NL2024895A - System.and method for assessing fire hazard of typical oil in wind turbine nacelle - Google Patents

System.and method for assessing fire hazard of typical oil in wind turbine nacelle Download PDF

Info

Publication number
NL2024895A
NL2024895A NL2024895A NL2024895A NL2024895A NL 2024895 A NL2024895 A NL 2024895A NL 2024895 A NL2024895 A NL 2024895A NL 2024895 A NL2024895 A NL 2024895A NL 2024895 A NL2024895 A NL 2024895A
Authority
NL
Netherlands
Prior art keywords
fire
wind turbine
oil
nacelle
thermogravimetric
Prior art date
Application number
NL2024895A
Other languages
Dutch (nl)
Other versions
NL2024895B1 (en
NL2024895A9 (en
Inventor
You Fei
Wang Zhenhua
Jiang Juncheng
Zhang Yu
Xu Zhiliang
Xu Jixiang
Fu Zonglin
Shui Kai
Huangfu Wenhao
Original Assignee
Nanjing University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University Of Technology filed Critical Nanjing University Of Technology
Publication of NL2024895A publication Critical patent/NL2024895A/en
Publication of NL2024895A9 publication Critical patent/NL2024895A9/en
Application granted granted Critical
Publication of NL2024895B1 publication Critical patent/NL2024895B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/50Investigating or analyzing materials by the use of thermal means by investigating flash-point; by investigating explosibility
    • G01N25/52Investigating or analyzing materials by the use of thermal means by investigating flash-point; by investigating explosibility by determining flash-point of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/98Lubrication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

The present invention relates to a system and method for assessing the fire hazards of typical oils in a wind turbine nacelle. A thermogravimetric analyzer is used to obtain key pyrolysis characteristic parameters of oils used in the wind turbine nacelle at<iifferent.heating'rates ineuiair atmosphere, and a cone calorimeter is used to obtain reaction—to—fire characteristic parameters and derived parameters under different radiant heat fluxes. The development process of a wind turbine nacelle fire is divided into five stages of ignition, growth, flashover, full development, and decay. Based.on the characteristics of different stages, such as the ignitionandpwrolysischaracteristics,heatandsmokerelease capabilities,andheatandsmokehazardcharacteristicsofoils, a three—layer structure system of fire hazard assessment is established.Thepresentinventioncharacterizesthepyrolysis and reaction—to—fire characteristics of main and typical fire loads (four oils) in the nacelle, and proposes a holistic approach to multi—scale correlations between pyrolysis and combustion. The present invention realizes the multiple assessment methods for the potential fire hazards throughout the whole operation process of a wind turbine. The present invention has a solid theoretical foundation as well as the advantages of simple<dperation, reliable results anclexcellent repeatability. The present invention provides a basis for the research and application of intrinsic safety in the wind turbine nacelle.

Description

SYSTEM AND METHOD FOR ASSESSING FIRE HAZARD OF TYPICAL OIL IN WIND TURBINE NACELLE
TECHNICAL FIELD The present invention discloses a system and method for assessing fire hazards of typical oils in a wind turbine nacelle, and belongs to the technical field of safety in wind power generation.
BACKGROUND Among all kinds of new energy, the promising wind power is regarded as the most suitable for large-scale commercial development. With low cost, wind power generation has noticeable advantages and is widely concerned by countries around the world. As a latecomer in the wind power industry, China has developed rapidly in recent years. By the end of 2017, in China newly and cumulatively installed wind power capacities were 19.66 GW and 188.39 GW, respectively, ranking first in the world. The wind turbine usually consists of a bottom of foundation, a tower, a nacelle and several blades. The nacelle is generally as high as tens or even hundreds of meters. The nacelle usually has a confined room, narrow interior and complicated structure. As the core of the wind turbine, the nacelle accommodates expensive electrical equipment such as generator, variable-frequency cabinet, control cabinet, braking system, vaw system, gearbox and hydraulic system, etc. Accordingly, the nacelle contains diverse types and phases of flammables and combustibles such as transformer oil, gearbox oil, hydraulic oil, grease and sound insulation foam, which pose great fire hazards. When a fire occurs in the nacelle, the fire will grow and spread rapidly. As there are no much effective and feasible fire prevention and control techniques at present,
it is difficult to carry out the fire extinguishing and rescue work in the nacelle in time, which often leads to the burnout of the whole nacelle or other important components. In addition, the cost of subsequent repair is very high, which is basically equivalent to that of an original wind turbine. Diverse oils as the heavy fire loads inside the nacelle are most likely to be the initial or subsequent involved combustibles in a nacelle fire. A wind turbine nacelle usually holds substantial quantities of flammable oils. For example, in a single 1.5 MW wind turbine, up to 900 L of cooling and cleaning grease is stored inside the nacelle; and a single 8 MW wind turbine can easily contain 200 L of grease, 1100 L of hydraulic oil, 2000 L of gearbox oil and 3000 kg of transformer oil. According to incomplete statistics from the British Caithness Windfarm Information Forum (Caithness Windfarm Information Forum. Summary of wind turbine accidents data to 31 December 2017. Available online: <http://www.caithnesswindfarms.co.uk/AccidentStatistics.ht m>), by the end of 2017, among the 2191 wind turbine accidents reported and confirmed worldwide, there were nearly 318 fires (14.5%), rating second after blade failure (17.2 %). As the global wind power industry is experiencing a period of booming development, there is a growing trend of wind turbine fires due to increasing mass installations of wind power equipment. Thus, the fire prevention in the wind turbine nacelle has become the most important issue that needs to be solved urgently. After all, once a fire happens in a wind turbine, it is irreversible. To prevent and extinguish the wind turbine nacelle fire effectively, the key is to predict the potential fire hazards by exploring changes in the combustion performance parameters of fuels during the development of the nacelle fire.
In fire science research the two most important methods of physical model test and numerical simulation experiments are developed. Currently, in terms of multiple problems involved in the wind turbine nacelle, such as heavy fire loads, various types of fuels, and complex ventilation and space structure, etc., it is difficult to conduct the full-scale experimentaltest. There are also many other problems which reguire solutions. Full-scale tests of simulated and approximate wind turbine nacelles have been conducted by Tianjin Fire Research Institute and Taiwan Police College in China early, to investigate the fire characteristics of the wind turbine nacelle and corresponding fire protection system. However, in their experiments, the simple layout inside the nacelle and design of the fire source were used, which differ greatly with those in the real fire scenarios. These full-scale tests are also very expensive and difficult to carry out. The computer simulation of fire development has received greater attention in recent years, which has unique advantages of saving time and costs, and obtaining the details of physical parameters, etc. Nevertheless, due to the complexity, non-linearity and randomness in the real fire processes, the accurate simulations of the combustion processes have not been completely realized by using current techniques.
SUMMARY The present invention proposes a system and method for assessing fire hazards of typical oils in a wind turbine nacelle. The combustion of different phases of oils is the most probable and harmful fire hazard of a wind turbine nacelle, but there is no effective simulation, warning and prevention technique to deal with a fire cause by oil. For this reason, the present invention proposes a method for comprehensively assessing a fire hazard of a typical-phase oil in a wind turbine nacelle by testing a parameter of fire development by a thermogravimetric analyzer and a cone calorimeter.
The present invention has the following technical solutions.
A system for assessing fire hazards of typical oils in a wind turbine nacelle, including a thermogravimetric characteristic assessment unit and a reaction-to-fire characteristic assessment unit, where the thermogravimetric characteristic assessment unit includes a thermogravimetric analyzer, which is used to obtain an important pyrolysisparameter of an oil sample at different heating rates, such as an onset degradation temperature T ser” a maximum mass loss rate MLRuax, a corresponding maximum temperature Tas and a mass fraction of residue at different end pyrolysis temperatures; 3 the reaction-to-fire characteristic assessment unit includes a cone calorimeter, which is used to obtain a combustion characteristic parameter of the oil sample under different radiant heat fluxes, such as a time to ignition tig, a heat release rate HRR, a mass loss rate MLR, a specific extinction area SEA and a smoke release rate SRR; the fire hazard of the typical-phase oil in the wind turbine nacelle can be comprehensively assessed by the obtained data.
A method for assessing fire hazards of typical oils in a wind turbine nacelle by using the above system, including the following steps: (a) preparation of oil: preparing different types of oil samples from the wind turbine nacelle, and simulating a development process of a wind turbine nacelle fire at different heating rates and different external thermal radiant heat fluxes; {(b) test and analysis of thermogravimetric behavior and characteristic: testing a thermogravimetric behavior and characteristic of four oil samples at different heating rates in an air atmosphere by a thermogravimetric analyzer, and analyzing a thermogravimetric = differential thermogravimetric (TG-DTG) curve to obtain an onset degradation temperature Toner” a maximum mass loss rate MLRmax, a corresponding maximum temperature Tax? a mass fraction of residue at different end pyrolysis temperatures, a heat release rate HRR, a mass loss rate MLR, a specific extinction area SEA and a smoke release rate HRR of the four oil samples at different heating rates; (c) test and analysis of fire reaction-to-fire behavior and characteristic: testing a fire reaction-to-fire behavior andcharacteristic of the four oil samples under different external thermal radiant heat fluxes by a cone calorimeter according to the ISO 5660-1 standard, and obtaining a time to ignition tig; a heat release rate HRR, a mass loss rate MLR, a specific 9 extinction area SEA and a smoke release rate SRR of the four oil samples under different radiant heat fluxes; and (d) comprehensive analysis: dividing the simulated development process of the wind turbine nacelle fire into different stages, establishing a scientific and effective fire hazard assessment indicator system according to a principle and characteristic of fire development at each stage, and obtaining a result of comprehensive analysis of the fire hazard of the typical oil in the wind turbine nacelle based on the assessment indicator system, specifically including: (1) division of fire development stages; (2) establishment of fire protection function assessment indicator system; and (3) fire hazard assessment.
The test and analysis of thermogravimetric behavior and characteristic in step (b) further includes: comparing a TG curve with a corresponding DTG curve at different heating rates, and observing whether the maximum mass loss rates on the DTG curve coincides; indicating that apyrolysis process is clearly distinguished if the maximum mass loss rates are staggered, and choosing an onset degradation temperature 1 at the highest heating rate, a maximum mass loss rate MIR, a corresponding maximum temperature T and a mass fraction of residue at different end pyrolysis temperatures as parameters to develop an assessment indicator system.
The test and analysis of fire reaction-to-fire behavior and characteristic in step (c) further includes: obtaining a time to ignition of the four oil samples under different radiant heat fluxes, and applying the following equations to obtain a critical radiant heat flux q. a thermal inertia ApC andan ignition temperature TZ, of the oil samples.
0.55 or ApC q,=q. | 1+0.73| —=— (1) pO _ 4 gd der - H, (7, T,)+o (I; T, ) (2) In the equations, q. is an external radiant heat flux, h, is a heat transfer coefficient of an ignition surface, H, is a convection heat transfer coefficient, T is an ambient temperature, and O is a Stefan-Boltzmann constant, 5.67 x 107% kW/m2 * K*, The test and analysis of fire reaction-to-fire behavior and characteristic in step (¢) further includes: pletting a time-varying curve of a heat release rate HRR, a mass loss rate MLR, a specific extinction area SEA and a smoke release rate HRR of the four oil samples under different radiant heat fluxes; averaging the parameters by an integral averaging method, and substituting the average into equations (3) to (6) to further obtain a reaction-to-fire characteristic derived parameter such as an effective combustion heat AH, gy @n average smoke yield Y, and a smoke point height SPH of the oil samples. Equations (3) to (6) are as follows: AH, _9 (3) €, Am —_— . -3 ¥,=0.0994x 10° SEA, (4)
0.084(S+1) SPH= JL 5) Ys Mey =3 (6) S+1 In the equations, 0 is a total heat release rate; Am isa total mass loss of the sample; SEA, is an average SEA; and § is a stoichiometric mass air to fuel ratio.
The division of fire development stages in step (1) includes: setting a fire scenario based on fire dynamics and 3 characteristics of different stages in the development process of a wind turbine nacelle fire, and qualitatively dividing the wind turbine nacelle fire into five stages from the perspective of fire protection countermeasures according to a change in an average temperature and heat release rate over time in a confined ignition space in the nacelle before and after a nacelle material reaches a fire resistance rating.
The five stages include an incipient stage, a growth stage, a flashover stage, a full development stage and a decay stage.
The incipient stage features low overall heat release rate, low average temperature in the nacelle and local high temperature near an ignition object.
In the growth stage, the fire expands to ignite a surrounding combustible, and the average temperature in the nacelle increases rapidly from the ambient temperature to several hundred degrees Celsius.
During the flashover stage, the surface of all combustibles in the nacelle is burned, the average temperature usually rises above 600°C, and the flame basically fills the global space.
In the full development stage, the heat release rate in the nacelle gradually reaches the maximum, and the average temperature usually rises above 800°C.
The combustion is controlled by ventilation.
The overall bearing capacity of the nacelle structure is sharply reduced, and the nacelle can be burned through.
The fire can burn and spread at the same time inside and outside the nacelle, and may cause collapse in severe cases.
In the decay stage, the overall heat release rate gradually decreases, the combustibles inside and outside the nacelle are reduced until they are depleted, and the temperature begins to drop to the ambient temperature, The decay stage is generally considered to start from the average temperature in the nacelle which decreases to about 80% of a peak temperature.
The establishment of fire protection function assessmentindicator system in step (2) includes: developing an assessment indicator system of fire protection function throughout the whole process of the wind turbine fire, as follows: 1) indicators of ignition and thermal performance of oil, including a critical radiant heat flux q.. a thermal inertia ApC, an ignition temperature Te an effective combustion heat AH jp and a stoichiometric mass air to fuel ratio §; 2) indicators of heat and smoke release capability of oil, including a hot melt Rockwell hardness C (HRC), an average smoke yield y and a smoke point height SPH, where the hot melt HRC is calculated as follows: HRC = —| — —= 7) M, dt max B where, M, is an initial mass of the oil sample in a dm thermogravimetric test; is a maximum mass loss rate dt max of the oil sample in the thermogravimetric test; p is a heating rate of the oil sample in the thermogravimetric test; and 3) combined indicators of fire and smoke hazards during the fire spread, including a fire hazard parameter (FHP) and a smoke parameter (SP), which are calculated as follows:
HRR FHP — Max (8) Í, 2
SEA SRR SP = —— eeen (3) AH, HRR tabulating or plotting with the assessment indicators calculated above to obtain a result of comprehensive assessment of the fire hazard of the typical-phase oil in the wind turbine nacelle.
The present invention has the following beneficial effects: 1) The present invention overcomes shortcomings like high cost, long cycle, great workload and low accuracy in the experimental tests, computer simulation and other traditional fire research methods. The present invention characterizes the pyrolysis and reaction-to-fire characteristics of main and typical fire loads (four oils) in the wind turbine nacelle by means of the material characterizations, which realizes the potential fire hazards throughout the whole operation process of a wind turbine. The present invention has solid theoretical foundations as well as the advantages of low costs, fast and simple operations, reliable results and excellent repeatability. 2) The conventional fire hazard assessment method for polymer materials has an apparent problem, namely it relies only on a single indicator of reaction-to-fire characteristics, such as the peak heat release rate (PkHRR) or very few combined indicators, such as the fire performance index (FPI). The present invention enriches the assessment indicators and includes the parameters of critical heat flux for ignition, thermal inertia and ignition temperature. The present invention combines the derived parameters of reaction-to-fire characteristic like the effective combustion heat, the average smoke yield and the smoke point height with the pyrolysis characteristic parameters. In this way, the present invention proposes a holistic approach to multi-scale correlations between pyrolysis and combustion in the whole development process of a wind turbine nacelle fire, and amulti-dimensional and diversified assessment indicator system is established. 3) The present invention provides a basis for the research and application of intrinsic safety in the wind turbine nacelle, and enhances overall safety protection for the long-term healthy development of wind power industry.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a flowchart of a method for assessing fire hazards of typical oils in a wind turbine nacelle.
FIG. 2 is a structural diagram of a system for assessing fire hazards of typical cils in a wind turbine nacelle.
FIG. 3 is a diagram showing a development stage of a wind turbine nacelle fire and a major fire characteristic parameter involved in fire prevention and disposal.
FIG. 4 shows a thermogravimetric - differential thermogravimetric (TG-DTG) curve of four test oils at different heating rates.
FIG. 5 shows a fitting relationship between ry and a radiation intensity of four test oils.
FIG. 6 shows a heat and smoke-combined hazard indicator.
DETAILED DESCRIPTION The technical solutions of the present invention are described in further detail below with reference to the accompanying drawings.
As shown in FIG. 1 and FIG. 2, the present invention provides a method and system for comprehensively assessing a fire hazard of a typical-phase oil in a wind turbine nacelle based on a pyrolysis characteristic parameter and a reaction-to-fire characteristic parameter c¢btained by a thermogravimetric analyzer and a cone calorimeter.
An on-site investigation was carried out, and a transformer oil, a hydraulic oil, a gearbox oil and a grease were collected from a nacelle of an 850 kW wind turbine in a wind farm as representative oil samples. The basic physical properties of the four test oils are shown in Table 2. Table 2 Physical properties of four test oils Gearbox Transformer Hydraulic Grease oil oil oil Phase Liquid Liquid Liquid Semisolid Density 860 kg/m: ££ 895 kg/m? 875 kg/m? 860-980 (15°C), (20°Cy, (15°C) kg/m? ASTM D4052 GB/T 1884-1885
Boiling > 316°C 192°C > 280°C > 400°C point Flash 242°C 159°C 208°C > 300°C point {Cleveland open cup COC) A pyrolysis characteristic test of the four oil samples was performed in an air atmosphere by a thermogravimetric characteristic assessment unit, namely a Q5000 IR-type thermogravimetric analyzer (TA Corporation, the USA). Before the test, a 10.0-30.0 mg oil sample was weighed with an electronic balance and dropped into an aluminum crucible through a pipette. During the test, a heating rate was set to 5°C/min, 10°C/min, 20°C/min and 40°C/min, and a heating temperature ranged from room temperature to 800°C.
A comparative analysis showed that an adjacent thermogravimetric plateau on different TG curves was clearly distinguished. Therefore, pyrolysis characteristic data at the heating rate of 40°C/min were selected as parameters to be correlated to develop the assessment indicator system. FIG. 4 shows the TG-DTG curves of the four oil samples at the heating rate of 40°C/min.
The TG-DTG curves at the heating rate of 40°C/min were analyzed to obtain important pyrolysis parameters of the four oil samples, such as an onset degradation temperature (1. a maximum mass loss rate (MLRmax), a corresponding maximum temperature Toa and a residue mass fraction under a pyrolysis temperature 500°C, as shown in Table 3.
Table 3 Summary of pyrolysis characteristic data of four test oils Fuel Tonset (°C) MLRmax (% / °C) / Taax Residue (3%), (°C) 500°C Gearbox oil 302 0.92/350 3.79
Transformer 201 1.62/282 0.84 oil Hydraulic 293 1.59/368 1.33 oil Grease 289 0.88/471 11.10 A combustion characteristic test of the four oil samples was performed by using a reaction-to-fire characteristic assessment unit, namely a cone calorimeter (Fire Testing Technology, the UK). Before the test, a 40 ml oil sample was measured with a measuring cylinder and poured into a double oil pan.
During the test, a radiation intensity was set to 15 kW/m2, 25 kW/m?, 35 kW/m?, 50 kW/m? and 75 kW/m? in this order.
For safety, all oils were tested within a lower radiation intensity range (15-35 kW/m?), and then an oil sample resistant to high temperature radiation was tested under a higher radiation intensity (50 kW/m? and 75 kW/m?) . The test found that a suitable test radiation intensity range for the transformer oil, the hydraulic oil and the gearbox oil was 15-35 kW/m?, and a suitable test radiation intensity range for the grease resistant to high temperature radiation was 25-75 kW/m2. A time to ignition (Ly) (reaction-to-fire characteristic parameter) was substituted into equations (1) and (2) to obtain a reaction-to-fire characteristic derived parameter of the oil samples such as a critical radiant heat flux (Gi), a thermal inertia (ApC) and an ignition temperature Te). The data are shown in Table 4, Table 4 Reaction-to-fire characteristic derived parameters obtained by equations (1) and (2) Fuel qr (kW/m?) AoC (kW2e 5 / mie K2) T, (°C) Transformer 5.8 0.3 216 oil
Hydraulic 7.1 0.2 246 oil Gearbox oil 10.4 0.06 309 Grease 12.3 0.09 338 The critical radiant heat flux (qr) was obtained by plotting with ti” and the external radiation intensity, performing a linear fit, and extrapolating a fitted straight line, as shown 9 in FIG. 5.
A heat release rate (HRR), a mass loss rate (MLR) and a specific extinction area (SEA) (reaction-to-fire characteristic parameters) were substitutedinto equations (3) to (6) to obtain a reaction-to-fire characteristic derived parameter of the oil samples such as an effective combustion heat CAH, 0), an average smoke yield (V,) and a smoke point height (SPH), as shown in Table 5.
Table 5 Reaction-to-fire characteristic derived parameters obtained by equations (3) to (6) Fuel AH, S v. (9/9) SPH (mm) (kJ/g) Transformer 20.7-23.5 5.9-6.8 0.010-0.030 22-57 oil Hydraulic 13.5-18.7 3.5-5.2 0.030-0.042 9-18 oil Gearbox oil 16.9-24,0 4.6-7.0 0.023-0.027 19-25 Grease 12.0-17.7 3.0-4,9 0.028-0.045 10-12 The development process of a wind turbine nacelle fire was divided into five stages: incipient stage, growth stage, flashover stage, full development stage and decay stage. Fire characteristics, including ignitability, flammability, flame spread and heat release were extracted, which should be paid special attention in the prevention and disposal of the windturbine nacelle fire.
The above pyrolysis characteristic parameters, reaction-to-fire characteristic parameters and derived parameters of the four test oils were substituted into equations (7) to (9) to establish a wind turbine nacelle fire protection function assessment indicator system. The assessment indicator system covered the entire process of the wind turbine nacelle fire, and included 1) indicators of ignition and thermal performance of oil, 2) indicators of heat and smoke release capability of oil and 3) combined indicators of fire and smoke hazards during the fire spread, which are shown in Table 6, Table 7 and FIG. 6, respectively.
Table 6 Indicators of ignition and thermal performance of oil Puel dn ApC (kW? s T, IN S (kW/m?) / mie K?) (°C) (kd/q) Transformer 5.8 0.3 216 20.7-23.5 5.9-6.8 oil Hydraulic 7.1 0.2 246 13.5-18.7 3.5-5.2 oil Gearbox oil 10.4 0.06 309 16.9-24.0 4.6-7.0 Grease 12.3 0.09 338 12.0-17.7 3.0-4.9 Table 7 Heat release and smoke release indicators of oil Fuel HRC (kJ/ge*K) ¥. (9/9) SPH (mm) Transformer 0.043-0.048 0.010-0.030 22-57 oil Hydraulic 0.027-0.038 0.030-0.042 9-18 oil Gearbox oil 0.020-0.028 0.023-0.027 19-25 Grease 0.014-0.020 0.028-0.045 10-12 The original data were imported into an assessment indicator data acquisition unit and processed by equations (1) to (9)
through commercial software like Origin or matrix laboratory (MATLAB) using a first derivative method and an integral averaging method, thereby obtaining the actual data of each assessment indicator of the oil samples.
FIG. 6 shows that the transformer oil had the highest fire hazard parameter (FHP), the grease had the highest smoke parameter (SP), and the gearbox oil and the hydraulic oil had medium FHP and SP.
Therefore, the fire hazard of the transformer oil and the grease is higher in an actual fire development process, and special precautions should be taken.

Claims (10)

CONCLUSIESCONCLUSIONS 1. Systeem voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel, omvattende een testeenheid voor thermogravimetrische kenmerken en een testeenheid voor reactie-op-brand-kenmerken, waarbij de testeenheid voor thermogravimetrische kenmerken een ther- mogravimetrische analyse-inrichting omvat die gebruikt wordt om een belangrijke pyrolyseparameter van een olie- monster bij verschillende mates van opwarming te verkrij- gen, zoals een afbraakaanvangstemperatuur T4asvangs een mate van maximaal massaverlies MLR, een overeenkomstige maxi- mumtemperatuur Tmax en een massafractie van een rest bij verschillende pyrolyse-eindtemperaturen; waarbij de test- eenheid voor reactie-op-brand-kenmerken een kegelvormige calorimeter omvat, die gebruikt wordt om een voor ontbran- ding kenmerkende parameter van het oliemonster te verkrij- gen onder verschillende stralingswarmtefluxen; zoals een tijd tot ontbranding ty, een mate van warmte-afgifte HRR, een mate van massaverlies MLR, een specifiek extinctiege- bied SEA en een mate van rookproductie SRR; waarbij het brandgevaar van de typische-fase olie in de windturbine- gondel uitgebreid beoordeeld kan worden door middel van de verkregen data.A system for assessing fire hazards of typical oils in a wind turbine nacelle, comprising a thermogravimetric characteristic test unit and a reaction-to-fire characteristic test unit, the thermogravimetric characteristic test unit comprising a thermogravimetric analyzer used to obtain an important pyrolysis parameter of an oil sample at different degrees of heating, such as a degradation initiation temperature T4, a measure of maximum mass loss MLR, a corresponding maximum temperature Tmax and a mass fraction of a residue at different pyrolysis end temperatures; wherein the reaction-to-fire characteristic test unit comprises a conical calorimeter, which is used to obtain a combustion characteristic parameter of the oil sample under different radiant heat fluxes; such as a time to ignition ty, a heat release rate HRR, a mass loss rate MLR, a specific extinction region SEA, and a smoke production rate SRR; wherein the fire hazard of the typical phase oil in the wind turbine nacelle can be extensively assessed by means of the obtained data. 2. Werkwijze voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel bij gebruik van het systeem volgens conclusie 1, omvattende de volgen- de stappen: {a) het bereiden van olie: het bereiden van verschil- lende types oliemonsters van de windturbinegondel, en het simuleren van een ontwikkelingsproces van een windturbine-A method for assessing fire hazards from typical oils in a wind turbine nacelle using the system according to claim 1, comprising the following steps: {a) preparing oil: preparing different types of oil samples from the wind turbine nacelle, and simulating a wind turbine development process gondelbrand bij verschillende mates van opwarming en ver- schillende externe stralingswarmtefluxen; {b} test en analyse van thermogravimetrisch gedrag en thermogravimetrische kenmerken: het testen van een thermo- gravimetrisch gedrag en thermogravimetrische kenmerken van vier oliemonsters bij verschillende mates van opwarming in een luchtatmosfeer door middel van een thermogravimetri- sche analyse-inrichting, en het analyseren van een thermo- gravimetrische — differentiële thermogravimetrische (TG- DTG) kromme om een afbraakaanvangstemperatuur Taanvang, een mate van maximaal massaverlies MLRxs:, een overeenkomstige maximumtemperatuur Tmax, een massafractie van een rest bij verschillende pyrolyse-eindtemperaturen, een mate van warmte-afgifte HRR, een mate van massaverlies MLR, een specifiek extinctiegebied SEA en een mate van rookproduc- tie SRR van de vier oliemonsters bij verschillende mates van opwarming; {(c) test en analyse van reactie-op-brand-gedrag en “kenmerken van brand: het testen van een reactie-op-brand- gedrag en -kenmerken van brand van de vier oliemonsters onder verschillende externe stralingswarmtefluxen door een kegelvormige calorimeter volgens de ISO 5660-1 standaard, en het verkrijgen van een tijd tot ontbranding tig, een ma- te van warmte-afgifte HRR, een mate van massaverlies MLR, een specifiek extinctiegebied SEA en een mate van rookpro- ductie SRR van de vier oliemonsters bij verschillende stralingswarmtefluxen; (d) uitgebreide analyse: het verdelen van het gesimu- leerde ontwikkelingsproces van de windturbinegondelbrand in verschillende stadia, het bewerkstelligen van een we- tenschappelijk en effectief testsysteem voor indicatie van brandgevaar volgens een principe en kenmerk van brandont- wikkeling bij elk stadium, en het verkrijgen van een re- sultaat van de uitgebreide analyse van het brandgevaar van de typische olie in de windturbinegondel gebaseerd op het testindicatiesysteem, specifiek omvattende: (1) verdeling van de brandontwikkelingsstadia;gondola fire at different degrees of heating and different external radiant heat fluxes; {b} test and analysis of thermogravimetric behavior and thermogravimetric characteristics: testing a thermogravimetric behavior and thermogravimetric characteristics of four oil samples at different degrees of heating in an air atmosphere by means of a thermogravimetric analysis device, and analyzing a thermogravimetric-differential thermogravimetric (TG-DTG) curve about a decomposition initial temperature T, a rate of maximum mass loss MLRxs :, a corresponding maximum temperature Tmax, a mass fraction of a residue at different pyrolysis end temperatures, a rate of heat release HRR, a mass loss rate MLR, a specific extinction area SEA and a smoke production rate SRR of the four oil samples at different degrees of heating; {(c) test and analysis of reaction-to-fire behavior and “characteristics of fire: testing a reaction-to-fire behavior and characteristics of fire of the four oil samples under different external radiant heat fluxes through a conical calorimeter according to the ISO 5660-1 standard, and obtaining a time to ignition tig, a measure of heat output HRR, a measure of mass loss MLR, a specific extinction area SEA and a measure of smoke production SRR of the four oil samples at different radiant heat fluxes; (d) comprehensive analysis: dividing the simulated wind turbine gondola fire development process into different stages, establishing a scientific and effective fire hazard indication test system according to a principle and characteristic of fire development at each stage, and obtaining a result of the comprehensive fire hazard analysis of the typical oil in the wind turbine nacelle based on the test indication system, specifically comprising: (1) distribution of the fire development stages; (2) het bewerkstelligen van indicatietestsysteem met brandbeschermingsfunctie; en (3) beoordeling van brandgevaar.(2) establishing an indication test system with fire protection function; and (3) fire hazard assessment. 3. Werkwijze voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel volgens con- clusie 2, waarbij de test en analyse van thermogravime- trisch gedrag en thermogravimetrische kenmerken in stap (b) verder omvat: het vergelijken van een TG-kromme met een overeenkomstige DTG-kromme bij verschillende mates van opwarming, en het waarnemen of de mate van maximaal massa- verlies MLRxax op de DTG-kromme congruent is; het indiceren dat een pyrolyseproces zich duidelijk onderscheidt wanneer de mates van maximaal massaverlies verspringen, en het kiezen van een afbraakaanvangstemperatuur Taanvang bij de hoogste mate van opwarming, een maximaal massaverlies MLRuax, een overeenkomstige maximale temperatuur Tmax en een massafractie van een rest bij verschillende pyrolyse- eindtemperaturen als parameters om een indicatortestsys- teem te ontwikkelen.A method of assessing fire hazards from typical oils in a wind turbine nacelle according to claim 2, wherein the testing and analysis of thermogravimetric behavior and thermogravimetric characteristics in step (b) further comprises comparing a TG curve with a TG curve. corresponding DTG curve at different degrees of heating, and observing whether the maximum mass loss rate MLRxax on the DTG curve is congruent; indicating that a pyrolysis process is clearly distinguished when the rates of maximum mass loss are staggered, and choosing a decomposition initiation temperature T at the highest degree of heating, a maximum mass loss MLRuax, a corresponding maximum temperature Tmax and a mass fraction of a residue at different pyrolysis end temperatures as parameters to develop an indicator test system. 4. Werkwijze voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel volgens con- clusie 2, waarbij de test en analyse van reactie-op-brand- gedrag en -kenmerken van brand in stap (c¢) verder omvat: het verkrijgen van een tijd tot ontbranding van de vier oliemonsters onder verschillende stralingswarmtefluxen, en het toepassen van de volgende vergelijkingen om een kriti- sche stralingswarmteflux qr een thermische traagheid ApC en een ontbrandingstemperatuur Ti van de oliemon- sters te verkrijgen;A method for assessing fire hazard of typical oils in a wind turbine nacelle according to claim 2, wherein the test and analysis of reaction-to-fire behavior and characteristics of fire in step (c ¢) further comprises: obtaining a time to ignition of the four oil samples under different radiant heat fluxes, and applying the following equations to obtain a critical radiant heat flux qr a thermal inertia ApC and an ignition temperature Ti of the oil samples; 0.55 EE] (1) ig ig gh =H,(T,~T,)+o(T;-T') ©waarbij, gq, een externe stralingswarmteflux is, ¢', the de kritische warmteflux voor ontbranding is, h, een warm- teoverdrachtscoëfficiënt van een ontbrandingsoppervlak is, H. een convectiewarmteoverdrachtscoëfficiënt is, T, een omgevingstemperatuur is, en Oo een Stefan-Boltzmann- constante, 5,67 x 107i kW/m? « K*%, is.0.55 EE] (1) ig ig gh = H, (T, ~ T,) + o (T; -T ') © where, gq, is an external radiant heat flux, ¢', which is the critical heat flux for combustion, h , is a heat transfer coefficient of an ignition surface, H. is a convection heat transfer coefficient, T, is an ambient temperature, and Oo is a Stefan-Boltzmann constant, 5.67 x 107i kW / m? K *%, is. 5. Werkwijze voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel volgens con- clusie 2, waarbij de test en analyse van reactie-op-brand- gedrag en -kenmerken van brand in stap (c) verder omvat: het uitzetten van een tijdvariabele kromme van een mate van warmte-afgifte HRR, een mate van massaverlies MLR, een specifiek extinctiegebied SEA en een mate van rookproduc- tie SRR van de vier oliemonsters bij verschillende stra- lingswarmtefluxen; het middelen van de parameters door een integrale middelingsmethode, en het substitueren van het gemiddelde in vergelijkingen (3) tot (6) om verder een van een reactie-op-brand-kenmerk afgeleide parameter zoals een effectieve verbrandingswarmte AH, een gemiddelde rook- productie V, en een rookpunthoogte SPH van de oliemonsters te verkrijgen, waarbij vergelijkingen (3) tot (6) als volgt zijn: AH „2 © 5 Am _ 1-3 v;=0.0994x 107 SEA (4)A method for assessing fire hazards of typical oils in a wind turbine nacelle according to claim 2, wherein the test and analysis of reaction-to-fire behavior and characteristics of fire in step (c) further comprises: time-variable curve of a heat release rate HRR, a mass loss rate MLR, a specific extinction area SEA, and a smoke production rate SRR of the four oil samples at different radiant heat fluxes; averaging the parameters by an integral averaging method, and substituting the mean in Equations (3) to (6) to further add a response-to-fire characteristic derived parameter such as an effective heat of combustion AH, an average smoke production V, and obtain a smoke point height SPH of the oil samples, where equations (3) to (6) are as follows: AH 2 5 Am 1-3 = 0.0994x 107 SEA (4) 0.084(S+1) SPH= 5) Ys My =3 (6) S+1 waarbij (Q een mate van totale warmte-afgifte is; Am een totaal massaverlies van het monster is; SEA een ge- middeld SEA is; en § stoichiometrische massaverhouding van lucht tot brandstof is.0.084 (S + 1) SPH = 5) Ys My = 3 (6) S + 1 where (Q is a measure of total heat output; Am is a total loss of mass of the sample; SEA is an average SEA; and § is stoichiometric mass ratio of air to fuel. 6. Werkwijze voor het beoordelen van brandgevaarvan typische oliën in een windturbinegondel volgens con- clusie 2, waarbij de verdeling van brandontwikkelingssta-A method for assessing fire hazards from typical oils in a wind turbine nacelle according to claim 2, wherein the distribution of fire development states dia in stap (1) omvat: het instellen van een brandscenarioop basis van branddynamiek en -kenmerken van verschillende stadia in het ontwikkelingsproces van een windturbinegon- delbrand, en het kwalitatief verdelen van de windturbine- gondelbrand in vijf stadia vanuit het perspectief van brandbeschermingstegenmaatregelen volgens een veranderingin gemiddelde temperatuur en mate van warmte-afgifte in de tijd in een afgesloten ontbrandingsruimte in de gondel voordat en nadat een gondelmateriaal een brandweerstands- niveau bereikt, waarbij de vijf stadia een beginnend sta- dium, een groeistadium, een flashover-stadium, een stadiumvan volledige ontwikkeling en een vervalstadium omvatten; waarbij het beginstadium een lage algemene mate van warm- te-afgifte, lage gemiddelde temperatuur in de gondel en plaatselijk hoge temperatuur nabij een ontbrandingsvoor- werp vertoont; in het groeistadium de brand uitbreidt omeen omringend brandbaar materiaal te ontsteken, en de ge- middelde temperatuur in de gondel snel van de omgevings- temperatuur naar meerdere honderden graden Celsius toe- neemt; in het flashover-stadium het oppervlak van alle brandbare materialen in de gondel verbrandt, de gemiddeldetemperatuur stijgt tot boven 600°C, en de vlam in wezen de algemene ruimte vult; in het stadium van volledige ontwik- keling de mate van warmte-afgifte geleidelijk het maximum bereikt en de gemiddelde temperatuur stijgt tot boven 800°C; de ontbranding door ventilatie beheerst wordt, dealgemene draagkracht van de gondel sterk verminderd wordt, en de gondel door kan branden, het vuur tegelijkertijd binnen en buiten de gondel kan branden en verspreiden, enin ernstige gevallen instorting kan veroorzaken; in het vervalstadium de algemene mate van warmte-afgifte geleide-slide in step (1) includes: setting up a fire scenario based on fire dynamics and characteristics of different stages in the development process of a wind turbine fire, and qualitatively dividing the wind turbine nacelle fire into five stages from the perspective of fire protection countermeasures according to a change in mean temperature and rate of heat release over time in a sealed combustion chamber in the nacelle before and after a nacelle material reaches a fire resistance level, with the five stages being an initial stage, a growth stage, a flashover stage, a stage of include full development and a decay stage; wherein the initial stage exhibits a low overall heat output rate, low mean temperature in the pod, and locally high temperature near a combustion object; in the growth stage, the fire spreads to ignite a surrounding combustible material, and the average temperature in the nacelle rises rapidly from ambient to several hundred degrees Celsius; in the flashover stage, the surface of all combustible materials in the nacelle burns, the average temperature rises above 600 ° C, and the flame essentially fills the general area; at the stage of full development, the degree of heat output gradually reaches the maximum and the average temperature rises above 800 ° C; the combustion is controlled by ventilation, the general carrying capacity of the nacelle is greatly reduced, and the nacelle can continue to burn, the fire can burn and spread simultaneously inside and outside the nacelle, causing collapse in severe cases; in the decay stage the general degree of heat emission conductive lijk vermindert, en de brandbare materialen binnen en bui- ten de gondel gereduceerd worden tot weg zijn; de tempera- tuur begint te dalen tot de omgevingstemperatuur, en degemiddelde temperatuur in de gondel zakt tot onder 80% van een piektemperatuuur.and the combustible materials inside and outside the pod are reduced to gone; the temperature starts to drop to the ambient temperature, and the average temperature in the pod drops below 80% of peak temperature. 7. Werkwijze voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel volgens con- clusie 2, waarbij het bewerkstelligen van het indicatie- testsysteem met brandbeschermingsfunctie in stap (2) om vat: het ontwikkelen van een indicatietestsysteem met brand- beschermingsfunctie gedurende het gehele proces van de windturbinebrand, als volgt: 1) indicatoren van ontbranding en thermisch gedrag van olie, omvattende een kritische stralingswarmteflux gq. kritische qr. een thermische traagheid ApC, een ontbran- dingstemperatuur To een effectieve ontbrandingswarmte AH en een stoichiometrische massaverhouding van lucht tot brandstof §; 2) indicatoren van warmte- en rookproductievermogen van olie, omvattende een hotmelt-Rockwell-hardheid C (HRC), een gemiddelde rookproductie V, en een rookpunthoogte SPH, waarbij de hotmelt-HRC als volgt berekend wordt: 1 (dm AH 4e HRC =—| — | 2 6) M, dt max B waarbij M, een aanvankelijke massa van het oliemonster dm | in een thermogravimetrische test is; — gen maximale dt max mate van massaverlies van het oliemonster in de thermogra- vimetrische test is; B een mate van verwarming van het cliemonster in de thermogravimetrische test is; en 3) gecombineerde indicatoren of brand- en rookgevaren tijdens het verspreiden van de brand, omvattende een brandgevaarparameter (FHP) en een rookparameter (SP) die worden berekend als volgt:A method of assessing fire hazard from typical oils in a wind turbine nacelle according to claim 2, wherein establishing the indication test system with fire protection function in step (2) comprises: developing an indication test system with fire protection function throughout process of the wind turbine fire, as follows: 1) indicators of combustion and thermal behavior of oil, including a critical radiant heat flux gq. critical qr. a thermal inertia ApC, an ignition temperature To, an effective heat of ignition AH and a stoichiometric mass ratio of air to fuel §; 2) indicators of heat and smoke production capacity of oil, comprising a hot melt Rockwell hardness C (HRC), an average smoke production V, and a smoke point height SPH, where the hot melt HRC is calculated as follows: 1 (dm AH 4e HRC = - | - | 2 6) M, dt max B where M, an initial mass of the oil sample dm | is in a thermogravimetric test; - n is the maximum dt max mass loss rate of the oil sample in the thermogravimetric test; B is a degree of heating of the clie sample in the thermogravimetric test; and 3) combined indicators of fire and smoke hazards during the spread of the fire, comprising a fire hazard parameter (FHP) and a smoke parameter (SP) calculated as follows: FHP = RR ax (8) li,FHP = RR ax (8) li, SEA SRR SP=——=— (9) AH, HRR het tabelleren of in een grafiek uitzetten met de test- indicatoren zoals hierboven berekend, om een resultaat te verkrijgen van uitgebreide beoordeling van het brandgevaar van de typische-fase olie in de windturbinegondel.SEA SRR SP = —— = - (9) AH, HRR tabulating or plotting with the test indicators as calculated above, to obtain a result of comprehensive fire hazard assessment of the typical-stage oil in the wind turbine nacelle . 8. Werkwijze voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel volgens con- clusie 2, waarbij in de test en analyse van thermogravime- trisch gedrag en thermogravimetrische kenmerken in stap (D), de verschillende mates van verwarming 5°C/min, 10°C/min, 20°C/min and 40°C/min zijn.A method for assessing fire hazards of typical oils in a wind turbine nacelle according to claim 2, wherein in the test and analysis of thermogravimetric behavior and thermogravimetric characteristics in step (D), the different degrees of heating are 5 ° C / min. , 10 ° C / min, 20 ° C / min and 40 ° C / min. 9. Werkwijze voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel volgens con- clusie 2, waarbij in de test en analyse van reactie-op- brand-gedrag en -kenmerken van brand in stap (¢), de ver- schillende externe thermische stralingswarmtefluxen 15 xw/m2, 25 kW/m?, 35 kW/m2, 50 kW/m? and 75 kW/m? zijn.A method of assessing fire hazard of typical oils in a wind turbine nacelle according to claim 2, wherein in the test and analysis of reaction-to-fire behavior and characteristics of fire in step (¢), the different external thermal radiant heat fluxes 15 xw / m2, 25 kW / m ?, 35 kW / m2, 50 kW / m? and 75 kW / m? to be. 10. Werkwijze voor het beoordelen van brandgevaar van typische oliën in een windturbinegondel volgens con- clusie 2, waarbij in de uitgebreide analyse in stap (dd), om een doelgerichte uitgebreide veiligheidsbeheersings- maatregel te nemen in het geval van een daadwerkelijke windturbinegondelbrand, het brandgevaar van de typische olie in de windturbinegondel geclassificeerd wordt op ba- sis van een concept van brandgevaarmatrix en aanvaardbare risicocriteria van de windenenergie-industrie zoals ge- toond in Tabel 1: Tabel 1 Classificatie van brandgevaar van typische olie in de windturbinegondel op basis van aanvaardbare risico- criteriaA method for assessing fire hazards of typical oils in a wind turbine nacelle according to claim 2, wherein in the comprehensive analysis in step (dd), to take a targeted comprehensive safety control measure in the event of an actual wind turbine nacelle fire, the fire hazard of the typical oil in the wind turbine nacelle is classified based on a concept of fire hazard matrix and acceptable risk criteria of the wind energy industry as shown in Table 1: Table 1 Classification of fire hazard of typical oil in the wind turbine nacelle based on acceptable risk - criteria Brandgsvaar- FHP (kW/mZeg) en SP (m2/kJd) klasse I FHP > 150, SP > 0,015 II 100 < FHP £ 150, 0,010 < SP £ 0,015 III 50 < FHP S 100, 0,005 < SP = 0,010 IV FHP < 50, SP =< 0,005 Klasse I indiceert dat het brandgevaar hoog is en bin- nen een onaanvaardbaar traject, en dat een beheersings- maatregel direct zou moeten worden genomen; Klasse II indiceert dat het brandgevaar hoog is, en dat een beheersingsmaatregel zou moeten worden genomen; Klasse III indiceert dat het brandgevaar hoog is, en dat een preventieve maatregel zou moeten worden genomen; en Klasse IV indiceert dat het brandgevaar laag is en bin- nen een aanvaardbaar traject; waarbij de maatregelen hierboven gepaard gaan met warm- te- en rookbeheersing; waarbij warmtebeheersing warmtepre- ventie, warmte-isolatie, warmtedissipatie, warmteweer- stand, vlamvertraging, en brandpreventie, etc. omvat; waarbij rookbeheersing rookonderdrukking, rookeliminatie, blokkering van rook, rookisolatie en rookafvoer, etc om- vat.Brandgsvaar- FHP (kW / mZeg) and SP (m2 / kJd) class I FHP> 150, SP> 0.015 II 100 <FHP £ 150, 0.010 <SP £ 0.015 III 50 <FHP S 100, 0.005 <SP = 0.010 IV FHP <50, SP = <0.005 Class I indicates that the fire hazard is high and within an unacceptable range, and that a control measure should be taken immediately; Class II indicates that the fire hazard is high and a control measure should be taken; Class III indicates that the fire hazard is high and that a preventive measure should be taken; and Class IV indicates that the fire hazard is low and within an acceptable range; wherein the above measures are coupled with heat and smoke control; wherein heat control includes heat prevention, heat insulation, heat dissipation, heat resistance, flame retardancy, and fire prevention, etc.; wherein smoke control includes smoke suppression, smoke elimination, smoke blocking, smoke isolation and smoke extraction, etc. -O-OrOo--O-OrOo-
NL2024895A 2019-02-15 2020-02-13 System and method for assessing fire hazard of typical oil in wind turbine nacelle NL2024895B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910118829.4A CN109781771A (en) 2019-02-15 2019-02-15 Typical oil fire hazard assessment system and its evaluation method in wind-power engine room

Publications (3)

Publication Number Publication Date
NL2024895A true NL2024895A (en) 2020-08-27
NL2024895A9 NL2024895A9 (en) 2020-09-10
NL2024895B1 NL2024895B1 (en) 2021-06-17

Family

ID=66504483

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024895A NL2024895B1 (en) 2019-02-15 2020-02-13 System and method for assessing fire hazard of typical oil in wind turbine nacelle

Country Status (2)

Country Link
CN (1) CN109781771A (en)
NL (1) NL2024895B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115192939A (en) * 2022-07-20 2022-10-18 昆明理工大学 Fire extinguishing method, system and equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080849A1 (en) * 2000-12-22 2002-06-27 Lyon Richard E. Heat release rate calorimeter for milligram samples
US20130309088A1 (en) * 2012-05-15 2013-11-21 Clipper Windpower, Llc Method for Protecting Wind Turbine Equipment in Fire Event

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2813133C2 (en) * 1978-03-25 1983-04-21 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Waste heat recovery system
JPH1135950A (en) * 1996-12-26 1999-02-09 Mitsubishi Heavy Ind Ltd Process for generation of electric power and power generation apparatus
CN101187999A (en) * 2007-11-15 2008-05-28 重庆大学 Prediction system and prediction method for building fire smoke flow feature
JP2013100391A (en) * 2011-11-08 2013-05-23 Unitika Ltd Method for producing polyamide resin composition, and polyamide resin composition
CN102879428B (en) * 2012-09-29 2014-09-10 南京工业大学 Combustible gas explosion venting harm effect testing device and analytical method
CN106770457B (en) * 2015-11-24 2019-06-21 神华集团有限责任公司 A kind of pyrolysis of coal Reaction heat determination method based on heat flow flux type DSC technique
CN105928969B (en) * 2016-05-26 2019-01-18 华南理工大学 The calculation method of thermal conduction resistance at high voltage single-core cable corrugated aluminum sheath
CN106153492A (en) * 2016-07-22 2016-11-23 河北省电力建设调整试验所 A kind of solid particulate matter pyrolysis characteristics and product generate method of testing
CN107808028B (en) * 2017-09-15 2022-11-18 中国核电工程有限公司 Analysis method for calculating fire influence range
CN109187634A (en) * 2018-08-22 2019-01-11 南京林业大学 Bituminous pavement Thermal Decomposition Mechanism research method under a kind of fire working

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080849A1 (en) * 2000-12-22 2002-06-27 Lyon Richard E. Heat release rate calorimeter for milligram samples
US20130309088A1 (en) * 2012-05-15 2013-11-21 Clipper Windpower, Llc Method for Protecting Wind Turbine Equipment in Fire Event

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN WEI ET AL: "Pyrolysis Properties and Kinetics of Typical Liquid Oils in Wind Turbine Nacelle", PROCEDIA ENGINEERING, ELSEVIER BV, NL, vol. 211, 7 February 2018 (2018-02-07), pages 668 - 673, XP085414100, ISSN: 1877-7058, DOI: 10.1016/J.PROENG.2017.12.062 *
WANG ZHENHUA ET AL: "Flammability hazards of typical fuels used in wind turbine nacelle", FIRE AND MATERIALS, vol. 42, no. 7, 1 November 2018 (2018-11-01), US, pages 770 - 781, XP055766816, ISSN: 0308-0501, DOI: 10.1002/fam.2632 *

Also Published As

Publication number Publication date
NL2024895B1 (en) 2021-06-17
NL2024895A9 (en) 2020-09-10
CN109781771A (en) 2019-05-21

Similar Documents

Publication Publication Date Title
Chen et al. An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate
Liu et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery
Huang et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode
Bates et al. Engine hot spots: Modes of auto-ignition and reaction propagation
Urban et al. Cellulose spot fire ignition by hot metal particles
Weng et al. Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives
CN106525895B (en) A kind of extension of high-temperature molten is jammed experimental provision and experimental method
Chen et al. Experimental investigation on the effect of ambient pressure on thermal runaway and fire behaviors of lithium‐ion batteries
NL2024895B1 (en) System and method for assessing fire hazard of typical oil in wind turbine nacelle
CN103776973A (en) Electrical fire short circuit simulator and simulation method thereof
CN111159960A (en) Numerical simulation method for fire caused by cable fault in tunnel
Wessies et al. Experimental and analytical characterization of firebrand ignition of home insulation materials
CN116665796A (en) Tunnel cabling fire simulation method based on pyrolysis combustion model
Armijo et al. Quantifying photovoltaic fire danger reduction with arc‐fault circuit interrupters
Jenft et al. Modeling of fire suppression by fuel cooling
Heilman et al. Observations of sweep–ejection dynamics for heat and momentum fluxes during wildland fires in forested and grassland environments
Deng et al. Metallurgical analysis of the ‘cause’arc beads pattern characteristics under different short-circuit currents
Lyu et al. Ignition ability prediction model of biomass fuel by arc beads using logistic regression
Wang et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery
Zak et al. Flaming ignition behavior of hot steel and aluminum spheres landing in cellulose fuel beds
Zhenhua et al. Flammability hazards of typical fuels used in wind turbine nacelle
Chen et al. Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions
Kalilainen et al. The measurement of Ag/In/Cd release under air-ingress conditions in the QUENCH-18 bundle test
Sha et al. Variation of ignition sensitivity characteristics of non-stick coal dust explosions
Sun et al. Fire hazard assessment of typical flammable liquid oils in wind turbine nacelle