NL2024885A - Marine fuel compositions and methods of making the same - Google Patents

Marine fuel compositions and methods of making the same Download PDF

Info

Publication number
NL2024885A
NL2024885A NL2024885A NL2024885A NL2024885A NL 2024885 A NL2024885 A NL 2024885A NL 2024885 A NL2024885 A NL 2024885A NL 2024885 A NL2024885 A NL 2024885A NL 2024885 A NL2024885 A NL 2024885A
Authority
NL
Netherlands
Prior art keywords
oil
fuel
marine
component
sulfur
Prior art date
Application number
NL2024885A
Other languages
Dutch (nl)
Other versions
NL2024885B1 (en
Inventor
Schorzman Bryan
Adarme Raul
Ramirez Mark
Original Assignee
Motiva Entpr Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motiva Entpr Llc filed Critical Motiva Entpr Llc
Publication of NL2024885A publication Critical patent/NL2024885A/en
Application granted granted Critical
Publication of NL2024885B1 publication Critical patent/NL2024885B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubricants (AREA)

Abstract

A marine fuel composition for use in marine engines comprising a fuel component selected from the group consisting of high sulfur fuel oil, low sulfur fuel oil, slurry oil from a fluid catalytic cracker, heavy coker gas oil, light cycle oil from a fluid catalytic cracker, vacuum tower bottoms, atmospheric tower bottoms, low sulfur straight run, high sulfur straight run, distillate base stock, low sulfur vacuum gas oil, high sulfur vacuum gas oil, cracked or straight run fuel oil, straight run gas oil, ultra low sulfur heating oil, residues, and combinations of the same, present in an amount between 10 vol% and 99.9 vol%, and a lubricity component selected from the group consisting of a base oil, an aromatic extract, and combinations of the same, wherein a sulfur content is between 0.101 wt % and 5 wt %.

Description

P126337NL00 Title: MARINE FUEL COMPOSITIONS AND METHODS OF MAKING
THE SAME BACKGROUND TECHNICAL FIELD
[0001] Described are compositions for use as fuels and methods of making the same. More specifically, described are compositions possessing lubricity useful as marine fuels.
DESCRIPTION OF THE RELATED ART
[0002] New regulations by the International Maritime Organization (IMO) requires the amount of sulfur in marine fuels to be less than 0.5 percent by weight (wt.%) by January 1, 2020 IMO 2020 Regulation).
[0003] Due to the inherent design of marine engines, there is a need for lubricity in marine fuels to maintain the balance between adequate wear protection on the engine components and thermal efficiency to maximize fuel efficiency. Sulfur, present in hydrocarbon fuels, can add the lubricity necessary for providing supplemental lubricity to marine engines. As a result of the IMO 2020 Regulation, the lubricity benefit provided by sulfur in marine fuels may be reduced significantly.
SUMMARY OF THE INVENTION
[0004] Described are compositions for use as fuels and methods of making the same. More specifically, described are compositions possessing lubricity useful as marine fuels.
[0005] In a first aspect, a marine fuel composition for use in marine engines 1s provided. The marine fuel composition includes a fuel component selected from the group consisting of high sulfur fuel oil (HSFO), low sulfurfuel oil (LSFO), slurry oil from a fluid catalytic cracker, heavy coker gas oil (HCGO), light cycle oil (LCO) from a fluid catalytic cracker, vacuum tower bottoms (VTB), atmospheric tower bottoms (ATB), low sulfur straight run (LSSR), high sulfur straight run (HSSR), distillate base stock (DBS), low sulfur vacuum gas oil (LSVGO), high sulfur vacuum gas oil (HSVGO), cracked or straight run fuel oil (m 100), straight run gas oil (SRGO), ultra low sulfur heating oil (ULSHO), residues, and combinations of the same, the fuel component is present in an amount between 10 vol.% and 99.9 vol.%, and a lubricity component operable to increase the lubricity of the fuel component, the lubricity component selected from the group consisting of a base oil, an aromatic extract, and combinations of the same, where a sulfur content is between 0.101 wt.% and 5 wt.%.
[0006] In certain aspects, the lubricity component is present in an amount between 0.1 vol.% and 90 vol.%. In certain aspects, the base oil is selected from the group consisting of group II base oils, group III base oils, group IV base oils, group V base oils, and combinations of the same. In certain aspects, the marine fuel composition further includes fuel additives. In certain aspects, the residues are selected from the group consisting of straight run residue, thermal residue, cracked residue, and combinations of the same. In certain aspects, an API gravity is between 11.2 and 40. In certain aspects, a viscosity is between 3 cSt and 400 cSt at 122 deg F. In certain aspects, an amount of calcium is less than 30 mg/kg. In certain aspects, an amount of zinc is less than 15 mg/kg. In certain aspects, an amount of phosphorus is less than 15 mg/kg. In certain aspects, the lubricity component further includes a group I base oil.
[0007] In a second aspect a method of making a marine fuel composition is provided. The method includes the steps of developing a computer blend model for a fuel component and a lubricity component based on a desired value for a target property, where the computer blend model includes a volumetric ratio of the fuel component, where the computer blend modelincludes a volumetric ratio of the lubricity component, preparing a physical sample of the fuel component based on the volumetric ratio of the computer blend model, mixing the lubricity component with the fuel component to produce the marine fuel composition, testing the target property of the marine fuel composition for conformance with the desired value, and preparing a commercial volume of the marine fuel composition.
[0008] In certain aspects, the method further includes the step of mixing a fuel additive into the marine fuel composition. In certain aspects, the computer blend model includes a value for each target property of the fuel component and the lubricity component. In certain aspects, the fuel component is selected from the group consisting of high sulfur fuel oil (HSFO), low sulfur fuel oil (LSFO), slurry oil from a fluid catalytic cracker, heavy coker gas oil (HCGO), light cycle oil (LCO) from a fluid catalytic cracker, vacuum tower bottoms (VTB), atmospheric tower bottoms (ATB), low sulfur straight run (LSSR), high sulfur straight run (HSSR), distillate base stock (DBS), low sulfur vacuum gas oil (LSVGO), high sulfur vacuum gas oil (HSVGO), cracked or straight run fuel oil (m 100), straight run gas oil (SRGO), ultra low sulfur heating oil (ULSHO), residues, and combinations of the same. In certain aspects, the lubricity component is selected from the group consisting of a base oil, an aromatic extract, and combinations of the same. In certain aspects, the target property is selected from the group consisting of amount of sulfur, the API gravity, the kinematic viscosity, the flash point, the amount of hydrogen sulfide, the amount and types of metal components, the acid number, the total sediment by hot filtration, the oxidation stability, the amount of fatty acid methyl ester, the cloud point, the cold filter plugging point, the pour point, the lubricity, the amount of metals, and combinations of the same. In certain aspects, the target property is API gravity, and where the desired value of the API gravity is between 11.2 and 40. In certain aspects, the target property is viscosity, and where the desired value of the viscosity is between 3 ¢St and 400 cSt at 122deg F. In certain aspects, the target property is an amount of sulfur, and where the amount of sulfur is between 0.101 wt.% and 5 wt.%.
DETAILED DESCRIPTION OF THE INVENTION
[0009] While the scope will be described with several embodiments, it is understood that one of ordinary skill in the relevant art will appreciate that many examples, variations and alterations to the apparatus and methods described herein are within the scope and spirit. Accordingly, the exemplary embodiments described herein are set forth without any loss of generality, and without imposing limitations.
[0010] The compositions and methods described here are directed to marine fuel compositions and the methods of making the marine fuels. The marine fuel compositions are blends of fuel components. The marine fuel compositions are suitable for use in marine engines while meeting the IMO 2020 regulation and any other specifications that regulate marine fuels.
[0011] Advantageously, the marine fuel compositions comply with the IMO 2020 Regulation and inherently provide lubricity to engines. Providing lubricity to engines protects the integrity of the engines, increases thermal efficiency and contributes to engine longevity. The lubricity of the fuel can protect the interface between the piston ring and the wet cylinder in a marine engine. The lubricity of the fuel can reduce friction, heat and wear between mechanical components of the marine engine. Inherently providing lubricity means the use of lubricants can be reduced or eliminated in the marine fuel compositions. Advantageously, the lubricity components used in the marine fuel compositions can act as both a lubricant and as a fuel source. Advantageously, the marine fuel compositions containing lubricating characteristics can increase wear protection and fuel efficiency compared to fuels that meet the IMO 2020 regulation with regard to sulfur but do not contain lubricants. Advantageously, the use of the fuel component togetherwith the lubricity component is in the absence of compatibility and stability concerns across the range of compositions described here.
[0012] As used throughout, “aromatic extract” refers to co-products developed during the base oil manufacturing process. A solvent can be used 5 in an extraction process to extract multi-ring aromatic and high-sulfur materials from a feedstock to the base oil manufacturing process. The extracted aromatic extracts are then separated from the solvent and the solvent can be recycled as part of the extraction process. The raffinate from the extraction process can be further processed to produce base oils.
[0013] As used throughout, “base oil” refers to a base stock or lubrication grade oil with a boiling point range between 500 degrees Fahrenheit (deg F) and 1050 deg F and includes hydrocarbons with 10 to 100 carbon atoms. The American Petroleum Institute (API) categorizes base oils into groups based on the molecular chemistry, such as the amount of paraffins (saturates), naphthenes, aromatics, oleophatics, oleophobics, esters, polyolefins, and other molecular structures, along with properties of the base oil. The base oils are grouped into group I base oils, group II base oils, group III base oils, group IV base oils, and group V base oils. Base oils are not considered a fuel component or hydrocarbon fraction for purposes of the marine fuel composition.
[0014] As used throughout, “group I base oil” refers to a base oil that contains less than 90 weight percent (wt.%) saturates and/or greater than
0.03 wt.% sulfur and has a viscosity index greater than or equal to 80 and less than 120. Group I base oils do not include slack waxes.
[0015] As used throughout, “group II base oil” refers to a base oil that contains greater than or equal to 90 wt.% saturates and less than or equal to 0.03 wt.% sulfur and has a viscosity index greater than or equal to 80 and less than 120.
[0016] As used throughout, “group III base oil” refers to a base oil that contains greater than or equal to 90 wt.% saturates and less than or equal to 0.03 wt.% sulfur and has a viscosity index greater than or equal to 120.
[0017] As used throughout, “group IV base oil” refers to a base oil that contains polyalphaolefins (PAO).
[0018] As used throughout, “group V base oil” refers to all other base stocks not included in group I base oils through group IV base oils. For purposes of the marine fuel compositions described herein, group V base oils do not include compounds considered fuel components.
[0019] As used throughout, “IMO 2020 Regulation” refers to the requirement by the International Maritime Organization (IMO) that all marine fuels contain 0.5 wt.% or less sulfur by January 1, 2020.
[0020] As used throughout, “lubricity” refers to the ability of a lubricating compound to reduce the friction or wear on moving parts. A high lubricity fuel exhibits a reduce amount of friction compared to a low lubricity fuel. The lubricity of a fuel cannot be directly measured, so a number of test methodologies employing visual means have heen developed to determine lubricity. Test methodologies for measuring lubricity include ASTM D6078 (Scuffing Load Ball-on-Cylinder Lubricity Evaluator (SLBOCLE) test), ASTM D6079 (High Frequency Reciprocating Rig (HFRR) test), and ISO 12156-1 (HFRR test). The specific test chosen depends on the type of fuel or use of the fuel.
[0021] As used throughout, “lubricants” refers to compositions for use as friction modifiers that are not intended to be consumed during operation of an engine. Lubricants are designed to have a high survivability. Lubricants are different from marine fuels and marine fuels differ from lubricants, where lubricants alone are not suitable for use as marine fuels. Lubricants are designed for specific applications and specific engines, where additives can be used with lubricants to pro-long the life of the lubricant. A composition used as a lubricant does not inherently provide the sameproperties as the lubricity component in the marine fuel compositions described here.
[0022] As used throughout, “marine fuels” refers to compositions that are intended to be consumed in marine engines. The composition of the marine fuel can be selected based on the desired properties and the type of marine engine in which the composition is to be used. Marine engines can include compression engines and turbine engines. The range of fuels suitable for use in a compression engine overlaps, but is different from the range of fuels suitable for use in turbine engines.
[0023] The marine fuel compositions include a fuel component and a lubricity component. The selection of the fuel component and the lubricity component can be made to produce a marine fuel composition that has the desired values of the targeted properties and the type of marine engine. The targeted properties can include the amount of sulfur, the API gravity, the kinematic viscosity, the flash point, the amount of hydrogen sulfide, the amount and types of metal components, the acid number, the total sediment by hot filtration, the oxidative stability, the amount of fatty acid methyl ester, the cloud point, the cold filter plugging point, the pour point, the lubricity, the amount of metals, and combinations of the same. In at least one embodiment, the marine fuel compositions can be formulated to meet the specifications of ISO 8217. In at least one embodiment, the marine fuel compositions can be formulated based on a desired use and such that the desired values of the targeted properties are within the specifications of ISO
8217. The metals that can be tested for include calcium, zinc, phosphorus, and combinations of the same.
[0024] The marine fuel composition can have an API gravity between
11.2 and 40. The marine fuel composition can have an amount of sulfur between 0.1.wt % and 5 wt.%, alternately between 0.101 wt.% and 5 wt.%, alternately between 0.101 wt.% and 3.5 wt.%, alternately between 0.1 wt.% and 0.5 wt.%, and alternately between 0.101 wt.% and 0.5 wt.%. Themarine fuel composition can have a viscosity between 3 centiStokes (cSt) and 400 cSt at 122 deg F.
[0025] The fuel component can include one or more types of hydrocarbon fraction that can be used as a fuel in combustion engines. The fuel component can be any composition intended to be consumed in marine engines. Examples of hydrocarbon fractions useful as the fuel component can include high sulfur fuel oil (HSFO), low sulfur fuel oil (LSFO), slurry oil from a fluid catalytic cracker, heavy coker gas oil (HCGO), light cycle oil (LCO) from a fluid catalytic cracker, vacuum tower bottoms (VIB), atmospheric tower bottoms (ATB), low sulfur straight run (LSSR), high sulfur straight run (HSSR), distillate base stock (DBS), low sulfur vacuum gas oil (LSVGO), high sulfur vacuum gas oil (HSVGO), cracked or straight run fuel oil (m100), straight run gas oil (SRGO), ultra low sulfur heating oil (ULSHO), residues, and combinations of the same. Examples of residues include straight run residues, thermal residues, cracked residues, and combinations of the same.
[0026] The fuel component can be present in an amount between 10 percent by volume (vol.%) of the marine fuel composition and 99.9 vol.% of the marine fuel composition, alternately between 20 vol.% and 99.9 vol.% of the marine fuel composition, alternately 30 vol.% and 99.9 vol.% of the marine fuel composition, alternately 40 vol.% and 99.9 vol.% of the marine fuel composition, alternately 50 vol.% and 99.9 vol.% of the marine fuel composition, alternately 60 vol.% and 99.9 vol.% of the marine fuel composition, alternately 70 vol.% and 99.9 vol.% of the marine fuel composition, alternately 80 vol.% and 99.9 vol.% of the marine fuel composition, alternately 90 vol.% and 99.9 vol.% of the marine fuel composition, alternately 90 vol.% and 99.8 vol.% of the marine fuel composition, alternately 90 vol.% and 99.5 vol.% of the marine fuel composition, alternately 90 vol.% and 99 vol.%, alternately between 92 vol.% and 99.9 vol.%, and alternately between 92 vol.% and 99.5 vol.%.
[0027] The lubricity component can be any combustible component that can act as a lubricant to an engine as part of a fuel blend. Examples of combustible components suitable for use as the lubricity component include base oils, aromatic extracts, and combinations of the same. Examples of base oil components include group I base oils, group II base oils, group III base oils, group IV base oils, group V base oils, and combinations of the same. In at least one embodiment, the lubricity component can include a group I base oil. In at least one embodiment, the lubricity component can include a group II base oil. In at least one embodiment, the lubricity component can include a group III base oil. In at least one embodiment, the lubricity component can include a group IV base oil. In at least one embodiment, the lubricity component can include a group V base oil. The lubricity component is not considered a fuel component in the marine fuel composition. The lubricity component can be selected based on the desired properties of the marine fuel composition and not the type of engine used.
[0028] The lubricity component can be present in an amount between 1 vol.% of the marine fuel composition and 8 vol.% of the marine fuel composition, alternately between 0.5 vol.% of the marine fuel composition and 8 vol.% of the marine fuel composition, alternately between 0.2 vol.% of the marine fuel and 8 vol.% of the marine fuel composition, alternately between 1 vol.% of the marine fuel composition and 10 vol.% of the marine fuel composition, alternately 0.5 vol.% and 10 vol.% of the marine fuel composition, alternately between 0.2 vol.% and 10 vol.% of the marine fuel composition, alternately between 0.1 vol.% and 10 vol.% of the marine fuel composition, alternately between 0.1 vol.% and 20 vol.% of the marine fuel composition, alternately between 0.1 vol.% and 30 vol.% of the marine fuel composition, alternately between 0.1 vol.% and 40 vol.% of the marine fuel composition, alternately between 0.1 vol.% and 50 vol.% of the marine fuel composition, alternately between 0.1 vol.% and 60 vol.% of the marine fuel composition, alternately between 0.1 vol.% and 70 vol.% of the marine fuelcomposition, alternately between 0.1 vol.% and 80 vol.% of the marine fuel composition, and alternately between 0.1 vol.% and 90 vol.% of the marine fuel composition.
[0029] The marine fuel composition can include fuel additives. Fuel additives can be any compound formulated to enhance the quality, efficiency, or a performance characteristic of the marine fuel composition. The fuel additives can be added to enhance or improve a target property or to impart a property on the fuel. Fuel additives suitable for use can include pour point additives, solubility additives, lubricity additives, and combinations of the same. In an alternate embodiment, fuel additives suitable for use can include solubility additives, lubricity additives, and combinations of the same. As used here, lubricity additives differ from the lubricity component in that a lubricity additive are added to improve one or more properties of the marine fuel composition and not added for the purpose of increasing the release of energy in the marine engine. Fuel additives can be present in amount of between 0 vol.% and 25 vol.% of the marine fuel compositions. Lubricity additives can be included to address compatibility and stability concerns. Compatibility and stability concerns include the ability to blend the components in a homogeneous mixture, the reduction or elimination of the precipitation of asphaltenes or other solid materials. In at least one embodiment of the marine fuel composition, the lubricity component can act as a pour point additive in addition to adding lubricity to the marine fuel composition.
[0030] The overall amount of the fuel component in the marine fuel composition, the specific types of hydrocarbon fractions selected as the fuel component, and the amount of each hydrocarbon fraction selected as the fuel component can be chosen to meet the desired target properties and required the use of the marine fuel composition. It will be appreciated by one of skill in the art that not only the type of hydrocarbon fraction selected, but also the amount of that hydrocarbon fraction can impact the properties of thefuel component. By way of non-limiting example, a fuel component that contains 80 vol.% ultra low sulfur heating oil and 20 vol.% high sulfur fuel oil can result in a fuel component with less sulfur than a fuel component that contains 20 vol.% ultra low sulfur heating oil and 80 vol.% high sulfur fuel oil. By way of non-limiting example, it is anticipated that to achieve a marine fuel composition having an amount of sulfur of about 0.101 wt.%, the resulting marine fuel composition can include primarily ultra low sulfur heating oil with small amounts of gas oils and low sulfur fuel oils. To achieve marine fuel compositions that have an amount of sulfur of about 0.5 wt.% the amount of ultra low sulfur heating oil can be decreased while the amount of other hydrocarbon fractions can be increased. The specific compounds selected as the fuel component and lubricity component can be selected to optimize the desired properties of the marine fuel composition. It will be appreciated by one of skill in the art that each type of hydrocarbon fraction can have slightly different values for the target properties based on the source of the hydrocarbon fraction and the processing conditions.
[0031] The marine fuel composition can be prepared according to the following method. The specifications of the hydrocarbon fractions available for use as the fuel component and the specifications of the lubricity component are loaded into a computer blend model. The computer blend model is used to develop a fuel component and lubricity component that meets the desired values of the target properties for the marine fuel composition. In a second step, a physical sample of the fuel component is prepared based on the volumetric ratios identified in the computer blend model. The fuel component is then mixed with a physical sample of the lubricity component according to the volumetric ratios identified in the computer blend model. The prepared physical sample of marine fuel composition containing the fuel component and lubricity component is then tested for one or more target properties. Testing the physical sample can provide assurance that the marine fuel composition does not have anycompatibility or stability concerns. If the test results suggest desired values for the target properties are not met, or there are compatibility and stability concerns, then fuel additives can be mixed into the marine fuel composition to achieve the desired values or to address the compatibility and stability concerns. Alternately, if the test results are considered negative, the physical sample can be discarded and the process can be started again with the computer blend model. The test methodology employed to test the physical sample can depend on the target property being tested. In at least one embodiment, the test methodology of the target property is defined by an International Standards Organization (ISO) standard, such as ISO 8217:2017.
[0032] When the test results confirm the physical sample of the marine fuel composition possesses the desired values of the target properties tested, a commercial volume of the marine fuel composition can be mixed. The commercial volume of the marine fuel composition can be prepared in a mixing tank or can be prepared directly into a distribution vessel. Distribution vessels can include trucks, railcars, ships, barges, and combinations of the same.
[0033] The marine fuel compositions can have values of properties that make them advantageous for use in marine engines over the fuel compositions alone. The marine fuel compositions can have values of sediment, ash content, and micro carbon residue that can reduce the amount of deposit on engines, prolonging engine life as compared to the use of fuel compositions in the absence of lubricity components.
[0034] The marine fuel compositions can be in the absence of biofuels. The marine fuel compositions can be in the absence of fatter ester biofuels. The marine fuel compositions can be in the absence of fatty acid methyl esters. The marine fuel compositions can be in the absence of thickeners and anti-foam additives. The marine fuel compositions can be in the absence of anti-oxidants, ashless dispersants, anti-wear agents, detergents, rustinhibitors, dehazing agents, demulsifying agents, metal deactivating agents, friction modifiers, antifoaming agents, co-solvents, package compatibilizers, corrosion-inhibitors, dyes, extreme pressure agents and the like and mixtures thereof.
[0035] EXAMPLES
[0036] Examples 1-9. Each of the Examples 1-9 was developed based on computer modeling of a blend sample of a marine fuel composition. Each Example 1-9 was developed to achieve a specified amount of sulfur. Amongst all of the Examples 1-9, similar components were given the same values for the target properties of API Gravity, amount of sulfur and viscosity.
[0037] Example 1. Example 1 provides an example of a marine fuel composition with 0.1 wt.% sulfur.
[0038] Table 1. Properties of the marine fuel composition of Example 1. Component Amount | Sulfur Content | API Gravity | Viscosity Amount of Fuel Component 94.0 vol.% Low Sulfur Fuel Oil 60% 0.700 19.00 900.00 1E Straight Run Gas Oil | 8.0% 0.117 36.20 3.27 rm fe Ultra Low Sulfur Oil | 80.0 % 0.057 37.80 2.13 mT Amount of Lubricity Component 6.0 vol.% Group II Base Oil 29.70
[0039] The API gravity of the marine fuel composition of Example 1 was
35.91. The sulfur content of the marine fuel composition of Example 1 was
0.10 %. The viscosity of the marine fuel composition of Example 1 was 3.06 centiStokes (cSt).
[0040] Example 2. Example 2 provides an example of a marine fuel composition with 0.3 wt.% sulfur.
[0041] Table 2. Properties of the marine fuel composition of Example 2. Component Amount | Sulfur Content | API Gravity | Viscosity Fon EJ Pe Amount of Fuel Component 94.8 vol.% Low Sulfur Fuel Oil 11.3 % 0.700 19.00 900.00 ee Distillate Base Stock | 75.56 % 0.280 30.80 2.53 Ed a jor fer Straight Run Gas Oil 36.20 Amount of Lubricity Component 5.0 vol.%
[0042] The API gravity of the marine fuel composition of Example 2 was
29.70. The sulfur content of the marine fuel composition of Example 2 was
0.30 %. The viscosity of the marine fuel composition of Example 2 was 4.18 cSt.
[0043] Example 3. Example 3 provides an example of a marine fuel composition with 0.5 wt.% sulfur.
[0044] Table 3. Properties of the marine fuel composition of Example 3. Component Amount | Sulfur Content | API Gravity | Viscosity (vol.%) (%) (cSt) Amount of Fuel Component 97.7 vol.% Low Sulfur Fuel Oil 15.6 % 0.700 19.00 900.00 (LSFO) #1 Light Cycle Oil 11.7% | 0.430 24.00 2.23 (LCO) Low Sulfur Vacuum Gas Oil | 58.6 % 0.368 26.00 34.00 (LSVGO) Low Sulfur Fuel Oil 11.7 % 1.040 14.70 4078.00 (LSFO) #2 Amount of Lubricity Component 2.3 vol.% Group II Base Oil 0 34.3 20.50
[0045] The API gravity of the marine fuel composition of Example 3 was
23.42. The sulfur content of the marine fuel composition of Example 3 was
0.50 %. The viscosity of the marine fuel composition of Example 3 was 43.8 cSt.
[0046] Example 4. Example 4 provides an example of a marine fuel composition with 0.5 wt.% sulfur.
[0047] Table 4. Properties of the marine fuel composition of Example 4.
Component Amount | Sulfur Content | API Gravity | Viscosity Amount of Fuel Component 98.5 vol.% Distillate Base Stock 25.6% | 0.280 19.00 2.53 Ea en High Sulfur Fuel Oil 36% 2.950 12.40 2549.00 EN il Low Sulfur Straight Run | 61.5% | 0.500 36 264.00 Straight Run Gas Oil 7.7% 0.117 14.70 3.27 a TT | Amount of Lubricity Component 1.5 vol.%
[0048] The API gravity of the marine fuel composition of Example 4 was
23.00. The sulfur content of the marine fuel composition of Example 4 was
0.49 %. The viscosity of the marine fuel composition of Example 4 was 32.02 cSt.
[0049] Example 5. Example 5 provides an example of a marine fuel composition with 0.5 wt.% sulfur.
[0050] Table 5. Properties of the marine fuel composition of Example 5. Component Amount | Sulfur Content {| API Gravity | Viscosity al kd Low Sulfur Fuel Oil 286% 0.700 19.00 900.00 Ere JJ Light Cycle Oil 10.7 % 0.430 24.00 2.23 eee Low Sulfur Straight Run | 50.0 % 0.500 19.00 264.00 omer fo ee Ultra Low Sulfur Oil 36% 0.057 37.80 2.13 Td ee | Amount of Lubricity Component 7.1 vol.%
[0051] The API gravity of the marine fuel composition of Example 5 was
20.98. The sulfur content of the marine fuel composition of Example 5 was
0.50 %. The viscosity of the marine fuel composition of Example 5 was 97.46 cSt.
[0052] Example 6. Example 6 provides an example of a marine fuel composition with 1 wt.% sulfur.
[0053] Table 6. Properties of the marine fuel composition of Example 6. Component Amount | Sulfur Content | API Gravity | Viscosity Foe oe Low Sulfur Fuel Oil 289% 0.700 19.00 900.00 reo oJ Light Cycle Oil 17.3 % 0.430 24.00 2.23 Fi a a Low Sulfur Vacuum Gas Oil | 26.0 % 0.368 26.00 34.00 Emm oe Je High Sulfur Fuel Oil 14.5 % 2.950 12.40 2549.00 wa |
[0054] The API gravity of the marine fuel composition of Example 6 was
19.29. The sulfur content of the marine fuel composition of Example 6 was
0.97 %. The viscosity of the marine fuel composition of Example 6 was 55.75 cSt.
[0055] Example 7. Example 7 provides an example of a marine fuel composition with 1 wt.% sulfur.
[0056] Table 7. Properties of the marine fuel composition of Example 7. Component Amount | Sulfur Content | API Gravity | Viscosity Foe ET re Low Sulfur Fuel Oil 50.4 % 0.700 19.00 900.00 re eo Too Je Light Cycle Oil 7.2% 0.430 24.00 2.23 Se eer Low Sulfur Fuel Oil 21.6% 1.040 14.70 4078.00 High Sulfur Fuel Oil | 5.8 % 2.950 12.40 2549.00 = B el |
[0057] The API gravity of the marine fuel composition of Example 7 was
16.61. The sulfur content of the marine fuel composition of Example 7 was
0.97 %. The viscosity of the marine fuel composition of Example 7 was
340.22 cSt.
[0058] Example 8. Example 8 provides an example of a marine fuel composition with 2 wt.% sulfur.
[0059] Table 8. Properties of the marine fuel composition of Example 8.
Component Amount | Sulfur Content | API Gravity | Viscosity al da cd Amount of Fuel Component 98.4 vol.% ST Low Sulfur Fuel Oil 6.9% 0.700 19.00 900.00 ror Jor Jere Vacuum Tower Bottoms 296% 3.180 16.30 3071.00 ew Cracked or Straight Run 41.3 % 1.690 15.80 141.00
TT Amount of Lubricity Component 1.6 vol.%
[0060] The API gravity of the marine fuel composition of Example 8 was
14.54. The sulfur content of the marine fuel composition of Example 8 was
2.00 %. The viscosity of the marine fuel composition of Example 8 was
248.52 cSt.
[0061] Example 9. Example 9 provides an example of a marine fuel composition with about 2.5 wt.% sulfur.
[0062] Table 9. Properties of the marine fuel composition of Example 9. Component Amount | Sulfur Content | API Gravity | Viscosity Ee Amount of Fuel Component 97.8 vol.% ST Light Cycle Oil (LCO) 24.00 Slurry Oil from FCC 56.00 Low Sulfur Fuel Oil 3.0 % 1.040 14.70 4078.00 eee High Sulfur Fuel Oil 216% 2.950 12.40 2549.00 re Jo fe Vacuum Tower Bottoms | 43.2 % 3.180 16.30 3071.00 Cl
[0063] The API gravity of the marine fuel composition of Example 9 was
13.91. The sulfur content of the marine fuel composition of Example 9 was
2.43 %. The viscosity of the marine fuel composition of Example 9 was
378.94 cSt.
[0064] Example 10. Example 10 contains the analysis of actual blends developed in laboratory. Blend 1 contained 35 vol.% low sulfur straight run (LSSR), 11 vol.% low sulfur fuel oil (VLSFO), and 54 vol.% straight run gas oil (SRGO). The components of Blend 1 had the properties in Table 10.
[0065] Table 10. Properties of Blend 1 (vol.%) (wt.%) (cSt) (LSSR) (VLSFO) (SRGO)
[0066] Blend 2 contained 95 vol.% of Blend 1 as the fuel component and 5 vol.% of a Group II Base Oil as the lubricity component. Blend 3 contained 90 vol.% of Blend 1 and 10 vol.% of a Group II Base Oil as the lubricity component. Blend 4 contained 95 vol.% of Blend 1 and 5 vol.% of a Group II Base Oil as the lubricity component. Blend 5 contained 90 vol.% of Blend 1 and 10 vol.% of a Group II Base Oil as the lubricity component. The Group II Base Oil in Blend 2 and Blend 3 was the same. The Group II Base Oil in Blend 4 and Blend 5 was the same, but different from that used in Blend 2 and Blend 3. The results for each blend are shown in Table 11.
[0067] Table 11. Properties of Blends for Example 10. Blend | Sulfur API Viscosity | Total Ash Micro Lubricity Content | Gravity | (cSt) Sediment | Content | Carbon
[0068] Each of the blends 1 through 5 have a cleanliness rating of 1 and a compatibility rating of 1. The total sediment and the ash content are a quantitative analysis of the benefits of the lubricity component on the engines. Blends 2-5 show better properties of total sediment, ash content, and micro carbon residue compared to Blend 1, which 1s an indication that such blends would create less deposit on the engines.
[0069] Although the present embodiments have been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereupon without departing from the principle and scope. Accordingly, the scope should be determined by the following claims and their appropriate legal equivalents.
[0070] The singular forms “a,” “an,” and “the” include plural referents, unless the context clearly dictates otherwise.
[0071] Optional or optionally means that the subsequently described event or circumstances can or may not occur. The description includes instances where the event or circumstance occurs and instances where it does not occur.
[0072] Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the oneparticular value and/or to the other particular value, along with all combinations within said range.
[0073] As used herein and in the appended claims, the words “comprise,” “has,” and “include” and all grammatical variations thereof are each intended to have an open, non-limiting meaning that does not exclude additional elements or steps.
[0074] As used herein, terms such as “first” and “second” are arbitrarily assigned and are merely intended to differentiate between two or more components of an apparatus. It is to be understood that the words “first” and “second” serve no other purpose and are not part of the name or description of the component, nor do they necessarily define a relative location or position of the component. Furthermore, it is to be understood that that the mere use of the term “first” and “second” does not require that there be any “third” component, although that possibility is contemplated under the scope of the embodiments.

Claims (20)

CONCLUSIESCONCLUSIONS 1. Scheepsbrandstofsamenstelling voor gebruik in scheepsmotoren, welke scheepsbrand-stofsamenstelling omvat: een brandstofbestanddeel, waarbij het brandstofbestanddeel wordt gekozen uit de groep bestaande uit brandstofolie met een hoog gehalte aan zwavel (HSFO), brandstofolie met een laag gehalte aan zwavel (LSFO), slurry-olie afkomstig van een katalytische kraakinstallatie voor fluïdum, zware gasolie uit een verkookser (HCGO), lichte cycle-olie (LCO) afkomstig van een katalytische kraakinstallatie voor fluïdum, bodemfracties van vacuümkolommen (VTB), bodemfracties van atmosferische kolommen (ATB), directe benzine met een laag gehalte aan zwavel (LSSR), directe benzine met een hoog gehalte aan zwavel (HSSR), basisdestillaat (DBS), onder vacuüm verkregen gasolie met een laag gehalte aan zwavel (LSVGO), onder vacuüm verkregen gasolie met een hoog gehalte aan zwavel (HSVGO), gekraakte of directe stookolie (m100), directe gasolie (SRGO), lichte stookolie met een uiterst laag gehalte aan zwavel (ULSHO), residuen en combinaties daarvan, waarbij het brandstofbestanddeel aanwezig is in een hoeveelheid van 10 vol.% tot 99,9 vol.%; en een smeervermogenbestanddeel dat het smeervermogen van het brandstofbestanddeel kan verhogen, waarbij het smeervermogenbestanddeel wordt gekozen uit de groep bestaande uit een basisolie, een aromatisch extract en combinaties daarvan, waarbij het zwavelgehalte zich bevindt tussen 0,101 gew.% en 5 gew.%.A marine fuel composition for use in marine engines, which marine fuel composition comprises: a fuel component, the fuel component being selected from the group consisting of high sulfur fuel oil (HSFO), low sulfur fuel oil (LSFO), slurry oil from a fluid catalytic cracker, heavy gas oil from a coker (HCGO), light cycle oil (LCO) from a fluid catalytic cracker, bottoms from vacuum columns (VTB), bottoms from atmospheric columns (ATB), direct Gasoline with low sulfur content (LSSR), straight gasoline with high content of sulfur (HSSR), basic distillate (DBS), vacuum gas oil with low content of sulfur (LSVGO), vacuum derived gas oil with high content sulfur (HSVGO), cracked or direct fuel oil (m100), direct gas oil (SRGO), light fuel oil with an extremely low sulfur content avel (ULSHO), residues and combinations thereof, wherein the fuel component is present in an amount from 10% to 99.9% by volume; and a lubricity component that can increase the lubricity of the fuel component, wherein the lubricity component is selected from the group consisting of a base oil, an aromatic extract, and combinations thereof, wherein the sulfur content is between 0.101 wt% and 5 wt%. 2. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij het smeervermogen-bestanddeel aanwezig is in een hoeveelheid van 0,1 vol.% tot 90 vol.%.The marine fuel composition of claim 1, wherein the lubricity component is present in an amount of 0.1% to 90% by volume. 3. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij de basisolie wordt gekozen uit de groep bestaande uit basisoliën uit groep II, basisoliën uit groep III, basisoliën uit groep IV, basisoliën uit groep V, en combinaties daarvan.The marine fuel composition of claim 1, wherein the base oil is selected from the group consisting of Group II base oils, Group III base oils, Group IV base oils, Group V base oils, and combinations thereof. 4 Scheepsbrandstofsamenstelling volgens conclusie 1, voorts omvattende brandstof-additieven.A marine fuel composition according to claim 1, further comprising fuel additives. 5. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij de residuen worden gekozen uit de groep bestaande uit direct residu, thermisch residu, gekraakt residu en combinaties daarvan.The marine fuel composition of claim 1, wherein the residues are selected from the group consisting of direct residue, thermal residue, cracked residue, and combinations thereof. 6. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij de API-dichtheid zich bevindt tussen 11,2 en 40.The marine fuel composition of claim 1, wherein the API density is between 11.2 and 40. 7. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij de viscositeit bij 122 graden F zich bevindt tussen 3 cSt en 400 cSt.The marine fuel composition of claim 1, wherein the viscosity at 122 degrees F is between 3 cSt and 400 cSt. 8. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij de hoeveelheid calcium kleiner is dan 30 mg/kg.Marine fuel composition according to claim 1, wherein the amount of calcium is less than 30 mg / kg. 9. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij de hoeveelheid zink kleiner is dan 15 mg/kg.The marine fuel composition of claim 1, wherein the amount of zinc is less than 15 mg / kg. 10. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij de hoeveelheid fosfor kleiner is dan 15 mg/kg.Marine fuel composition according to claim 1, wherein the amount of phosphorus is less than 15 mg / kg. 11. Scheepsbrandstofsamenstelling volgens conclusie 1, waarbij het smeervermogen-bestanddeel voorts een basisolie uit groep I omvat.The marine fuel composition of claim 1, wherein the lubricity component further comprises a Group I base oil. 12. Werkwijze voor het bereiden van een scheepsbrandstofsamenstelling, welke werkwijze de volgende stappen omvat: het ontwikkelen van een computermodel van een mengsel voor een brandstofbestanddeel en een smeervermogenbestanddeel op basis van een gewenste waarde van een streefeigenschap, waarbij het computermodel van een mengsel een volumetrische verhouding van het brandstofbestanddeel omvat, waarbij het computermodel van een mengsel een volumetrische verhouding van het smeervermogenbestanddeel omvat;12. A method for preparing a marine fuel composition, which method comprises the following steps: developing a computer model of a mixture for a fuel component and a lubricity component based on a desired value of a target property, the computer model of a mixture having a volumetric ratio of the fuel component, wherein the computer model of a mixture comprises a volumetric ratio of the lubricity component; het bereiden van een fysiek monster van het brandstofbestanddeel op basis van de volumetrische verhouding van het computermodel van een mengsel; het mengen van het smeervermogenbestanddeel met het brandstofbestanddeel, zodat de scheepsbrandstofsamenstelling wordt verkregen; het testen van de streefeigenschap van de scheepsbrandstofsamenstelling op overeenkomst met de gewenste waarde; en het bereiden van een commercieel volume van de scheepsbrandstofsamenstelling.preparing a physical sample of the fuel component based on the computer model volumetric ratio of a mixture; mixing the lubricity component with the fuel component to obtain the marine fuel composition; testing the target property of the marine fuel composition for agreement with the desired value; and preparing a commercial volume of the marine fuel composition. 13. Werkwijze volgens conclusie 12, voorts omvattende de stap van het mengen van een brandstofadditief in de scheepsbrandstofsamenstelling.The method of claim 12 further comprising the step of mixing a fuel additive into the marine fuel composition. 14. Werkwijze volgens conclusie 12, waarbij het computermodel van een mengsel een waarde voor elke streefeigenschap van het brandstofbestanddeel en het smeervermogen bestanddeel omvat.The method of claim 12, wherein the computer model of a mixture includes a value for each target property of the fuel component and the lubricity component. 15. Werkwijze volgens conclusie 12, waarbij het brandstofbestanddeel wordt gekozen uit de groep bestaande uit brandstofolie met een hoog gehalte aan zwavel (HSFO), brandstofolie met een laag gehalte aan zwavel (LSFO), slurry-olie afkomstig van een katalytische kraakinstallatie voor fluïdum, zware gasolie uit een verkookser (HCGO), lichte cycle-olie (LCO) afkomstig van een katalytische kraakinstallatie voor fluïdum, bodemfracties van vacuümkolommen (VTB), bodemfracties van atmosferische kolommen (ATB), directe benzine met een laag gehalte aan zwavel (LSSR), directe benzine met een hoog gehalte aan zwavel (HSSR), basisdestillaat (DBS), onder vacuüm verkregen gasolie met een laag gehalte aan zwavel (LSVGO), onder vacuüm verkregen gasolie met een hoog gehalte aan zwavel (HSVGO), gekraakte of directe stookolie (m100), directe gasolie (SRGO), lichte stookolie met een uiterst laag gehalte aan zwavel (ULSHO), residuen en combinaties daarvan.The method of claim 12, wherein the fuel component is selected from the group consisting of high sulfur fuel oil (HSFO), low sulfur fuel oil (LSFO), slurry oil from a fluid catalytic cracking plant, Coker Heavy Gas Oil (HCGO), Light Cycle Oil (LCO) from Fluid Catalytic Cracker, Vacuum Column Bottoms (VTB), Atmospheric Column Bottoms (ATB), Low Sulfur Direct Gasoline (LSSR) , high sulfur gasoline (HSSR), basic distillate (DBS), vacuum gas oil with low sulfur content (LSVGO), vacuum gas oil with high sulfur content (HSVGO), cracked or straight fuel oil (m100), straight gas oil (SRGO), ultra low sulfur light fuel oil (ULSHO), residues and combinations thereof. 16. Werkwijze volgens conclusie 12, waarbij het smeervermogenbestanddeel wordt gekozen uit de groep bestaande uit een basisolie, een aromatisch extract en combinaties daarvan.The method of claim 12, wherein the lubricity component is selected from the group consisting of a base oil, an aromatic extract, and combinations thereof. 17. Werkwijze volgens conclusie 12, waarbij de streefeigenschap wordt gekozen uit de groep bestaande uit de hoeveelheid zwavel, de API-dichtheid, de kinematische viscositeit, het vlampunt, de hoeveelheid waterstofsulfide, de hoeveelheid en soorten metaalbestanddelen, het zuurgetal, het totale sediment bij warm filtreren, de oxidatiestabiliteit, de hoeveelheid vetzure methylester, het troebelingspunt, de koudfilterverstoppingstemperatuur, het vloeipunt, het smeervermogen, de hoeveelheid calcium en zink, de hoeveelheid calcium en fosfor, en combinaties daarvan.The method of claim 12, wherein the target property is selected from the group consisting of the amount of sulfur, the API density, the kinematic viscosity, the flash point, the amount of hydrogen sulfide, the amount and types of metal components, the acid number, the total sediment at hot filtering, oxidation stability, fatty acid methyl ester amount, cloud point, cold filter clogging temperature, pour point, lubricity, calcium and zinc amount, calcium and phosphorus amount, and combinations thereof. 18. Werkwijze volgens conclusie 12, waarbij de streefeigenschap de API-dichtheid is, en waarbij de gewenste waarde van de API-dichtheid zich bevindt tussen 11,2 en 40.The method of claim 12, wherein the target property is API density, and wherein the desired API density value is between 11.2 and 40. 19. Werkwijze volgens conclusie 12, waarbij de streefeigenschap de viscositeit is, en waarbij de gewenste waarde van de viscositeit bij 122 graden F zich bevindt tussen 3 cSt en 400 cSt.The method of claim 12, wherein the target property is viscosity, and wherein the desired viscosity value at 122 degrees F is between 3 cSt and 400 cSt. 20. Werkwijze volgens conclusie 12, waarbij de streefeigenschap de hoeveelheid zwavel 1s, en waarbij de hoeveelheid zwavel zich bevindt tussen 0,101 gew.% en 5 gew.%.The method of claim 12, wherein the target property is the amount of sulfur 1s, and wherein the amount of sulfur is between 0.101 wt% and 5 wt%.
NL2024885A 2019-02-15 2020-02-12 Marine fuel compositions and methods of making the same NL2024885B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201962806331P 2019-02-15 2019-02-15

Publications (2)

Publication Number Publication Date
NL2024885A true NL2024885A (en) 2020-08-27
NL2024885B1 NL2024885B1 (en) 2021-02-16

Family

ID=69701020

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024885A NL2024885B1 (en) 2019-02-15 2020-02-12 Marine fuel compositions and methods of making the same

Country Status (4)

Country Link
US (1) US20200263102A1 (en)
BE (1) BE1027021B1 (en)
NL (1) NL2024885B1 (en)
SG (1) SG10202000254UA (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032124B (en) * 2021-07-30 2022-08-30 三亚星油藤科技服务有限公司 M100 methanol fuel mother liquor additive for methanol vehicle and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB878093A (en) * 1957-11-04 1961-09-27 British Petroleum Co Fuel compositions and their use in internal combustion engines
DK2235145T3 (en) * 2007-12-20 2019-05-20 Shell Int Research FUEL COMPOSITIONS
CN106414675B (en) * 2014-05-22 2019-10-01 国际壳牌研究有限公司 Fuel composition
WO2019005009A1 (en) * 2017-06-27 2019-01-03 Exxonmobil Research And Engineering Company Fuel components from hydroprocessed deasphalted oils

Also Published As

Publication number Publication date
US20200263102A1 (en) 2020-08-20
BE1027021A1 (en) 2020-08-27
NL2024885B1 (en) 2021-02-16
BE1027021B1 (en) 2021-02-01
SG10202000254UA (en) 2020-09-29

Similar Documents

Publication Publication Date Title
US10443006B1 (en) Low sulfur marine fuel compositions
EP3704216B1 (en) Cetane improver in fuel oil
US9834735B2 (en) Universal synthetic lubricant, method and product-by-process to replace the lost sulfur lubrication when using low-sulfur diesel fuels
Hazrat et al. Lubricity improvement of the ultra-low sulfur diesel fuel with the biodiesel
US10597594B1 (en) Low sulfur marine fuel compositions
CA2213656C (en) Fuel oil compositions
NL2024885B1 (en) Marine fuel compositions and methods of making the same
US10781391B2 (en) Low sulfur marine fuel compositions
KR20210106454A (en) fuel oil composition
US10865354B2 (en) Marine fuel compositions with reduced engine frictional losses
CA3180811A1 (en) Marine fuel compositions
CN114874829A (en) Lubricating oil composition for methanol engine and preparation method thereof
Lim et al. Change in physical properties of engine oil contaminated with diesel
KR102423111B1 (en) lubricating composition
Spirkin et al. Low-volatility motor oils. Development and production
JP2016148007A (en) Diesel fuel oil composition

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230301