NL2024691A - Method for spatially positioning crack in t-joint weldment - Google Patents

Method for spatially positioning crack in t-joint weldment Download PDF

Info

Publication number
NL2024691A
NL2024691A NL2024691A NL2024691A NL2024691A NL 2024691 A NL2024691 A NL 2024691A NL 2024691 A NL2024691 A NL 2024691A NL 2024691 A NL2024691 A NL 2024691A NL 2024691 A NL2024691 A NL 2024691A
Authority
NL
Netherlands
Prior art keywords
crack
weld
tip
mathematical model
weldment
Prior art date
Application number
NL2024691A
Other languages
Dutch (nl)
Other versions
NL2024691B1 (en
Inventor
Shi Duanhu
Wu Sanhai
Zhao Hongfeng
Sha Jing
Li Changyun
Xu Lei
Yang Feng
He Min
Original Assignee
Xuzhou Inst Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Inst Technology filed Critical Xuzhou Inst Technology
Publication of NL2024691A publication Critical patent/NL2024691A/en
Application granted granted Critical
Publication of NL2024691B1 publication Critical patent/NL2024691B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/044Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using laminography or tomosynthesis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3306Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts object rotates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/629Specific applications or type of materials welds, bonds, sealing compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Resistance Welding (AREA)
  • Arc Welding In General (AREA)

Abstract

The present invention disclosures a method for spatially positioning a crack in a T-joint weldment, which belongs to the technical field of weldment detection. In the method, firstly, the T-joint weldment is rotated left and right to obtain the left and right rotation images by the X-ray detection. According to the geometric relationship between the parts of the detected image, the mathematical model for calculating the depth and the offset of the crack defect in the T-joint weldment is established. According to the above model, the depths h₁, h₂ and the offsets x₁, x₂ of the two ends of the crack tip, the offset x of the middle point of the crack and the inclination angle θ of the crack in the T-joint weldment are determined respectively. The distribution of the crack defect along the length direction of the welding line can be obtained by image processing, thereby realizing the spatial positioning of the crack defect in the T-joint weldment.

Description

METHOD FOR SPATIALLY POSITIONING CRACK IN T-JOINT WELDMENT TECHNICAL FIELD
The present invention relates to a method for spatially positioning a crack in a weldment, which belongs to the technical field of weldment detection.
BACKGROUND
At present, the inventor has carried out the research on spatially positioning the bulk-type defect in the weldment by adopting the X-ray multi-view imaging method, and realized the automatic extraction and visualization of the spatial position data of the bulk-type defect in batch. The problems existing in the translation parallax method and the double exposure method with the aid of lead mark are eliminated, such as great operation difficulty, large measurement error, large error transmission and others. Crack is a area-type defect, which commonly exists in welded joints and has a great impact on the safety of important welded structures.
However, using the X-ray detection method to carry out the research on spatially positioning the crack and other area-type defects in the weldment has not been reported at home and abroad. Therefore, the present invention of a method for spatially positioning the crack in the T-joint weldment (see FIG. 1) without the aid of marked points has extremely important theoretical and practical significance as well as broad engineering application prospects, which may be popularized and applied to ordinary welded joints.
SUMMARY
In order to overcome the shortcomings of the prior art above, the present invention provides a method for spatially positioning a crack in a T-joint weldment. The method can conveniently realizes the spatial positioning of the crack in the T-joint weldment and has high positioning accuracy and strong adaptability, which has a good prospect of engineering application.
The present invention is realized by the following technical solution. A method for spatially positioning a crack in a T-joint weldment, which can realize the spatial positioning of the crack in the T-joint weldment, includes the following steps:
1) rotating the T-joint weldment left and right to obtain left and right rotation images by a X-ray detection.
2) by a geometric relationship between each part in the detected left and right rotation images, establishing a mathematical model of depths and offsets of two ends of a crack tip;
3) according to the above model, determining the depths Ai, hi and the offsets xi, xi of the two ends of the crack tip, a offset x of a middle point of the crack and a inclination angle Θ of the crack in the T-joint weldment, respectively;
4) finally, obtaining a distribution of the crack defect along a length direction of a welding line by image processing, thereby realizing the spatial positioning of the crack defect in the Tjoint weldment.
Further, in the step 2), a thinnest position of the weldment penetrated by the X-ray penetration is selected as a positioning characteristic point, and a mathematical model of the depths and the offsets of the two ends of the crack tip is established.
Further, in the step 2), the mathematical model for calculating the offsets of the two ends of the crack tip is as follows:
Λ| — sin a _ dt2-dr2 sin a
The mathematical model for calculating the offset of the middle point of the crack is as follows:
X. + X, x = —--2
When x>0, the middle point of the crack is located on the right side of a center line of a web plate of the T-joint weldment. When x=0, the middle point of the crack lies on the center line of the web plate of the T-joint weldment. When x<0, the middle point of the crack is located on the left side of the center line of the web plate of the T-joint weldment.
The mathematical model for calculating the depths of the crack tip is as follows:
r d,, W . c cos a 2 d W h2=^-(T- + x2) + d cosa 2 where, hi, hi represent the depths of the two ends Ai, A 2 of the crack tip in the T-joint weldment, that is, the distances (mm) from the two ends of the crack tip to the lower surface of the wing plate of the T-joint weldment calculated by the formula;
xi, X2 represent the distances from the two ends Ai, A2 of the crack tip in the T-joint weldment to the center line of the web plate, namely, the offsets (mm) of the two ends of the crack tip;
x represents the distance from the middle point of the crack in the T-joint weldment to the center line of the web plate, namely, the offset (mm) of the middle point of the crack;
dn, dn represent the projection distance (mm) from the two ends Ai, A2 of the crack tip to the thinnest position of the weldment penetrated by the X-ray penetration when the T-joint weldment is rotated right;
dr], dr2 represent the projection distance (mm) from the two ends Ai, A2 of the crack tip to the thinnest position of the weldment penetrated by the X-ray penetration when the T-joint weldment is rotated left;
a represents the angle of the left and right rotation of the T-joint weldment;
W represents the width (mm) of the web plate of the T-joint weldment;
Θ represents the angle between the line connecting the two ends of the crack and the horizontal line.
Further, when a=45°, the mathematical model for calculating the offsets of the two ends of the crack tip is as follows:
_dii~drl 2
When a=45°, the mathematical model for calculating the depths of the crack tip is as follows:
/¾ = \[ïd!} - (^- + Xj) + δ
I- W h2 = d2dl2 - (— + x2) + δ
Furthermore, if Λ #/22, the inclination angle of the crack need be calculated.
If hi>h2, the inclination angle Θ is above the horizontal line.
Otherwise» if h\<hi, the inclination angle Θ is below the horizontal line.
The mathematical model for calculating the inclination angle Θ between a line connecting the two ends of the crack tip and the horizontal line is as follows:
I/?, - ^1
Θ = arctanJL x, -x2
Further, in the step 2), the width W of the web plate and the thickness δ of the wing plate of the T-joint weldment are measured in advance, and the du, di2, dri and dr2 are automatically obtained after segmenting and extracting the defect in the detected images.
As an application of the present invention, the method for spatially positioning the crack in the T-joint weldment can also be applied to the spatial positioning of the area-type defect in the formed parts such as T-shaped castings and forgings.
The advantages of the present invention are as follows. By adopting the method of the present invention for spatially positioning the crack in the T-joint weldment, the spatial positioning of the crack defect in the T-joint weldment can be realized. The present invention is also applicable to the spatial positioning of other area-type defects in the T-joint weldment. The present invention has the advantages of simple operation, having high positioning accuracy, strong adaptability and wide application. The present invention can be popularized to the spatial positioning of the area-type defects in other welded joints and applied to the spatial positioning of the area-type defects in the formed parts such as T-shaped castings and forgings, which has a good prospect of engineering application.
BRIEF DESCRIPTION OF THE DRAWING
The present invention is further described below in conjunction with the drawings and embodiment.
FIG. 1 is a schematic diagram of the T-joint weldment.
FIG. 2 shows the mathematical model for calculating the depths of the two ends Ai, A 2 of the crack tip in the T-joint weldment.
FIG. 3 shows the mathematical model for calculating the offsets of the two ends Ai, Ag of the crack tip in T-joint weldment.
FIG. 4 shows the model of the inclination angle of the crack in the weldment.
In the figure: 1. web plate; 2. wing plate; 3. welding line; 4. crack; 5. X-ray incident direction.
DETAILED DESCRIPTION OF THE EMBODIMENT
The present invention is further described below in conjunction with the embodiment.
A method for spatially positioning a crack in a T-joint weldment, which can realize the spatial positioning of the crack in the T-joint weldment, includes the following steps.
1) The T-joint weldment is rotated left and right to obtain the left and right rotation images by the X-ray detection.
2) By the geometric relationship between the parts in the detected left and right rotation images, the mathematical model of the depths and the offsets of the two ends of the crack tip is established.
3) According to the above model, the depths hi, hi and the offsets xi, xi of the two ends of the crack tip, the offset x of the middle point of the crack and the inclination angle Θ of the crack in the T-joint weldment are determined respectively.
4) Finally, the distribution of the crack defect along the length direction of the welding line by image processing is obtained, thereby realizing the spatial positioning of the crack defect in the T-joint weldment.
Further, in the step 2), the thinnest position of the weldment penetrated by the X-ray penetration is selected as the positioning characteristic point, and the mathematical model of the depths and the offsets of the two ends of the crack tip is established.
Further, in the step 2), as shown in FIG. 3, the mathematical model for calculating the offsets of the two ends of the crack tip is as follows:
v _ dll ~dri
Λ| — sin a _ dt2-dr2 sin a
The mathematical model for calculating the offset of the middle point of the crack is as follows:
X. + X, x = —--2
When x>0, the middle point of the crack is located on the right side of the center line of the web plate of the T-joint weldment. When x=0, the middle point of the crack lies on the center line of the web plate of the T-joint weldment. When x<0, the middle point of the crack is located on the left side of the center line of the web plate of the T-joint weldment.
As shown in FIG. 2, the mathematical model for calculating the depths of the crack tip is as follows:
A, =——(—+ x,) + J cos a 2 dW h, = JU—++ cos a2 where, /?i, /?2 represent the depths of the two ends Ai, A2 of the crack tip in the T-joint weldment, that is, the distances (mm) from the two ends of the crack tip to the lower surface of the wing plate of the T-joint weldment calculated by the formula;
xy, X2 represent the distances from the two ends Ai, A2 of the crack tip in the T-joint weldment to the center line of the web plate, namely, the offsets (mm) of the two ends of the crack tip;
x represents the distance from the middle point of the crack in the T-joint weldment to the center line of the web plate, namely, the offset (mm) of the middle point of the crack;
du, di2 represent the projection distance (mm) from the two ends Ai, A2 of the crack tip to the thinnest position of the weldment penetrated by the X-ray penetration when the T-joint weldment is rotated right;
dri, dr2 represent the projection distance (mm) from the two ends Ai, A2 of the crack tip to the thinnest position of the weldment penetrated by the X-ray penetration when the T-joint weldment is rotated left;
a represents the angle of the left and right rotation of the T-joint weldment;
W represents the width (mm) of the web plate of the T-joint weldment;
Θ represents the angle between the line connecting the two ends of the crack and the horizontal line.
Further, when a=45°, the mathematical model for calculating the offsets of the two ends of the crack tip is as follows:
1_
Figure NL2024691A_D0001
When «=45°, the mathematical model for calculating the depths of the crack tip is as follows:
r- W h} = V2i/n -(— + x,) + δ r- W h2 = \Zdl2 -(—+ x2) + J
Furthermore, if h\±!n, the inclination angle of the crack need be calculated.
As shown in FIG. 4, if the inclination angle Θ is above the horizontal line.
Otherwise, if Zzi</?2, the inclination angle Θ is below the horizontal line.
The mathematical model for calculating the inclination angle Θ between the line connecting the two ends of the crack tip and the horizontal line is as follows:
I/?. -λ2|
Θ = arctanJL
Xl-X2
Further, in the step 2), the width W of the web plate and the thickness δ of the wing plate of the T-joint weldment are measured in advance, and the du, d.12, d,-i and dr2 are automatically obtained after segmenting and extracting the defect in the detected images.
As an application of the present invention, the method for spatially positioning the crack in the T-joint weldment can also be applied to the spatial positioning of the area-type defect in the formed parts such as T-shaped castings and forgings.
The present invention provides the method for spatially positioning the crack defect in Tjoint weldment. In the method, firstly, the T-joint weldment is rotated left and right to obtain the left and right rotation images by the X-ray detection. According to the geometric relationship between the parts of the detected image, the mathematical model for calculating the depth and the offset of the crack defect in the T-joint weldment is established. According to the above model, the depths h\, hi and the offsets xi, xi of the two ends of the crack tip, the offset x of the middle point of the crack and the inclination angle Θ of the crack in the T-joint weldment are determined respectively, wherein, the width W of the web plate and the thickness ό of the wing plate of the T-joint weldment may be measured in advance, and the du, du, d,-i and dr2 are automatically obtained after segmenting and extracting the defect in the detected images. The distribution of the crack defect along the length direction of the welding line can be obtained by image processing, thereby realizing the spatial positioning of the crack defect in the T-joint weldment.
By adopting the method of the present invention for spatially positioning the crack in the T-joint weldment, the spatial positioning of the crack defect in the T-joint weldment can be realized. The present invention can be popularized to the spatial positioning of the area-type defects in other welded joints and applied to the spatial positioning of the area-type defects in the formed parts such as T-shaped castings and forgings, which has a good prospect of engineering application.

Claims (4)

CONCLUSIESCONCLUSIONS 1. Een werkwijze voor de ruimtelijke plaatsbepaling van een scheur in een T-las, waarbij:A method of spatial location determination of a crack in a T-weld, where: de werkwijze de ruimtelijke plaatsbepaling van de scheur in de T-las kan realiseren en de volgende stappen omvat:the method can realize the spatial location of the crack in the T-weld and comprises the following steps: 1) het roteren van de T-las naar links en rechts om rotatiebeelden van links en rechts te verkrijgen door een röntgendetectie;1) rotating the T-weld to the left and right to obtain left and right rotation images by X-ray detection; 2) met een geometrische relatie tussen elk deel in de gedetecteerde rotatiebeelden van links en rechts, een wiskundig model van diepten en bochten van twee uiteinden van een scheurtip vaststellen;2) with a geometric relationship between each part in the detected rotation images from left and right, establish a mathematical model of depths and curves of two ends of a crack tip; 3) volgens het bovenstaande model, het respectievelijk bepalen van de diepten hi, h2 en de bochten xi, X2 van de twee uiteinden van de scheurtip, een bocht x van een middelpunt van de scheur en een hellingshoek Θ van de scheur in de T-las; en3) according to the above model, determining the depths hi, h2 and the bends xi, X2 of the two ends of the crack tip, a bend x of a midpoint of the crack and an angle of inclination Θ of the crack in the T- read; and 4) ten slotte, het verkrijgen van een verdeling van het scheurdefect langs een lengterichting van een laslijn door beeldverwerking, waardoor de ruimtelijke plaatsbepaling van het scheurdefect in de T-las wordt gerealiseerd.4) finally, obtaining a distribution of the crack defect along a longitudinal direction of a weld line by image processing, thereby realizing the spatial location of the crack defect in the T-weld. 2. Werkwijze voor de ruimtelijke plaatsbepaling van de scheur in de T-las volgens conclusie 1, waarbij: in stap 2) een dunste plaats van de las die door de röntgenpenetratie wordt gepenetreerd, wordt gekozen als een karakteristiek plaatsingspunt, en een wiskundig model van de diepten en de bochten van de twee uiteinden van de scheurtip wordt vastgesteld.The method for spatially locating the T-weld crack according to claim 1, wherein: in step 2) a thinnest spot of the weld penetrated by the X-ray penetration is selected as a characteristic placement point, and a mathematical model of the depths and curves of the two ends of the crack tip are determined. 3. De werkwijze voor de ruimtelijke plaatsbepaling van de scheur in de T-las volgens conclusie 1 of 2, waarbij: in stap 2) het wiskundige model voor het berekenen van de bochten van de twee uiteinden van de scheurtip als volgt is:The method for spatial location of the T-weld crack according to claim 1 or 2, wherein: in step 2) the mathematical model for calculating the bends of the two ends of the crack tip is as follows: v _ ~^rl v _ ~ ^ rl X| 2 sin a χ _ ~drl X | 2 sin a χ _ ~ d rl 2 sin a het wiskundige model voor het berekenen van de bocht van het middelpunt van de scheur als volgt is:2 sin a is the mathematical model for calculating the bend of the center of the crack as follows: x, + x, x = —1---2 ;x, + x, x = - 1 --- 2; wanneer x > 0, bevindt het middelpunt van de scheur zich aan de rechterkant van een middellijn van een lijfplaat van de T-las; wanneer x = 0, ligt het middelpunt van de scheur op de middellijn van de lijfplaat van de T-las; wanneer x < 0, bevindt het middelpunt van de scheur zich aan de linkerkant van de middellijn van de lijfplaat van de T-las;when x> 0, the center of the crack is to the right of a centerline of a T-weld web plate; when x = 0, the center of the crack is on the centerline of the T-weld web plate; when x <0, the center of the crack is on the left side of the centerline of the T-weld web plate; het wiskundige model voor het berekenen van de diepten van de scheurtip als volgt is:the mathematical model for calculating crack tip depths is as follows: A =—— -(— + *,) + <?A = —— - (- + *,) + <? cosa 2 , dn W . _cosa 2, d n W. _ Λ, = —---(--h x2) + δ cosa 2 waarbij hi, h2 de diepten van de twee uiteinden Ai, A2 van de scheurtip in de Tlas vertegenwoordigen, dat wil zeggen, de afstanden (mm) van de twee uiteinden van de scheurtip tot het onderste oppervlak van de vleugelplaat van de T-las berekend met de formule;Λ, = —--- (- hx 2 ) + δ cosa 2 where hi, h2 represent the depths of the two ends Ai, A2 of the crack tip in the Tlas, that is, the distances (mm) of the two ends of the crack tip to the bottom surface of the wing plate of the T-weld calculated by the formula; xi, X2 vertegenwoordigen de afstanden van de twee uiteinden Ai, A2 van de scheurtip in de T-las naar de middellijn van de lijfplaat, namelijk de bochten (mm) van de twee uiteinden van de scheurtip;xi, X2 represent the distances from the two ends Ai, A2 of the tear tip in the T-weld to the centerline of the web plate, namely the bends (mm) of the two ends of the tear tip; x staat voor de afstand van het middelpunt van de scheur in de T-las naar de middellijn van de lijfplaat, namelijk de bocht (mm) van het middelpunt van de scheur;x represents the distance from the center of the crack in the T-weld to the centerline of the web, that is, the bend (mm) of the center of the crack; dn, di2 vertegenwoordigen de projectieafstand (mm) van de twee uiteinden Ai, A2 van de scheurtip tot de dunste plaats van de las die door de röntgenpenetratie wordt gepenetreerd wanneer de T-las naar rechts wordt gedraaid;dn, di2 represent the projection distance (mm) of the two ends Ai, A2 from the tear tip to the thinnest spot of the weld penetrated by the X-ray penetration when the T-weld is turned to the right; dri, dr2 vertegenwoordigen de projectieafstand (mm) van de twee uiteinden Ai, A2 van de scheurtip tot de dunste plaats van de las die door de röntgenpenetratie wordt gepenetreerd wanneer de T-las naar links wordt gedraaid;dri, dr2 represent the projection distance (mm) from the two ends A1, A2 of the tear tip to the thinnest spot of the splice penetrated by the X-ray penetration when the T-splice is turned to the left; a vertegenwoordigt de hoek van de linker- en rechterrotatie van de T-las;a represents the angle of the left and right rotation of the T-weld; W vertegenwoordigt de breedte (mm) van de lijfplaat van de T-las; enW represents the width (mm) of the T-weld web plate; and Θ vertegenwoordigt de hoek tussen de lijn die de twee uiteinden van de scheur verbindt en de horizontale lijn.Θ represents the angle between the line connecting the two ends of the crack and the horizontal line. 4. Werkwijze voor de ruimtelijke plaatsbepaling van de scheur in de T-las volgens conclusie 3, waarbij:A method for spatial location of the T-weld crack according to claim 3, wherein: wanneer a = 45°, het wiskundige model voor het berekenen van de bochten van de twee uiteinden van de scheurtip als volgt is:when a = 45 °, the mathematical model for calculating the bends of the two ends of the crack tip is as follows: _ dg ~drl A2 I— 'l'2· ; en wanneer a = 45°, het wiskundige model voor het berekenen van de diepten van de scheurtip als volgt is:dg ~ d rl A 2 I - 'l' 2 ·; and when a = 45 °, the mathematical model for calculating the depth of the crack tip is as follows: /—/ - 1\=Α 2dn - (— + ^) + /) h2 = y[2d!2 - (^- + x,) + δ1 \ = Α 2d n - (- + ^) + /) h 2 = y [2d ! 2 - (^ - + x,) + δ 5. Werkwijze voor de ruimtelijke plaatsbepaling van de scheur in de T-las volgens conclusie 3 of 4, waarbij: indien hi + h2, de hellingshoek van de scheur moet worden berekend;A method of spatial location of the crack in the T-weld according to claim 3 or 4, wherein: if hi + h2, the slope angle of the crack is to be calculated; indien hi > h2, de hellingshoek Θ boven de horizontale lijn ligt;if hi> h2, the angle of inclination Θ is above the horizontal line; anders, als hi < h2, de hellingshoek Θ onder de horizontale lijn ligt; en het wiskundige model voor het berekenen van de hellingshoek Θ tussen de lijn die de twee uiteinden van de scheurtip verbindt en de horizontale lijn als volgt is:otherwise, if hi <h2, the angle of inclination Θ is below the horizontal line; and the mathematical model for calculating the angle of inclination Θ between the line joining the two ends of the crack tip and the horizontal line is as follows: Θ = arctanJ-----— x( - x2 Θ = arctan J -----— x ( - x 2 6. Werkwijze voor de ruimtelijke plaatsbepaling van de scheur in de T-las volgens conclusie 1, waarbij: in stap 2) de breedte H/ van de lijfplaat en de dikte ö van de vleugelplaat van de T-las vooraf zijn gemeten, en de du, di2, dri en dr2 automatisch worden verkregen na het segmenteren en extraheren van het defect in de gedetecteerde beelden.A method for the spatial location of the crack in the T-weld according to claim 1, wherein: in step 2) the width H / of the web plate and the thickness ö of the wing plate of the T-weld are pre-measured, and the du, di2, dri and dr2 are automatically obtained after segmenting and extracting the defect in the detected images. 7. Werkwijze voor de ruimtelijke plaatsbepaling van de scheur in de T-las volgens conclusie 1, waarbij: de werkwijze voor de ruimtelijke plaatsbepaling van de scheur in de T-las ook kan worden toegepast op de ruimtelijke plaatsbepaling van het gebiedstype defect in de gevormde stukken zoals T-vormige gietstukken en smeedstukken.The method for spatially locating the crack in the T-weld according to claim 1, wherein: the method for spatially locating the crack in the T-weld can also be applied to the spatial locating of the area type defect in the formed pieces such as T-shaped castings and forgings.
NL2024691A 2019-04-12 2020-01-17 Method for spatially positioning crack in t-joint weldment NL2024691B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910292669.5A CN109991249A (en) 2019-04-12 2019-04-12 The space-location method of crackle in T junction weldment

Publications (2)

Publication Number Publication Date
NL2024691A true NL2024691A (en) 2020-05-06
NL2024691B1 NL2024691B1 (en) 2021-04-21

Family

ID=67133579

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024691A NL2024691B1 (en) 2019-04-12 2020-01-17 Method for spatially positioning crack in t-joint weldment

Country Status (2)

Country Link
CN (1) CN109991249A (en)
NL (1) NL2024691B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991249A (en) * 2019-04-12 2019-07-09 徐州工程学院 The space-location method of crackle in T junction weldment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483151A (en) * 2016-10-14 2017-03-08 徐州工程学院 Unilateral projection registration fault automatic distinguishing method in T-shaped weldment left/right rotation image
CN108896586A (en) * 2018-07-20 2018-11-27 徐州工程学院 The space-location method of defect and banjo fixing butt jointing weldment in banjo fixing butt jointing weldment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561097A (en) * 2017-09-07 2018-01-09 荆门创佳机械科技有限公司 A kind of measuring method of crack depth of concrete
CN109060961B (en) * 2018-08-01 2020-04-14 大连理工大学 Thick-wall pipeline inclined crack accurate quantification method based on TOFD circumferential scanning image
CN109991249A (en) * 2019-04-12 2019-07-09 徐州工程学院 The space-location method of crackle in T junction weldment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483151A (en) * 2016-10-14 2017-03-08 徐州工程学院 Unilateral projection registration fault automatic distinguishing method in T-shaped weldment left/right rotation image
CN108896586A (en) * 2018-07-20 2018-11-27 徐州工程学院 The space-location method of defect and banjo fixing butt jointing weldment in banjo fixing butt jointing weldment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991249A (en) * 2019-04-12 2019-07-09 徐州工程学院 The space-location method of crackle in T junction weldment

Also Published As

Publication number Publication date
NL2024691B1 (en) 2021-04-21
CN109991249A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
EP2427299B1 (en) Method for manufacturing a door frame, welding arrangement and structure of a door frame
NL2024691A (en) Method for spatially positioning crack in t-joint weldment
CN108344693B (en) Automatic welding-oriented visual measurement method for misalignment of sheet welding seam
CN106323192A (en) Longitudinal welded pipe welding seam protrusion detecting system based on laser scanning
CN206208199U (en) Suitable for the line laser detection device of drag articulation type six-shaft industrial robot
CN109128540B (en) Method for determining laser welding focal track of T-shaped joint
CN112858483A (en) Phased array probe scanning track self-correcting system and method
CN113894404B (en) Friction stir welding method based on photogrammetry
CN100427935C (en) Fault positioning method in complicate welding structure
CN107037063A (en) The space-location method of batch defect in a kind of T-shaped weldment angle welding of simplification
CN112834616B (en) Welding seam detection device and method
CN109128504A (en) A kind of method car body top cover prevention and solve laser welding defect
CN106645234A (en) Automatic discrimination method for space positioning method for defect in fillet weld of T joint
KR20120072980A (en) Apparatus for inspecting welding bead and method thereof
CN108896586A (en) The space-location method of defect and banjo fixing butt jointing weldment in banjo fixing butt jointing weldment
CN109991248A (en) The space-location method of defect in lap joint weldment
KR20190143654A (en) MIG Welded bead inspection apparatus
CN218726226U (en) Simple and easy welding seam quality inspection device
CN114012323B (en) Real-time box splicing edge weld joint identification method based on laser displacement sensor
CN106483151A (en) Unilateral projection registration fault automatic distinguishing method in T-shaped weldment left/right rotation image
CN218926521U (en) Be used for welded 3D laser welding seam tracking means of car bumper
CN217084812U (en) Special wedge block for full-focusing phased array bimorph probe
KR102645685B1 (en) Die Coater And The Apparatus For Inspecting Thereof
CN118243789A (en) Detection device suitable for forge welding head butt welding seam
CN218973374U (en) Detection tool for forge piece

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230201