode en tweede elektrode gerangschikt zijn.A solar panel according to claim 13, further comprising a further first electrode and a further second electrode electrically connected to the first electrode and second electrode, respectively, and which are arranged on a same side of the flexible solar strip, preferably opposite to the side on which the first electrode and second electrode are arranged. 15. Zonnepaneel volgens conclusie 14, waarbij de flexibele zonnestrip verder een derde elektrode omvat welke gerangschikt is op dezelfde zijde als de eerste en tweede elektrodes,The solar panel of claim 14, wherein the flexible solar strip further comprises a third electrode arranged on the same side as the first and second electrodes, een verdere derde elektrode omvat welke verschaft is op dezelfde zijde als de verdere eerste elektrode en de verdere tweede elektrode, en een elektrische doorverbinding omvat welke de derde elektrode elektrisch verbindt met de verdere derde elektrode.a further third electrode provided on the same side as the further first electrode and the further second electrode, and including an electrical interconnection electrically connecting the third electrode to the further third electrode. 16. Zonnepaneel volgens één van de conclusies 12-15, waarbij het zonnepaneel een veelvoud aan genoemde flexibele zonnestrips omvat, waarbij ten minste twee uit het veelvoud aan flexibele zonnestrips in serie verbonden zijn, waarbij de tweede elektrode van één van de genoemde ten minste twee flexibele zonnestrips is verbonden met de eerste elektrode van een andere van de genoemde ten minste twee flexibele zonnestrips.The solar panel of any of claims 12-15, wherein the solar panel comprises a plurality of said flexible solar strips, wherein at least two of the plurality of flexible solar strips are connected in series, the second electrode of one of said at least two flexible solar strips is connected to the first electrode of another of said at least two flexible solar strips. 17. Zonnepaneel volgens één van de conclusies 12-16, waarbij het zonnepaneel een veelvoud aan genoemd flexibele zonnestrips omvat, waarbij ten minste twee uit het veelvoud aan flexibele zonnestrips parallel aan elkaar verbonden zijn, waarbij de eerste en tweede elektrode van één van de genoemde ten minste twee flexibele zonnestrips verbonden zijn met respectievelijk de eerste en tweede elektrode van een andere van de genoemde ten minste twee flexibele zonnestrips.The solar panel of any of claims 12-16, wherein the solar panel comprises a plurality of said flexible solar strips, wherein at least two of the plurality of flexible solar strips are connected in parallel, the first and second electrodes of one of said at least two flexible solar strips are connected to respectively the first and second electrode of another of said at least two flexible solar strips. 18. Zonnesysteem, omvattende een veelvoud aan zonnepanelen volgens één van de voorafgaande conclusies, waarbij de zonnepanelen elektrisch met elkaar zijn verbonden.A solar system comprising a plurality of solar panels according to any preceding claim, wherein the solar panels are electrically connected to each other. 19. Zonnesystem volgens conclasie 18, waarbij ten minste twee flexibele zonnestrips welke gerangschikt zijn op naast elkaar gelegen zonnepanelen in serie verbonden zijn.A solar system according to claim 18, wherein at least two flexible solar strips arranged on adjacent solar panels are connected in series. 20. Zonnesysteem volgens conclusie 18 of 19, waarbij ten minste twee flexibele zonnestrips welke gerangschikt zijn op naast elkaar gelegen zonnepanelen parallel aan elkaar verbonden zijn.A solar system according to claim 18 or 19, wherein at least two flexible solar strips arranged on adjacent solar panels are connected parallel to each other. 21. Zonnesysteem volgens één van de conclusies 18-20, verder omvattende bevestigingsdelen, waarbij elk bevestigingsdeel verbonden is met ten minste één zonnepaneel.A solar system according to any one of claims 18-20, further comprising mounting members, wherein each mounting member is connected to at least one solar panel. 22. Zonnesysteem volgens conclusie 21, waarbij de bevestigingsdelen elk een staander of een paal omvatten welke is bevestigd of te bevestigen is op een steunoppervlak, zoals de grond.22. Solar system according to claim 21, wherein the attachment parts each comprise an upright or a post which is attached or can be attached to a supporting surface, such as the ground. 23. Zonnesysteem volgens één van de conclusies 18-22, of het zonnepaneel volgens conclusie 16 of 17, verder omvattende een bewakingseenheid voor het bewaken van een elektrische parameter welke verkregen is van de flexibele zonnestrips, waarbij de bewakingseenheid is ingericht voor het detecteren dat een elektrische verbinding van een flexibele zonnestrip aan de resterende flexibele zonnestrip(s) is verbroken op basis van de bewaakte elektrische parameter, waarbij de elektrische parameter een stroom, een spanning, een vermogen, of een combinatie daarvan omvat, waarbij de bewakingseenheid bij voorkeur verder is ingericht voor het genereren van een waarschuwingssignaal in overeenstemming met de detectie.The solar system according to any one of claims 18-22, or the solar panel according to claim 16 or 17, further comprising a monitoring unit for monitoring an electrical parameter obtained from the flexible solar strips, the monitoring unit being adapted to detect a electrical connection of a flexible solar strip to the remaining flexible solar strip(s) is broken based on the monitored electrical parameter, the electrical parameter comprising a current, a voltage, a power, or a combination thereof, the monitoring unit preferably being further arranged to generate a warning signal in accordance with the detection. 24. Zonnesysteem volgens één van de conclusies 18-23, waarbij elk zonnepaneel verder ten minste één flexibele strip omvat welke gevlochten is in de maas, waarbij de ten minste één flexibele strip een kanaal omvat voor het transporteren van een vloeistof, zoals water, het systeem verder omvattende: een pomp voor het naar een pompuitlaat pompen van vloeistof welke ontvangen is bij een pompinlaat; een verdeler voor het verdelen van vloeistof vanaf een pompuitlaat naar het kanaal van de flexibele strip(s) van een eerste zonnepaneel van het zonnesysteem; een verzamelaar voor het verzamelen van vloeistof van het kanaal van de flexibele strip(s) van een laatste zonnepaneel van het zonnesystem; en een veelvoud aan vloeistofdichte verbindingen voor het verbinden van de kanalen van de zonnepanelen.A solar system according to any one of claims 18-23, wherein each solar panel further comprises at least one flexible strip braided in the mesh, the at least one flexible strip comprising a channel for transporting a liquid, such as water, system further comprising: a pump for pumping liquid received at a pump inlet to a pump outlet; a distributor for distributing liquid from a pump outlet to the channel of the flexible strip(s) of a first solar panel of the solar system; a collector for collecting liquid from the channel of the flexible strip(s) of a final solar panel of the solar system; and a plurality of liquid-tight connections for connecting the channels of the solar panels. 25. Zonnesysteem volgens conclusie 24, waarbij de ten minste één flexibele strip een veelvoud aan genoemde kanalen omvat welke op afstand van elkaar gerangschikt zijn.The solar system of claim 24, wherein the at least one flexible strip comprises a plurality of said channels which are spaced apart. 26. Gebouw met een dak en een veelvoud aan wanden, het gebouw verder omvattende ten minste één zonnepaneel volgens één van de conclusies 1-17 of zonnesysteem volgens één van de conclusies 18-25 welke bevestigd is op het dak of een wand uit het veelvoud aan wanden.A building having a roof and a plurality of walls, the building further comprising at least one solar panel according to any one of claims 1-17 or solar system according to any one of claims 18-25 mounted on the roof or a wall of the plurality on walls. 27. Werkwijze voor het vervaardigen van een zonnepaneel, omvattende: het voorzien van een stijve maas omvattende een aantal maas-openingen; het voorzien van een flexibele zonnestrip omvattende een veelvoud aan zonnecellen; het vlechten van de flexibele zonnestrip in de stijve maas.A method of manufacturing a solar panel, comprising: providing a rigid mesh comprising a plurality of mesh openings; providing a flexible solar strip comprising a plurality of solar cells; braiding the flexible solar strip into the rigid mesh. 28. Werkwijze volgens conclusie 27, omvattende: het vervaardigen van een veelvoud aan zonnepanelen volgens conclusie 27; het elektrisch met elkaar verbinden van het veelvoud aan zonnepanelen.A method according to claim 27, comprising: manufacturing a plurality of solar panels according to claim 27; electrically connecting the plurality of solar panels.
NL2025487A 2020-05-01 2020-05-01 Solar panel and solar system NL2025487B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2025487A NL2025487B1 (en) 2020-05-01 2020-05-01 Solar panel and solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2025487A NL2025487B1 (en) 2020-05-01 2020-05-01 Solar panel and solar system

Publications (1)

Publication Number Publication Date
NL2025487B1 true NL2025487B1 (en) 2021-11-18

Family

ID=71111776

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2025487A NL2025487B1 (en) 2020-05-01 2020-05-01 Solar panel and solar system

Country Status (1)

Country Link
NL (1) NL2025487B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10114586A1 (en) * 2001-03-24 2002-10-02 Guenter Pfeiffer Solar equipment for current generation using photovoltaic modules in form of fence field
US20100237307A1 (en) * 2009-03-20 2010-09-23 Mark Milburn Modular solar fence system
JP2012023308A (en) * 2010-07-16 2012-02-02 Nikou Giken Co Ltd Solar cell module with mesh material and mounting structure of solar cell module
DE202017103757U1 (en) * 2017-06-23 2017-07-31 Asset Management Beteiligungsgesellschaft mbH Assembly for a demarcation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10114586A1 (en) * 2001-03-24 2002-10-02 Guenter Pfeiffer Solar equipment for current generation using photovoltaic modules in form of fence field
US20100237307A1 (en) * 2009-03-20 2010-09-23 Mark Milburn Modular solar fence system
JP2012023308A (en) * 2010-07-16 2012-02-02 Nikou Giken Co Ltd Solar cell module with mesh material and mounting structure of solar cell module
DE202017103757U1 (en) * 2017-06-23 2017-07-31 Asset Management Beteiligungsgesellschaft mbH Assembly for a demarcation device

Similar Documents

Publication Publication Date Title
US6201179B1 (en) Array of photovoltaic modules for an integrated solar power collector system
JP3239035B2 (en) Solar cell module with snow melting function and solar power generation system with snow melting function
US20080314434A1 (en) Photovoltaic panel
US20210175847A1 (en) Panel Equipped with a Photovoltaic Device
US20110308563A1 (en) Flexible photovoltaic modules in a continuous roll
US20120060902A1 (en) System and method for frameless laminated solar panels
EP3807990B1 (en) Photovoltaic panel
WO2007137199A2 (en) Interconnected solar module design and system
WO2005091379A2 (en) Electric energy generating modules with a two-dimensional profile and method of fabricating the same
KR20140027267A (en) Solar panel
US20150013754A1 (en) Solar cell module mounting structure, solar cell module mounting method, solar cell module mounting beam, and solar photovoltaic power generating system
US20190165189A1 (en) Bus bar for use in flexible photovoltaic modules
US10574179B2 (en) Wire tray for PV assembly
NL2025487B1 (en) Solar panel and solar system
US9153388B2 (en) Sealed monolithic electrochemical system
US20130061912A1 (en) Diagonal mounting bracket for a photovoltaic module
DE4142566A1 (en) Photovoltaic element for solar module
US20240088823A1 (en) Commercial roof
JP2021145496A (en) Photovoltaic power generation system based on horizontal wiring method and photovoltaic power generation method based on horizontal wiring method
US20240146240A1 (en) Photovoltaic converter and photovoltaic arrays
WO2023156476A1 (en) Solar module und solar module system with a plurality of solar modules
NZ743526B2 (en) Panel equipped with a photovoltaic device
NZ743526A (en) Panel equipped with a photovoltaic device