NL2024676B1 - Automatic Supply System For Gas-Liquid-Solid Three-Phase Separation Characteristic Test - Google Patents

Automatic Supply System For Gas-Liquid-Solid Three-Phase Separation Characteristic Test Download PDF

Info

Publication number
NL2024676B1
NL2024676B1 NL2024676A NL2024676A NL2024676B1 NL 2024676 B1 NL2024676 B1 NL 2024676B1 NL 2024676 A NL2024676 A NL 2024676A NL 2024676 A NL2024676 A NL 2024676A NL 2024676 B1 NL2024676 B1 NL 2024676B1
Authority
NL
Netherlands
Prior art keywords
pressure
flow
solids
liquids
liquid
Prior art date
Application number
NL2024676A
Other languages
Dutch (nl)
Other versions
NL2024676A (en
Inventor
Liu Xinfu
Wang Youqiang
Zhang Ping
Zhou Chao
Wang Yaying
He Hongming
Original Assignee
Univ Qingdao Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Qingdao Technology filed Critical Univ Qingdao Technology
Publication of NL2024676A publication Critical patent/NL2024676A/en
Application granted granted Critical
Publication of NL2024676B1 publication Critical patent/NL2024676B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0205Separation of non-miscible liquids by gas bubbles or moving solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/12Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0005Degasification of liquids with one or more auxiliary substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/02Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of industrial processes; of machinery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Theoretical Computer Science (AREA)
  • Accessories For Mixers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Automatic Supply System For Gas-Liquid-Solid Three-Phase Separation 5 Characteristic Test The present invention provides an automatic supply system for gas-liquid-solid three-phase separation characteristic test, which is applied to simulate the supply in multiphase separation test in the field of petroleum engineering. The automatic supply system for test is used for 10 implementing a gas-liquid-solid three-phase flow supply operation process of multiphase separation characteristic test in oil and gas production by using a gas simulator, a solid-liquid stirrer, a solid-liquid supercharger, a three-phase flow mixer and an automatic supply control system. The gas simulator is configured to automatically supply continuous and stable high-pressure nitrogen with an adjustable flow pressure through a nitrogen pressure regulating 15 valve in combination with a high-pressure nitrogen simulation test control system. The solid-liquid stirrer is configured to supply a continuous and stable normal-pressure solid-liquid flow through a solid-particle stirring pump in combination with a normal-pressure solid-liquid supply control system. The solid-liquid supercharger is configured to automatically supply a continuous and stable high-pressure solid-liquid flow with an adjustable flow pressure through a solid-liquid 20 booster pump and a solid-liquid regulating valve in combination with a high-pressure solid-liquid simulation test control system. The three-phase flow mixer is configured to automatically supply a continuous and stable three-phase simulated flow through a three-phase mixed-flow pipe in combination with a high-pressure mixed-flow simulation test control system. 25

Description

Automatic Supply System For Gas-Liquid-Solid Three-Phase Separation Characteristic Test Technical Field The present invention relates to a supply system for simulating multiphase separation test in the field of petroleum engineering, in particular to an automatic supply system for gas-liquid-solid three-phase separation characteristics test and a process flow thereof.
Background Art Itis an extremely complicated process to analyze the multiphase flowing and separation characteristics of oil and gas production.
At present, the study on the multiphase flowing mechanism such as flow pattern, pressure drop and liquid holdup of multiphase flow has not reached a clear and thorough level.
An existing multiphase flow model includes a separated flow model, a homogeneous flow model, a flow pattern model and the like, all of which are based on certain assumptions and are simplified by performing certain modifications on field test data or indoor experimental data.
At present, a multiphase separation characteristic test device for oil and gas production mainly includes an inclined gas-liquid two-phase pipe flow test device, a vertical oil and gas well simulation test device and the like, wherein the inclined gas-liquid two-phase pipe flow test device consists of a test pipe section, a liquid supply system, a liquid discharge system and a control system.
The test pipe section is made of organic glass, and a test pipe rack in the test pipe section is equipped with an angle measuring device which indicates the inclination degree of the pipe section.
The liquid supply system is supplied by a pump and an air compressor.
After being mixed, metered and tested, gas and liquid enter a gas-liquid separator through the test pipe section for separation treatment.
The separated gas is emptied through the liquid discharge system, and meanwhile the liquid is conveyed to a liquid storage tank through the liquid discharge system for recycling.
The control svstem implements the control and proportion metering of test liquid.
Control valves and indicating instruments of the control system are disposed on a centralized control panel.
A test pipe section of the vertical oil and gas well simulation test device 1s made of transparent organic glass pipes and simulates a real well body structure.
In a control system of the vertical oil and gas well simulation test device, a pressure sensor, a turbine flowmeter and a flow integrater are installed at an inlet and an outlet of the test pipe section, respectively.
Resistance sensors are installed at two ends and the middle portion of the test pipe section, and a data acquisition circuit and processing software are arranged to acquire and store data.
A liquid supply system and a liquid discharge system of the vertical oil and gas well simulation test device are similar to those of the inclined gas-liquid two-phase pipe flow test device.
In summary, the current multiphase separation characteristic test system for oil and gas production mainly includes the inclined gas-liquid two-phase pipe flow test device and the vertical oil and gas well simulation test device, and 1s used to study gas-liquid two-phase flowing test and the like in oil and gas production. However. there are fewer simulation test devices for multiphase separation in oil and gas production. At the same time, gas in the liquid supply system of the inclined gas-liquid two-phase pipe flow test device and the liquid supply system of the vertical oil and gas well simulation test device is supplied by the air compressor, and no gas pressure regulating valve and gas flowmeter are provided, thereby causing an unstable flow pressure and a relatively large measurement error of high-pressure gas. In addition, liquid in the liquid supply system of the inclined gas-liquid two-phase pipe flow test device and the liquid supply system of the vertical oil and gas well simulation test device is supplied by a pump, and no liquid regulating valve and variable frequency motor are provided. thereby causing a limited liquid supply pressure range and a unstable liquid supply flow pressure. In addition, no dedicated flow mixer is provided for each liquid supply system, such that relevant tests are carried out under mcomplete mixing after the gas-liquid mixing and metering, thereby making 1t difficult to simulate a true gas-liquid-solid three-phase flow.
Summary of the Invention In order to effectively solve the technical problem in multiphase flow simulation of oil and gas production and overcome the defects and deficiencies existing m the liquid supply systems of the existing gas-liquid-solid three-phase separation test device, the object of the present invention is to provide an automatic supply system for a gas-liquid-solid three-phase flow for separation characteristics test in oil and gas production, and a relevant control flow thereof. The automatic supply system for test is configured to remotely and automatically regulate the supply of high-pressure nitrogen, a high-pressure solid-liquid flow and a three-phase simulated flow through a gas simulator, a solid-liquid stirrer, a solid-liquid supercharger, a three-phase flow mixer and an automatic supply control system, and implement a gas-liquid-solid three-phase flow supply operation process for multiphase separation characteristic test in oil and gas production.
The technical solution adopted by the present invention to solve the technical problem is to develop an automatic supply system for gas-liquid-solid three-phase separation characteristic test, which is mainly composed of a gas simulator, a solid-liquid stirrer, a solid-liquid supercharger, a three-phase flow mixer and an automatic supply control system. The gas simulator is configured to remotely and automatically regulate the supply of the high-pressure nitrogen in combination with the automatic supply control system, the solid-liquid stirrer and the solid-liquid supercharger are configured to automatically regulate the supply of the high-pressure solid-liquid flow in combination with the automatic supply control system, and meanwhile the three-phase flow mixer is configured to remotely and automatically regulate the supply of three-phase simulated flow in combination with the automatic supply control system.
The gas simulator is configured to automatically supply continuous and stable high-pressure nitrogen with an adjustable flow pressure through a nitrogen pressure regulating valve m combination with a high-pressure nitrogen simulation test control system, and includes a nitrogen tank. a gas exhaust manifold, a nitrogen pressure regulating valve, an intelligent nitrogen flowmeter and a gas conveying manifold. A movable tubular gas cylinder is adopted as the nitrogen tank; the nitrogen tank is configured to store high-pressure nitrogen therein, and is connected with a nitrogen inlet pipe of the three-phase flow mixer through the gas conveying manifold via the gas exhaust manifold, and meanwhile the nitrogen pressure regulating valve is arranged on the gas exhaust manifold and the intelligent nitrogen flowmeter is arranged on the gas conveying manifold; a pneumatic pressure control valve is adopted as the nitrogen pressure regulating valve to regulate a design pressure regulated by a self-operated pressure regulating valve to a simulated gas pressure according to a mixed-flow pressure in the three-phase flow mixer; and an orifice-plate type gas flowmeter is adopted as the intelligent nitrogen flowmeter to automatically compensate the pressure and temperature of high-pressure nitrogen after pressure regulation in an advanced micro-power consumption manner.
The automatic supply process of high-pressure nitrogen simulated gas mn the gas simulator is as follows: the high-pressure nitrogen in the nitrogen tank is output through the gas exhaust manifold. and the nitrogen pressure regulating valve regulates the design pressure regulated by the self-operated pressure regulating valve to the simulated gas pressure according to the mixed-flow pressure in the three-phase flow mixer so as to reach an operation pressure for the separation characteristic test; the high-pressure nitrogen is then metered through the intelligent nitrogen flowmeter; and finally, continuous and stable high-pressure nitrogen with an adjustable flow pressure is automatically supplied by the gas conveving manifold and the nitrogen inlet pipe to the three-phase flow mixer.
The solid-liquid stirrer is configured to supply a continuous and stable normal-pressure solid-liquid flow through a solid-particle stirring pump in combination with a normal-pressure solid-liquid supply control system, and includes a normal-pressure stirring tank, a solid-particle stirring pump, a normal-pressure solid-liquid conveying manifold, and an intelligent solid-liquid flowmeter. The mtelligent solid-liquid flowmeter is arranged on the normal-pressure solid-liquid conveying manifold, and a turbine type liquid flowmeter is adopted as the intelligent solid-liquid flowmeter to perform metering in a microcomputer control and ultra-low power consumption manner; and meanwhile, the normal-pressure stirring tank is connected with the normal-pressure solid-liquid conveving manifold through a liquid discharge pipe and is connected with a solid-liquid booster pump into a whole via a pump liquid inlet pipe.
The normal-pressure stirring tank adopts a vertical cylindrical tank body, and consists of a water inlet pipe, a liquid discharge pipe, an stirring tank body and a pump support. wherein the inlet pipe and the liquid discharge pipe of the normal-pressure stirring tank are respectively arranged on the upper part and the lower part of the stirring tank body of the normal-pressure stirring tank, and the bottom end of the stirring tank body is provided with a skirt sleeve for supporting: the pump support of the normal-pressure stirring tank adopts a cross-shaped I-beam truss structure, and is fixed to the top of the stirring tank by welding; and meanwhile, double flange plates are arranged at the truss mtersection of the pump support.
The solid-particle stirring pump is configured to pump distilled water into the normal-pressure stirring tank through the water inlet pipe and stir the solid-liquid two-phase flow in the stirring tank, and is composed of a motor, a centrifugal pump and a long-shaft tvpe stirrmg wheel, wherein the motor and the centrifugal pump of the solid-particle stirring pump are of an integrated structure in which the bottom end of the centrifugal pump passes through a flange plate to fix the solid-particle stirring pump onto the double flange plates of the pump support of the normal-pressure stirring tank, and meanwhile the pump shaft end of the centrifugal pump extends out of the pump and is connected with the long-shaft type stirring wheel into a whole through a coupling; double layers of stirring impellers are arranged on the lower part of the wheel axle of the long-shaft type stirring wheel, and the stirring impellers of respective layers adopt spiral blades in the same rotational direction.
The normal-pressure solid-liquid flow supply process of the solid-liquid stirrer is as follows: a motor of the solid-particle stirring pump drives the centrifugal pump thereof to pump the distilled water and convey the distilled water to the normal-pressure stirring tank through the water inlet pipe, and solid particles for test are then added into the stirring tank body of the normal-pressure stirring tank; the solid-liquid two-phase flow in the stirring tank body 1s stirred by the long-shaft type stirring wheel of the solid-particle stirring pump to form a normal-pressure solid-liquid flow: and next, the normal-pressure solid-liquid flow flows through the solid-liquid flowmeter, and enters the solid-liquid booster pump through the normal-pressure solid-liquid conveying manifold and the pump liquid inlet pipe.
The solid-liquid supercharger is configured to automatically supply a continuous and stable high-pressure solid-liquid flow with an adjustable flow pressure through the solid-liquid booster pump and the solid-liquid regulating valve in combination with the high-pressure solid-liquid simulation test control system, and includes a pump liquid inlet pipe, a variable frequency motor, a solid-liquid booster pump, a pump liquid outlet pipe. a high-pressure solid-liquid conveying manifold, and a solid-liquid regulating valve.
The pump liquid inlet pipe and the pump liquid outlet pipe are respectively arranged at an inlet and an outlet of the solid-liquid booster pump, and meanwhile the solid-liquid booster pump is connected with the high-pressure solid-liquid 5 conveving manifold and the solid-liquid regulating valve on the high-pressure solid-liquid delivery manifold through the pump liquid outlet pipe and is connected with the three-phase flow mixer into a whole through the solid-liquid inlet pipe.
A single-screw pump is adopted as the solid-liquid booster pump to pressurize the normal-pressure solid-liquid flow to form a high-pressure solid-liquid flow; two ends of a screw of the solid-liquid booster pump are connected with a pump casing through a bearing pedestal, and the screw is integrally machined from a cylindrical rod body: a spiral passage is formed between the outer surface of the screw and the shell wall of the pump casing; and meanwhile, one end of the screw extends out of the pump and is connected with the variable frequency motor into a whole through a coupling.
The variable frequency motor automatically regulates the frequency of an up-converter thereon according to the mixed-flow pressure and the liquid level condition in the normal-pressure stirring tank, then controls a screw speed of the solid-liquid booster pump and pressurizes the normal-pressure solid-liquid flow to form a high-pressure solid-liquid flow.
A solid-liquid regulating valve is arranged on the high-pressure solid-liquid conveying manifold, and a pneumatic pressure control valve is adopted as the solid-liquid regulating valve to regulate a flow pressure pressurized by the solid-liquid booster pump into a simulated solid-liquid pressure according to the flow pressure in the high-pressure solid-liquid conveying manifold.
The automatic supply process of simulated liquid for the high-pressure solid-liquid flow in the solid-liquid supercharger is as follows: the normal-pressure solid-liquid flow enters the solid-liquid booster pump through the pump liquid inlet pipe; the variable frequency motor automatically regulates the frequency of the up-converter thereof according to the mixed-flow pressure and the liquid level condition in the normal-pressure stirring tank, so as to control the screw speed of the solid-liquid booster pump and pressurize the normal-pressure solid-liquid flow to form a high-pressure solid-liquid flow: next, the high-pressure solid-liquid is conveyed into the high-pressure solid-liquid conveving manifold through the pump liquid outlet pipe; the solid-liquid regulating valve regulates the flow pressure pressurized by the solid-liquid booster pump to the simulated solid-liquid pressure according to the flow pressure in the high-pressure solid-liquid conveying manifold, thereby reaching an operation pressure for the separation characteristic test: and finally the solid-liquid inlet pipe automatically supplies a continuous and stable high-pressure solid-liquid flow with an adjustable flow pressure to the three-phase flow mixer,
The three-phase flow mixer 1s configured to automatically supply a continuous and stable three-phase simulated flow through a three-phase mixed-flow pipe in combination with a high-pressure mixed-flow simulation test control system, and includes a three-phase mixed-flow pipe and an intelligent three-phase flowmeter.
The intelligent three-phase flowmeter 1s arranged on a mixed-flow discharge pipe of the three-phase mixed-flow pipe, and a turbine type multiphase flowmeter is adopted as the intelligent three-phase flowmeter to perform metering in a microcomputer control and ultra-low power consumption manner; and the three-phase mixed-flow pipe is connected with the gas simulator through the nitrogen inlet pipe and is connected with the solid-liquid supercharger into a whole through the solid-liquid inlet pipe.
The three-phase mixed-flow pipe adopts a horizontally arranged pipe body and is configured to complete uniform mixing of the gas-liquid-solid three-phase flow to form a three-phase simulated flow. and consists of a nitrogen inlet pipe, a solid-liquid inlet pipe, a mixed-flow outer pipe, a mixed-flow inner pipe and a mixed-flow discharge pipe, wherein the solid-liquid inlet pipe, the mixed-flow inner pipe and the mixed-flow discharge pipe are sequentially coaxially arranged from left to right, and the mixed-flow mner pipe and the mixed-flow outer pipe are coaxially arranged from 1nside to outside to form a mixed-flow double-laver pipe.
The solid-liquid inlet pipe and the nitrogen inlet pipe are respectively arranged on the side end part and the pipe wall of the three-phase mixed-flow pipe, and a conical spray pipe is adopted as the solid-liquid inlet pipe; and the inner wall of an annular cavity of the solid-liquid inlet pipe is formed by combining a cylindrical flow passage and a conical flow passage.
The mixed-flow outer pipe adopts a thick and long pipe body: flange plates of the same model are arranged at two side ends of the mixed-flow outer pipe; circular through holes are drilled in the central parts of the two flange plates respectively, the axial fixation of the solid-liquid inlet pipe and the axial fixation of the mixed-flow discharge pipe are respectively implemented by circumferential welding; and the axial fixation of the mixed-flow inner pipe is implemented by interference fit between outer circular surfaces at two ends of the mixed-flow inner pipe and the inner wall of an annular cavity of the mixed-flow outer pipe.
The mixed-flow inner pipe is formed by combining a compression pipe section, a flat-flow pipe section and a diffusion pipe section, wherein the flat-flow pipe section of the mixed-flow inner pipe adopts a slender pipe body, and the diameter of the inner wall of an annular cavity of the flat-flow pipe section is larger than the diameter of a circular surface at the small end of a conical surface on the conical flow passage of the solid-liquid inlet pipe.
The compression pipe section and the diffusion pipe section of the mixed-flow inner pipe each adopt a conical pipe body. an gjection outlet of the solid-liquid inlet pipe 1s positioned in an annular cavity of the compression pipe section of the mixed-flow inner pipe. and the conicity of a conical surface on the inner wall of the annular cavity of the compression pipe section is larger than that of a conical surface on the mner wall of an annular cavity of the diffusion pipe section of the mixed-flow inner pipe is located and that of the conicity of a conical surface on the conical flow passage of the solid-liquid inlet pipe: and the cone height of the conical surface on the inner wall of the annular cavity of the compression pipe section is smaller than that of the conical surface on the inner wall of the annular cavity of the diffusion pipe section.
The automatic supply process of the three-phase simulated flow in the three-phase flow mixer is as follows: the high-pressure nitrogen enters a pipe cavity of the mixed-flow outer pipe of the three-phase mixed-flow pipe through a nitrogen inlet pipe via a gas conveying manifold, and meanwhile the high-pressure solid-liquid flow sequentially flows through a high-pressure solid-liquid conveying manifold and a cylindrical flow passage of the solid-liquid inlet pipe and is cJected into the mixed-flow inner pipe through the conical flow passage and the ejection outlet of the solid-liquid inlet pipe to form a low-pressure zone. thereby being beneficial to input of the high-pressure nitrogen; the flow velocity of the gas-liquid-solid three-phase flow m the compression pipe section of the mixed-flow inner pipe is reduced while the flow pressure is gradually increased; the gas-liquid-solid three-phase flow then enters the flat-flow pipe section of the mixed-flow mner pipe for long-distance migration and fully and uniformly mixing: and finally, the gas-liquid-solid three-phase flow is pressure-stabilized and regulated by the diffusion pipe section of the mixed-flow nner pipe to form a continuous and stable three-phase simulated flow which then flows through the intelligent three-phase flowmeter and is output from the mixed-flow discharge pipe.
The automatic supply control system is configured to implement remote automatic control of the gas-liquid-solid three-phase flow supply operation process in oil and gas production and ensure the flowing safety of the gas-liquid-solid three-phase flow, and includes a high-pressure nitrogen simulation test control system, a normal-pressure solid-liquid supply control system, a high-pressure solid-liquid simulation test control system and a high-pressure mixed-flow simulation test control system, and is configured to remotely and automatically regulate the supply of the high-pressure nitrogen, the high-pressure solid-liquid flow and the three-phase simulated flow through a pressure transmitter, a self-operated pressure regulating valve, a liquid level transmitter, a local control panel, a conversion switch, a frequency converter, a data acquisition system and the like.
In the high-pressure nitrogen simulation test control system, the intelligent nitrogen flowmeter 1s configured to monitor a flow rate, a flow pressure and a temperature of the high-pressure nitrogen in real time, and meanwhile transmit a high-pressure nitrogen flow rate signal, a flow pressure signal and a temperature signal, which are monitored in real time, together to the data acquisition system and an accumulated flow display instrument thereof through a flow transmitter, a pressure transmitter and a temperature transmitter respectively.
In the high-pressure nitrogen simulation test control system, the gas exhaust manifold between a pressure release valve and a nitrogen pressure regulating valve is provided with the self-operated pressure regulating valve, the self-operated pressure regulating valve being configured to regulate a supply pressure of the high-pressure nitrogen to a design pressure for the separation characteristic test according to the mixed-flow pressure in the three-phase flow mixer and provide continuous and stable high-pressure nitrogen.
The pressure release valve is arranged at the outlet of the nitrogen tank and configured to automatically release high-pressure nitrogen under an overpressure working condition and regulate the pressure in the nitrogen tank.
In the high-pressure nitrogen simulation test control system, the pressure transmitter of the mixed-flow outer pipe is configured to monitor a mixed-flow pressure condition in the pipe in real time. and a pressure indicating controller and a pneumatic-clectric converter are configured to complete signal conversion and data processing in sequence, so as to automatically control the gas momentum of the nitrogen pressure regulating valve on the gas exhaust manifold and regulate the flow pressure and the supply volume of the high-pressure nitrogen.
In the high-pressure nitrogen simulation test control system, the pressure transmitter is arranged on the gas conveving manifold between the intelligent nitrogen flowmeter and the nitrogen inlet pipe, and configured to monitor a pressure regulating condition of the nitrogen pressure regulating valve m real time, a pressure gauge is configured to display an instantancous simulated gas pressure, and meanwhile the pressure indicating controller is configured to transmit a simulated gas pressure signal to the data acquisition system.
In the normal-pressure solid-liquid supply control system, the intelligent solid-liquid flowmeter is configured to monitor an instantaneous flow rate and an accumulated flow rate of the normal-pressure solid-liquid flow in real time, and meanwhile transmit a solid-liquid flow rate signal monitored in real time to the data acquisition system and an instantaneous flow display instrument and an accumulated flow display instrument thereof through the flow transmitter.
In the high-pressure solid-liquid simulation test control system, the local control panel. the conversion switch and the frequency converter are arranged in front of the variable frequency motor, a liquid level transmitter is arranged on the tank wall of the normal-pressure stirring tank to monitor a liquid level change condition in the tank in real time; and meanwhile the pressure transmitter of the mixed-flow outer pipe monitors a mixed-flow pressure condition mm the pipe in real time; a liquid level indicating controller, a pressure indicating controller and a conversion switch are configured to complete signal conversion and data processing respectively, and then the local control panel is configured to automatically regulate the frequency of a frequency converter of the variable frequency motor, thereby controlling a screw speed of the solid-liquid booster pump.
In the high-pressure solid-liquid simulation test control system, the pressure transmitter is arranged on the high-pressure solid-liquid conveying manifold, and configured to monitor a pressure condition of the high-pressure solid-liquid flow in the manifold in real time. and the pressure indicating controller and a pneumatic-electric converter are configured to complete signal conversion and data processing in sequence, thereby automatically controlling the gas momentum of the solid-liquid regulating valve on the high-pressure solid-liquid conveving manifold, and regulate the flow pressure and the supply volume of the high-pressure solid-liquid flow.
In the high-pressure mixed-flow simulation test control system, a pressure transmitter is arranged on the pipe wall of the mixed-flow outer pipe, and configured to monitor a mixed-flow pressure condition in the pipe in real time; and meanwhile, a pressure transmitter is arranged on the pipe wall of the mixed-flow discharge pipe, and configured to monitor a flow pressure condition of the three-phase simulated flow supplied by the three-phase flow mixer in real time; a pressure gauge is configured to display an instantaneous simulated three-phase pressure. and meanwhile the pressure indicating controller is configured to transmit a simulated three-phase pressure signal to the data acquisition system.
In the high-pressure mixed-flow simulation test control system, the intelligent three-phase flowmeter is configured to monitor an instantaneous flow rate and an accumulated flow rate of the three-phase simulation flow in real time, and meanwhile transmit a mixed-flow rate signal monitored in real time to the data acquisition system as well as an instantaneous flow displaying mstrument and an accumulated flow displaying instrument thereof through the flow transmitter. The present invention can achieve the following technical effects: the automatic supply system for test implements a gas-liquid-solid three-phase flow supply operation process of multiphase separation characteristic test in oil and gas production. The gas simulator automatically supplies the continuous and stable high-pressure nitrogen with an adjustable flow pressure through the nitrogen pressure regulating valve in combination with the high-pressure nitrogen simulation test control system. The solid-liquid stirrer supplies the continuous and stable normal-pressure solid-liquid flow through the solid-particle stirring pump in combination with the normal-pressure solid-liquid supply control system. Then, the solid-liquid supercharger automatically supplies the continuous and stable high-pressure solid-liquid flow with an adjustable flow pressure through the solid-liquid booster pump and the solid-liquid regulating valve in combination with the high-pressure solid-liquid simulation test control system. The three-phase flow mixer automatically supplies the continuous and stable three-phase simulated flow through the three-phase mixed-flow pipe in combination with the high-pressure flow simulation test control system.
The automatic supply control system realizes remote automatic control of the gas-liquid-solid three-phase flow supply operation process m oil-gas production and ensures the flowing safety thereof.
Brief Description of the Drawings The present invention will now be further described with reference to the accompanying drawings, but the invention is not limited to the following embodiments.
FIG. 1 is a schematic diagram showing a typical structure of an automatic supply system for gas-liquid-solid three-phase separation characteristic test according to the present invention.
FIG. 2 1s a structural diagram of a gas simulator in the automatic supply system for gas-liquid-solid three-phase separation characteristic test.
FIG. 3 is a pipeline and instrument control diagram of the gas simulator in the automatic supply system for gas-liquid-solid three-phase separation characteristic test.
FIG. 4 is a schematic diagram showing structures of a solid-liquid stirrer and a solid-liquid supercharger in the automatic supply system for gas-liquid-solid three-phase separation characteristic test.
FIG. 5 is a pipeline and instrument control diagram of the solid-liquid stirrer and the solid-liquid supercharger in the automatic supply svstem for gas-liquid-solid three-phase separation characteristic test.
FIG. 6 is a schematic diagram showing a structure of a three-phase flow mixer in the automatic supply system for gas-liquid-solid three-phase separation characteristic test.
FIG. 7 is a schematic diagram showing the structure of the three-phase mixed-flow pipe in the three-phase flow mixer.
FIG. 8 is a pipeline and instrument control diagram of the three-phase flow mixer in the automatic supply system for gas-liquid-solid three-phase separation characteristic test.
FIG. 9 is a diagram showing the process flow of the automatic supply operation of the gas-liquid-solid three-phase flow for oil and gas production in the automatic supply system for gas-liquid-solid three-phase separation characteristic test.
Reference symbols represent the following components: 1-gas simulator, 2-solid-liquid stirrer, 3-solid-liquid supercharger, 4-three-phase flow mixer, S-automatic supply control system, G-nitrogen tank, 7-gas exhaust manifold, $-nitrogen pressure regulating valve. 9-gas conveying manifold. 10-intelligent nitrogen flowmeter, 11-nitrogen inlet pipe, 12-pressure release valve, 13-self-operated pressure regulating valve, 14-pressure transmitter, 15-solid particle stirring pump, l6-normal-pressure stirring tank, 17-mtelligent solid-liquid flowmeter, 18-normal-pressure solid-liquid conveying manifold, 19-pump liquid inlet pipe, 20-variable frequency motor,
21-solid-liquid booster pump. 22-pump liquid outlet pipe, 23-solid-liquid regulating valve, 24-high-pressure solid-liquid conveying manifold, 25-solid-liquid inlet pipe, 26-frequency converter, 27-conversion switch, 28-liquid level transmitter, 29-three-phase mixed-flow pipe, 30-intelligent three-phase flowmeter, 31-mixed-flow outer pipe, 32-mixed-flow inner pipe, 33-mixed-flow discharge pipe and 34-data acquisition system. Detailed Description of the Invention In Fig. 1, an automatic supply system for gas-liquid-solid three-phase separation characteristic test is mainly composed of a gas simulator 1, a solid-liquid stirrer 2, a solid-liquid supercharger 3, a three-phase flow mixer 4, and an automatic supply control system 5. The automatic supply system is connected with a gas-liquid-solid three-phase separation characteristic test bench at the downstream thereof into a whole through a mixed-flow discharge pipe in the three-phase flow mixer 4. The automatic supply system for test may remotely and automatically control the supply of high-pressure nitrogen, a high-pressure solid-liquid flow, and a three-phase simulation flow, and hereby implement a gas-liquid-solid three-phase flow supply operation process in the multiphase separation characteristic test in oil and gas production.
In FIG. 1. in the automatic supply system for gas-liquid-solid three-phase separation characteristic test, the gas simulator 1 is configured to remotely and automatically regulate the supply of the high-pressure nitrogen in combination with the automatic supply control system 5. The solid-liquid stirrer 2 and the solid-liquid supercharger 3 are configured to automatically regulate the supply of the high-pressure solid-liquid flow in combination with the automatic supply control system 5. The three-phase flow mixer 4 is configured to remotely and automatically regulate the supply of the three-phase simulated flow in combination with the automatic supply control system
3.
In FIG. 1, in need of changes in a supply pressure and a supply volume of a gas-liquid-solid three-phase flow. the automatic supply system for gas-liquid-solid three-phase separation characteristic test may regulate the frequencies of a nitrogen pressure regulating valve in the gas simulator 1, a solid-liquid booster pump and a solid-liquid regulating valve in the solid-liquid supercharger 3, as well as a self-operated pressure regulating valve, a local control panel and a frequency converter in the automatic supply control system 5.
In FIG. 2, the gas simulator 1 automatically supplies continuous and stable high-pressure nitrogen with an adjustable flow pressure through a nitrogen pressure regulating valve 8 in combination with a high-pressure nitrogen simulation test control system in the automatic supply control system 5. The pressure of the nitrogen tank 6 is designed according to a simulated gas pressure of the supplied high-pressure nitrogen. The specification of the nitrogen pressure regulating valve 8
1s selected according to a mixed-flow pressure in the three-phase flow mixer 4. The specification of an intelligent nitrogen flowmeter 10 is selected according to a maximum flow rate and a maximum flow pressure of the high-pressure nitrogen.
Meanwhile, the specifications of a gas exhaust manifold 7, a gas conveying manifold 9 and a nitrogen inlet pipe 11 need to be designed according to the maximum flow pressure of the high-pressure nitrogen.
In FIG. 2, the nitrogen tank 6 of the gas simulator 1 is connected with the nitrogen inlet pipe 11 of the three-phase flow mixer 4 through the gas conveying manifold 9 via the gas exhaust manifold 7. The nitrogen pressure regulating valve 8 is arranged on the gas exhaust manifold 7, and configured to regulate a design pressure regulated by a self-operated pressure regulating valve in the high-pressure nitrogen simulation test control system to a simulated gas pressure according to a mixed-flow pressure in the three-phase flow mixer 4. The intelligent nitrogen flowmeter 10 is arranged on the gas conveying manifold 9. In addition. an orifice plate type gas flowmeter is adopted as the intelligent nitrogen flowmeter 10. In FIG. 2 and FIG. 3. the automatic supply process of simulated gas of high-pressure nitrogen in the gas simulator 1 1s as follows: high-pressure nitrogen m the nitrogen tank 6 is output through values, such as a pressure release valve 12 and a ball valve, and the gas exhaust manifold 7, and is pressure-regulated by the self-operated pressure regulating valve 13 to the design pressure for separation characteristic test, thereby ensuring that the pressure of the high-pressure nitrogen is maintained stable.
The high-pressure nitrogen then sequentially flows through the valves such as the nitrogen pressure regulating valve 8 and a ball valve.
The design pressure regulated by the self-operated pressure regulating valve 13 is regulated to a simulated gas pressure according to the mixed-flow pressure in the three-phase flow mixer 4. thereby realizing an operation pressure for separation characteristic test.
Next, the high-pressure nitrogen sequentially flows through flowmeters and valves, such as the gas conveying manifold 9 and the intelligent nitrogen flowmeter 10, a ball valve and a check valve.
The continuous and stable high-pressure nitrogen with an adjustable flow pressure is automatically supplied to the three-phase flow mixer 4 through the nitrogen inlet pipe 11. In FIG. 3, in a pipeline and instrument control method for the gas simulator 1, a high-pressure nitrogen simulation test control system of the automatic supply control system 5 transmits a high-pressure nitrogen flow rate signal, a flow pressure signal and a temperature signal, which are monitored by the intelligent nitrogen flowmeter 10 in real time. together to a data acquisition system and an accumulated flow display device (FQI) thereof through a flow transmitter (FIT), a pressure transmitter (PIT) and a temperature transmitter (TIT) on the gas conveying manifold 9 between the nitrogen pressure regulating valve 8 and the intelligent nitrogen flowmeter 10. In FIG. 3, in the pipeline and instrument control method for the gas simulator 1, the high-pressure nitrogen simulation test control system of the automatic supply control system 5 regulates a supply pressure of the high-pressure nitrogen to the design pressure for separation characteristic test through the self-operated pressure regulating valve 13 on the gas exhaust manifold 7 between the pressure release valve 12 and the nitrogen pressure regulating valve 8 according to the mixed-flow pressure in the three-phase flow mixer 4. and provides continuous and stable high-pressure nitrogen.
The high-pressure nitrogen simulation test control system automatically releases the high-pressure nitrogen under an overpressure working condition through the pressure release valve 12 at an outlet of the nitrogen tank 6 and regulates the pressure in the nitrogen tank 6. In FIG. 3. in the pipeline and instrument control method for the gas simulator 1, the high-pressure nitrogen simulation test control system of the automatic supply control system 5 monitors a mixed-flow pressure condition in a mixed-flow outer pipe in real time through a pressure transmitter 14 of the mixed-flow outer pipe, and completes signal conversion and data processing through a pressure indicating controller (PIC) and a pneumatic-electricity converter (PY) in sequence, thereby automatically controlling the gas momentum of the nitrogen pressure regulating valve 8 on the gas exhaust manifold 7 and regulating a flow pressure and a supply volume of the high-pressure nitrogen.
In FIG. 3, in the pipeline and instrument control method for the gas simulator 1, the high-pressure nitrogen simulation test control svstem of the automatic supply control system 3 monitors a pressure regulating condition of the nitrogen pressure regulating valve 8 in real time through the pressure transmitter 14 on the gas conveving manifold 9 between the intelligent nitrogen flowmeter 10 and the nitrogen inlet pipe 11, displays an instantaneous simulated gas pressure through a pressure gauge (PI), and meanwhile transmit a simulated gas pressure signal to the data acquisition system according to the pressure indicating controller (PIC). In FIG. 4, the solid-liquid stirrer 2 supplies a continuous and stable normal-pressure solid-liquid flow through a solid-particle stirring pump 15 in combination with a normal-pressure solid-liquid supply control system in the automatic supply control system 5. The tank capacity of the normal-pressure stirring tank 16 1s selected according to the supply volume of high-pressure solid-liquid flow.
In addition, the specifications of a water inlet pipe and a liquid discharge pipe in the normal-pressure stirring tank 16 and a normal-pressure solid-liquid conveying manifold 18 need to be designed according to the flow rate of distilled water.
In addition, it 1s necessary to consider the factors, such as the supply volume of distilled water, a vertical height difference between an inlet of the centrifugal pump and the liquid surface of the solid-liquid two-phase flow in the normal-pressure stirring tank 16, and the maximum resistance under which a long-shaft type stirring wheel stirs the solid-liquid two-phase flow in the case of the model selection for the solid-particle stirring pump 15. In addition, the model of a motor in the solid-particle stirring pump 15 keeps consistent with the pump type of the centrifugal pump of the solid-particle stirring pump.
Meanwhile, the specification of the intelligent solid-liquid flowmeter 17 is selected according to the maximum flow rate of the normal-pressure solid-liquid flow.
In FIG. 4, the solid-liquid supercharger 3 automatically supplies a continuous and stable high-pressure solid-liquid flow with an adjustable flow pressure through a solid-liquid booster pump 21 and a solid-liquid regulating valve 23 in combination with a high-pressure solid-liquid simulation test control system in the automatic supply control system 5. An outlet pressure of the solid-liquid booster pump 21 and a simulated solid-liquid pressure in a high-pressure solid-liquid conveying manifold 24 are designed according to on the mixed-flow pressure and the simulated three-phase pressure of the three-phase flow mixer 4. The model of the variable frequency motor 20 keeps consistent with the pump type of the solid-liquid booster pump 21. The specification of the solid-liquid regulating valve 23 is selected according to the flow pressure and the simulated solid-liquid pressure in the high-pressure solid-liquid conveving manifold 24. The specification of a pump liquid inlet pipe 19 keeps consistent with that of the normal-pressure solid-state conveving manifold 18. The specifications of the pump liquid outlet pipe 22, the high-pressure solid-liquid conveying manifold 24, and a solid-liquid inlet pipe 25 need to be selected according to the maximum flow rate and the maximum flow pressure of the high-pressure solid-liquid flow.
In FIG. 4, an intelligent solid-liquid flowmeter 17 is arranged on the normal-pressure solid-liquid conveying manifold 18 of the solid-liquid stirrer 2. The normal-pressure stirring tank 16 is connected with the normal-pressure solid-liquid conveying manifold 18 through a liquid discharge pipe. and 1s connected with the solid-liquid booster pump 21 into a whole through the pump liquid mlet pipe 19. The motor of the solid-particle stirring pump 15 and the centrifugal pump are integrated, and a pump shaft of the centrifugal pump of the solid-particle stirring pump 15 is connected with a long-shaft tvpe stirring wheel into a whole through a coupling.
A solid-liquid regulating valve 23 is arranged on the high-pressure solid-liquid conveying manifold 24 of the solid-liquid supercharger 3. A screw of the solid-liquid booster pump 21 is connected with the variable frequency motor 20 through a coupling.
The solid-liquid booster pump 21 is connected with the high-pressure solid-liquid conveying manifold 24 and the solid-liquid regulating valve 23 on the high-pressure solid-liquid manifold 24 via the pump liquid outlet pipe 22. and connected with the three-phase flow mixer 4 into a whole through the solid-liquid inlet pipe 25. In FIG. 4 and FIG. 5, the normal-pressure solid-liquid flow supply process of the solid-liquid stirrer 12 is as follows: the motor of the solid-particle stirring pump 15 drives the centrifugal pump thereof to pump the distilled water and convey the distilled water to an stirring tank body of the normal-pressure stirring tank 16 through the water inlet pipe.
Solid particles for test are then added into the stirring tank body.
The solid-liquid two-phase flow in the stirring tank body of the normal-pressure stirring tank 16 is stirred by the long-shaft tvpe stirring wheel of the solid-particle sturing pump 15 to form a normal-pressure solid-liquid flow.
Next, the normal-pressure solid-liquid flow sequentially flows through the flowmeters and valves, such as the intelligent solid-liquid flowmeter 17 and a ball valve, and enters the solid-liquid booster pump 21 through the normal-pressure solid-liquid conveying manifold 18 and the pump liquid inlet pipe 19. In FIG. 4 and FIG. 5, the automatic supply process of simulated liquid of high-pressure solid-liquid flow in the gas simulator 3 is as follows: the normal-pressure solid-liquid flow enters the solid-liquid booster pump 21 through the pump liquid inlet pipe 19. The variable frequency motor 20 automatically regulates the frequency of an up-converter thereon according to the mixed-flow pressure in the three-phase flow mixer 4 and the liquid level condition in the normal-pressure stirring tank 16, so as to control a screw speed of the solid-liquid booster pump 21 and pressurize the normal-pressure solid-liquid flow to form a high-pressure solid-liquid flow.
Next, the high-pressure solid-liquid flow is conveyed into the high-pressure solid-liquid conveying manifold 24 through the pump liquid outlet pipe 22 and valves, such as a ball valve and a check valve.
The solid-liquid regulating valve 23 regulates the flow pressure pressurized by the solid-liquid booster pump 21 to a simulated solid-liquid pressure according to the flow pressure in the high-pressure solid-liquid conveving manifold 24, thereby reaching an operation pressure for the separation characteristic test.
Finally, a continuous and stable high-pressure solid-liquid flow with an adjustable flow pressure is automatically supplied to the three-phase flow mixer 4 through the solid-liquid mlet pipe 25. In FIG. 5, in a pipeline and instrument control method for the solid-liquid stirrer 2, a normal-pressure solid-liquid supply control system of the automatic supply control system 5 monitors an instantaneous flow rate and an accumulated flow rate of the normal-pressure solid-liquid flow mm real time through the intelligent solid-liquid flowmeter 17 on the normal-pressure solid-liquid conveying manifold 18. Meanwhile, the intelligent solid-liquid flowmeter 17 transmits a solid-liquid flow rate signal monitored in real time to the data acquisition system and an instantaneous flow display instrument (FI) and an accumulated flow display mstrument (FQT) thereof through the flow transmitter (FIT). In FIG. 5. in a pipeline and instrument control method for the solid-liquid supercharger 3. a high-pressure solid-liquid simulation test control system of the automatic supply control system 5 monitors a liquid level change condition in the stirring tank body of the normal-pressure stirring tank in real time through a liquid level transmitter 28 on the normal-pressure stirring tank 16. Meanwhile, the pressure transmitter 14 on the mixed-flow outer pipe in the three-phase flow mixer 4 monitors a mixed-flow pressure condition in the three-phase mixed-flow pipe in real time, completes signal conversion and data processing through a liquid level indicating controller (LIC),
a pressure indicating controller (PIC) and a conversion switch 27 respectively, and then automatically regulates the frequency of a frequency converter 26 of the variable frequency motor 20 through the local control panel, thereby controlling a screw speed of the solid-liquid booster pump 21.
In FIG. 5, in the pipeline and instrument control method for the solid-liquid supercharger 3, the high-pressure solid-liquid simulation test control system of the automatic supply control system 5 monitors a pressure condition of the high-pressure solid-liquid flow in the high-pressure solid-liquid conveying manifold 24 m real time through the pressure transmitter 14 on the high-pressure solid-liquid conveving manifold 24, and completes signal conversion and data processing through a pressure indicating controller (PIC) and a pneumatic-electric converter (PY) in sequence, so as to automatically control the gas momentum of the solid-liquid regulating valve 23 on the high-pressure solid-liquid conveying manifold 24 and regulate the flow pressure and the supply volume of the high-pressure solid-liquid flow. In FIG. 6, the three-phase flow mixer 4 automatically supplies a continuous and stable three-phase simulated flow through the three-phase mixed-flow pipe 29 in combination with the high-pressure mixed-flow simulation test control system in the automatic supply control system 5. An intelligent three-phase flowmeter 30 1s arranged on a mixed-flow discharge pipe of the three-phase mixed-flow pipe 29. The specification of the intelligent three-phase flowmeter 30 is selected according to the maximum flow rate and maximum flow pressure of the three-phase simulated flow. The three-phase mixed-flow pipe 29 is connected with the gas simulator 1 through the nitrogen inlet pipe 11 and is connected with the solid-liquid supercharger 3 into a whole through the solid-liquid inlet pipe 25. In FIG. 7, by means of the three-phase mixed-flow pipe 29, the gas-liquid-solid three-phase flow is uniformly mixed to form a three-phase simulated flow. The specification of the mixed-flow outer pipe 31 is designed according to the maximum flow rate and maximum flow pressure before uniform mixing of the gas-liquid-solid three-phase flow. The specifications of the mixed-flow inner pipe 32 and the mixed-flow discharge pipe 33 need to be designed according to the maximum flow rate and maximum flow pressure of the three-phase simulated flow formed after uniform mixing of the gas-liquid-solid three-phase flow. The mixed-flow pressure in the three-phase mixed-flow pipe 29 1s equal to the sum of the pressure drop of the three-phase simulated flow after uniform mixing of the gas-liquid-solid three-phase flow and the simulated three-phase pressure in the mixed-flow discharge pipe 33. The solid-liquid inlet pipe 25 and the nitrogen inlet pipe 11 are respectively arranged on the side end part and the pipe wall of the three-phase mixed-flow pipe 29. The mixed-flow inner pipe 32 and the mixed-flow outer pipe 31 are coaxially arranged from inside to outside to form a mixed-flow double-layer pipe.
In FIGS. 6 to 8, the automatic supply process of the three-phase simulated flow in the three-phase flow mixer 4 is as follows: the high-pressure nitrogen enters a pipe cavity of the mixed-flow outer pipe 31 of the three-phase mixed-flow pipe 29 through the gas conveying manifold 9 via the nitrogen inlet pipe 11. Meanwhile, the high-pressure solid-liquid flow sequentially flows through the high-pressure solid-liquid conveying manifold 24 and a cylindrical flow passage of the solid-liquid inlet pipe 25 and is gjected into the mixed-flow inner pipe 32 through a conical flow passage and an ejection outlet of the solid-liquid inlet pipe 25 to form a low-pressure zone, thereby being beneficial to mput of the high-pressure nitrogen.
The flow velocity of the gas-liquid-solid three-phase flow in a compression pipe section of the mixed-flow inner pipe 32 is reduced while the flow pressure is gradually increased.
Then, the gas-liquid-solid three-phase flow enters the flat-flow pipe section of the mixed-flow inner pipe 32 for long-distance migration and fully and uniformly mixing.
Finally, the gas-liquid-solid three-phase flow is pressure-stabilized and regulated through a diffusion pipe section of the mixed-flow inner pipe 32 to form a continuous and stable three-phase simulated flow, and then the three-phase simulated flow flows through the intelligent three-phase flowmeter 30 and valves such as a ball valve and is output from the mixed-flow discharge pipe 33. In FIG. 8, in a pipeline and instrument control method for the three-phase flow mixer 4, a high-pressure mixed-flow simulation test control system of the automatic supply control svstem 3 monitors a mixed-flow pressure condition in the three-phase mixed-flow pipe 29 in real time through the pressure transmitter 14 on the mixed-flow outer pipe 31, monitors a flow pressure condition of the three-phase simulated flow supplied by the three-phase flow mixer 4 in real time through the pressure transmitter 14 on the mixed-flow discharge pipe 33, display an instantancous simulated three-phase pressure through a pressure gauge (PI), and meanwhile transmit a simulated three-phase pressure signal to the data acquisition system through the pressure indicating controller (PIC). In FIG. 8, in the pipeline and instrument control method for the three-phase flow mixer 4, the high-pressure mixed-flow simulation test control system of the automatic supply control system 5 monitors an instantaneous flow rate and an accumulated flow rate of the three-phase simulated flow in real time through the intelligent three-phase flowmeter 30. and meanwhile the intelligent three-phase flowmeter 30 transmits a mixed-flow rate signal monitored in real time to the data acquisition system as well as an instantaneous flow displaying instrument (FI) and an accumulated flow displaying instrument (FQI) thereof through the flow transmitter (FIT). In FIG. 9. the automatic supply operation process of the gas-liquid-solid three-phase flow for oil gas production in the automatic supply svstem for the gas-liquid-solid three-phase separation characteristic test is as follows: the high-pressure nitrogen in the nitrogen tank 6 sequentially flows through the gas exhaust manifold 7 and the self-operated pressure regulating valve 13. The nitrogen pressure regulating valve 8 regulates the design pressure regulated by the self-operated pressure regulating valve 13 to the simulated gas pressure.
The high-pressure nitrogen then sequentially flows through the gas conveying manifold 9 and the intelligent nitrogen flowmeter 10. The continuous and stable high-pressure nitrogen with an adjustable flow pressure is automatically supplied to the three-phase flow meter 4 through the nitrogen inlet pipe 11. Meanwhile, the solid-particle stirring pump 15 pumps distilled water into the normal-pressure stirring tank 16 through the water mlet pipe and stirs the solid-liquid two-phase flow in the normal-pressure stirring tank 16 through a long-shaft type stirring wheel of the solid-particle stirring pump 15. The normal-pressure solid-liquid flow then sequentially flows through the intelligent solid-liquid flowmeter 17 and the normal-pressure solid-liquid conveying manifold 18 and enters the solid-liquid booster pump 21 through the pump liquid inlet pipe 19. Then, the variable frequency motor 20 automatically regulates the frequency of a frequency converter 26 and controls a screw speed of the solid-liquid booster pump 21 according to the mixed-flow pressure in the mixed-low outer pipe and the liquid level condition in the normal-pressure stirring tank 16. thereby pressurizing the normal-pressure solid-liquid flow to form a high-pressure solid-liquid flow.
Next, the high-pressure solid-liquid flow sequentially flows through the pump liquid outlet pipe 22 and the high-pressure solid-liquid conveving manifold 24, and the flow pressure pressurized by the solid-liquid booster pump 21 is regulated to the simulated solid-liquid pressure through the solid-liquid regulating control valve 23. Then, a continuous and stable high-pressure solid-liquid flow with an adjustable flow pressure is automatically supplies to the three-phase flow meter 4 through the solid-liquid inlet pipe 25. Finally, the high-pressure nitrogen and the high-pressure solid-liquid flow 1 the compression pipe section of the mixed-flow mner pipe 32 form a gas-liquid-solid three-phase flow.
The gas-liquid-solid three-phase flow 1s sufficiently and uniformly mixed in sequence through the mixed-flow inner pipe 32 and are pressure-stabilized and regulated to form a continuous and stable three-phase simulated flow.
The three-phase simulated flow then flows through the mtelligent three-phase flow meter 30 and is output from the mixed-flow discharge pipe.
In FIG. 9, the automatic supply operation process of the gas-liquid-solid three-phase flow for oil gas production m the automatic supply system for the gas-liquid-solid three-phase separation characteristic test is as follows: the high-pressure nitrogen simulation test control system transmits a high-pressure nitrogen flow rate signal, a flow pressure signal and a temperature signal, which are monitored in real time, together to the data acquisition system 34 through the intelligent nitrogen flowmeter 10. regulates a supply pressure of the high-pressure nitrogen to a design pressure for separation characteristic test through the self-operated pressure regulating valve 13,
and monitors a pressure regulating condition of the nitrogen pressure regulating valve 8 in real time and transmit a simulated gas pressure signal to the data acquisition system 34 through the pressure transmitter 14 on the gas conveying manifold 9. The normal-pressure solid-liquid supply control system transmits a solid-liquid flow rate signal monitored in real time to the data acquisition system 34 through the intelligent solid-liqud flowmeter 17. The high-pressure solid-liquid simulation test control system monitors a pressure condition of high-pressure solid-liquid flow in the high-pressure solid-liquid conveying manifold 24 in real time through the pressure transmitter 14 on the high-pressure solid-liquid conveying manifold 24 and transmits a simulated solid-liquid pressure signal to the data acquisition system 34, monitors a liquid level change condition in the stirring tank body in real time through the liquid level transmitter 28 on the normal-pressure stirring tank 16, monitors a mixed-flow pressure condition in the three-phase mixed-flow pipe 29 in real time through the pressure transmitter 14 on the mixed-flow outer pipe 31, and meanwhile completes signal conversion and data processing through the conversion switch 27. The high-pressure mixed-flow simulated test control system monitors a flow pressure condition of three-phase simulated flow supplied by the three-phase flow mixer 4 in real time through the pressure transmitter 14 on the mixed-flow discharge pipe 33 and transmits a simulated three-phase pressure signal to the data acquisition system 34, and transmits a mixed-flow rate signal monitored in real time to the data acquisition system 34 through the intelligent three-phase flowmeter 30.
The above embodiments are only used to illustrate the present invention, in which the connection modes and control methods of various systems, as well as the structures of various components can be changed. Any equivalent transformations and improvements based on the technical solution of the present invention should fall within the protection scope of the present invention.

Claims (10)

CONCLUSIESCONCLUSIONS 1. Een type van een experimenteel automatisch toevoersysteem met driefasen scheiding van gassen/vaste stoffen/vloeistoffen bestaat hoofdzakelijk uit een gassimulator. een mengtoestel voor vaste stoffenAloeistoffen. een drukverhoger voor vaste stoffen/vloeistoffen, een driefasen stroommengtoestel en een automatisch toevoerregelsysteem. De bedieningsprocedure voor de driefasen toevoer van gassen/vaste stoffen/vloeistoffen van de kenmerkentest met meervoudige fasen voor scheiding bij olie- en gaswinning wordt geïmplementeerd voor de op automatisch op afstand geregelde toevoer van hogedruk stikstofgas, stroom van vaste stoffen/vloeistoffen onder hoge druk en driefasen gesimuleerde stroom. De eigenschappen zijn als volgt: Een gassimulator: De genoemde gassimulator simuleert het door het testregelsysteem automatisch en stabiel toegevoerde hogedruk stikstofgas, dat regelbaar is door middel van de drukregelklep voor stikstofgas en in combinatie met hogedruk stikstofgas. Dit omvat het stikstofgasvat, het leidingennetwerk voor gasafvoer, de drukregelklep voor stikstofgas, de intelligente debietmeter voor stikstofgas en het gastransportnetwerk. Het stikstofgasvat maakt gebruik van de beweegbare leiding van de regelgascilinder en het stikstofgasvat wordt aangesloten op de toevoerleiding voor stikstofgas via het leidingennetwerk voor gasafvoer en door het leidingennetwerk voor gastransport. De drukregelklep voor stikstofgas maakt gebruik van de hydraulische drukregelklep. De intelligente debietmeter voor stikstofgas maakt gelijktijdig gebruik van de gasstroommeter met mondplaat.1. One type of experimental automatic supply system with three-phase separation of gases / solids / liquids consists mainly of a gas simulator. a mixing device for solidsLiquids. a solid / liquid booster, a three-phase flow mixer and an automatic feed control system. The control procedure for the three-phase supply of gases / solids / liquids of the multi-stage characteristic test for separation in oil and gas recovery is implemented for the automatic remote controlled supply of high pressure nitrogen gas, flow of solids / liquids under high pressure and three-phase simulated current. The properties are as follows: A gas simulator: The said gas simulator simulates the high pressure nitrogen gas automatically and stably supplied by the test control system, which is controllable by means of the nitrogen gas pressure control valve and in combination with high pressure nitrogen gas. This includes the nitrogen gas vessel, the gas outlet piping network, the nitrogen gas pressure control valve, the intelligent nitrogen gas flow meter, and the gas transport network. The nitrogen gas barrel uses the movable pipe of the control gas cylinder, and the nitrogen gas barrel is connected to the nitrogen gas supply pipe through the gas discharge piping network and through the gas transport piping network. The nitrogen gas pressure control valve uses the hydraulic pressure control valve. The intelligent nitrogen gas flow meter simultaneously uses the gas flow meter with mouth plate. Een mengtoestel voor vaste/vloeistoffen: Het genoemde mengtoestel voor vaste stoffen/vloeistoffen voert doorlopend en stabiel een stroom vaste stoffen/vloeistoffen onder gelijkmatige druk toe, door middel van de mengpomp voor vaste deeltjes en in combinatie met het toevoerregelsysteem voor vaste stoffen/vloeistoffen onder gelijkmatige. Dit omvat het mengvat onder gelgkmatige druk, de mengpomp voor vaste deeltjes, het leidmgennetwerk onder gelijkmatige druk voor transport van vaste stoffen/vloeistoffen en de intelligente debietmeter voor stikstofgas. De intelligente debietmeter voor stikstofgas maakt gebruik van de turbo-vloeistofstroommeter. Het mengvat onder gelijkmatige druk wordt aangesloten op het leidingennetwerk onder gelijkmatige druk voor transport van vaste stoffen/vloeistoffen door de afvoerleidingen voor vloeistoffen en geïntegreerd met de drukverhogingspomp voor vaste stoffen/vloeistoffen via de vloeistofpomp voor de toevoerleidingen. Het mengvat onder gelijkmatige druk maakt gebruik van het staande cilindrische vat dat bestaat uit een watertoevoerleiding, leiding voor afvoer van vloeistoffen, mengvatlichaam en pompbeugels. Er wordt ter ondersteuning aan de onderkant van het mengvatlichaam een mantelhuls geplaatst en de pompbeugels maken gebruik van de kruiselingse stalen steunbalkconstructie in H-stijl. De mengpomp voor vaste deeltjes bestaat uit een elektrische motor, centrifugaalpomp en mengwiel met lange as. De elektrische motor en centrifugaalpomp van de mengpomp voor vaste deeltjes maken gebruik van een geïntegreerde constructie en er wordt een dubbellaags mengnokkenwiel aan de onderkant van de wielas van het mengwiel met lange as geïnstalleerd.A solid / liquid mixing device: The mentioned solid / liquid mixing device continuously and stably supplies a flow of solids / liquids under uniform pressure, by means of the solids / liquids mixing pump and in combination with the solids / liquids feed control system under even. This includes the equal pressure mixing vessel, the solids mixing pump, the uniform pressure pipeline network for solids / liquids transport and the intelligent nitrogen gas flow meter. The intelligent nitrogen gas flow meter uses the turbo liquid flow meter. The uniform pressure mixing vessel is connected to the even pressure piping network for solids / liquids transport through the liquid discharge lines and integrated with the solids / liquids booster pump via the supply line liquid pump. The uniform pressure mixing vessel uses the upright cylindrical vessel consisting of water supply line, liquid discharge line, mixing vessel body and pump brackets. A jacket sleeve is placed on the bottom of the mixing vessel body for support, and the pump brackets utilize the H-pillar crisscross steel support beam construction. The solid particle mixing pump consists of electric motor, centrifugal pump and long shaft mixing wheel. The electric motor and centrifugal pump of the solid particle mixing pump use an integrated construction, and a double layer mixing cam wheel is installed at the bottom of the wheel shaft of the long shaft mixing wheel. Een drukverhoger voor vaste stoffen/vlocistoffen: De genoemde drukverhoger voor vaste stoffen/vloeistoffen voert door het testregelsysteem doorlopend en stabiel een stroom vaste stoffen/vloeistoffen onder hoge druk toe, die regelbaar is door middel van de drukverhogingspomp voor vaste stoffen/vloeistoffen en regelklep voor vaste stoffen/vloeistoffen en in combinatie met het experimentele automatische toevoersysteem voor vaste stoffen/vloeistoffen onder hoge druk.A solids / liquids booster: The said solids / liquids booster supplies continuously and stably through the test control system a flow of solids / liquids under high pressure, which is controllable by means of the solids / liquids booster pump and control valve. solids / liquids and in conjunction with the experimental high pressure automatic solids / liquids supply system. Dit omvat de pomp voor de vloeistoftoevoerleiding, de frequentieomvormermotor, de verhogingspomp voor vaste stoffen/vloeistoffen, de pomp voor afvoer van vloeistoffen, het leidingennetwerk voor transport van vaste stoffen/vloeistoffen onder hoge druk en de regelklep voor vaste stoffen/vloeistoffen. De drukverhogingspomp voor vaste stoffen/vloeistoffen wordt door de pomp voor afvoer van vloeistoffen aangesloten op het leidingennetwerk voor transport van vaste stoffen/vloeistoffen onder hoge druk en de regelklep voor vaste stoffen/vloeistoffen en geïntegreerd met het driefasen stroommengtoestel via de toevoerleiding voor vaste stoffen/vloeistoffen. De drukverhogmgspomp voor vaste stoffen/vloeistoffen maakt gebruik van een enkele schroefpomp en het buitenste schroefoppervlak van de drukverhogingspomp voor vaste stoffen/vloeistoffen vormt een spiraalvormige doorgang met de chassiswanden van het pompchassis hiervan. De frequenticomvormermotor past automatisch de frequentie van de frequenticomvormer hierop aan door middel van de druk van de gemengde stroom en het vloeistofpeil van het mengvat onder gelijkmatige druk. Deze regelt op zijn beurt de draaisnelheid van de schroefas van de drukverhogingspomp voor vaste stoffen/vloeistoffen en vormt de stroom vaste stoffen/vloeistoffen onder hoge druk door het verhogen van de druk van de stroom onder gelijkmatige druk. De regelklep voor vaste stoffen/vloeistoffen maakt gebruik van de hydraulische drukregelklep.This includes the liquid supply line pump, frequency converter motor, solid / liquid booster pump, liquid discharge pump, high pressure solids / liquids piping network, and solids / liquids control valve. The solids / liquids booster pump is connected by the liquid discharge pump to the high pressure solids / liquids transfer piping network and the solids / liquids control valve and integrated with the three-phase flow mixer through the solids / liquid supply line. liquids. The solids / liquids booster pump uses a single screw pump, and the outer screw surface of the solids / liquids booster pump forms a spiral passage with the chassis walls of its pump chassis. The frequency converter motor automatically adjusts the frequency of the frequency converter accordingly by means of the pressure of the mixed flow and the liquid level of the mixing vessel under uniform pressure. This in turn controls the rotational speed of the propeller shaft of the solid / liquid booster pump and creates the high pressure solids / liquids flow by increasing the pressure of the uniform pressure flow. The solids / liquids control valve uses the hydraulic pressure control valve. Een driefasen stroommengtoestel: Het genoemde driefasen stroommengtoestel levert een doorlopende en stabiele driefasen gesimuleerde stroom door middel van de driefasenleiding voor gemengde stroom en in combmatie met het experimentele automatische toevoersysteem voor simulatie van gemengde stroom onder hoge druk. Dit omvat de driefasenleidmg voor gemengde stroom en intelligente driefasen debietmeter. De intelligente driefasen debietmeter maakt gebruik van turbo met meervoudige fasen debietmeter. De driefasenleiding voor gemengde stroom wordt door de toevoerleidmg voor stikstofgas aangesloten op de gassimulator en wordt via de toevoerleiding voor vaste stoffen/vloeistoffen geïntegreerd met de drukverhoger voor vaste stoffen/vloeistoffen. De driefasenleiding voor gemengde stroom maakt gebruik van in een vlak liggende leidmgen. die bestaan uit de toevoerleiding voor stikstofgas, buitenst gemengde stroomleiding. binnenste gemengde stroomleiding en afvoerleiding voor gemengde stroom. De binnenste en buitenste leidingen voor gemengde stroom vormen een dubbellaagse gemengde stroomleiding met de asformatie van bmnen naar buiten. De toevoerleiding voor vaste stoffen/loerstoffen maakt gebruik van de conische sproeileiding en de buitenste gemengde stroomleiding maakt gebruik van een grof en lang leidinglichaam. De binnenste gemengde stroomleiding bestaat gelijktijdig uit het gecomprimeerde leidingdeel, horizontaal stromende leidingdeel en gedistribueerde leidingdeel. Het horizontaal stromende leidingdeel van de binnenste gemengde stroomleiding maakt gebruik van een fyn en lang leidinglichaam, terwijl beide gecomprimeerd gedistribueerde leidingdelen gebruikmaken van een conisch leidinglichaam. Een automatisch toevoerregelsysteem: Het genoemde automatische toevoerregelsysteem omvat het simulatie testregelsysteem voor stikstofgas onder hoge druk, stikstofgas, het simulatie testregelsysteem voor vaste stoffen/vloeistoffen onder hoge druk en het simulatie testregelsysteem voor gemengde stroom onder hoge druk. Het regelt automatisch op afstand de toevoer van stikstofgas onder hoge druk, de stroom vaste stoffen/vloeistoffen onder hoge druk en driefasen gesimuleerde stroom. Het geeft automatisch het stikstofgas onder hoge druk vrij bij werking onder overmatige druk door de drukontluchtingsklep en past de druk in het stikstofgasvat aan. De intelligente debietmeter voor stikstofgas in het simulatie testregelsysteem voor stikstofgas onder hoge druk bewaakt in realtime de stroom, stroomdruk en temperatuur van het stikstofgas onder hoge druk. Er wordt tussen de drukontluchtingsklep en de drukregelklep voor stikstofgas een automatische drukregelklep op het leidingennetwerk voor gasafvoer geïnstalleerd. Er wordt tussen de mtelligente debietmeter voor stikstofgas en de toevoerleiding voor stikstofgas een drukomvormer op het leidingennetwerk voor gastransport geïnstalleerd. De intelligente debietmeter voor stikstofgas in het toevoerregelsysteem voor vaste stoffen/vloeistoffen onder gelijkmatige druk bewaakt de onmiddellijke en de geaccumuleerde stroomvolumes van de stroom vaste stoffen/vloeistoffen onder gelijkmatige druk. Er worden op locatie een bedieningspaneel, omvormerschakelaar en frequentieomvormer geïnstalleerd aan de voorkant van de frequentieomvormermotor. Er wordt een vloerstofpeilomvormer geïnstalleerd op de wand van het mengvat onder gelijkmatige druk en er wordt een drukomvormer geïnstalleerd op het leidingennetwerk voor transport van vaste stoffen/vloeistoffen onder hoge druk. Er wordt een drukomvormer geïnstalleerd op de leidingwanden van de buitenste gemengde stroomleidmg en de afvoerleiding voor gemengde stroom. De intelligente driefasen debietmeter bewaakt de onmiddellijke en de geaccumuleerde stroomvolumes van de driefasen simulatie stroom.A three-phase flow mixer: The said three-phase flow mixer provides a continuous and stable three-phase simulated flow by means of the three-phase mixed flow line and in combination with the experimental automatic supply system for simulation of high pressure mixed flow. This includes the three-phase mixed flow line and intelligent three-phase flow meter. The intelligent three-phase flow meter uses turbo with multi-phase flow meter. The three-phase mixed flow line is connected to the gas simulator through the nitrogen gas supply line and is integrated with the solids / liquids booster via the solids / liquids supply line. The three-phase mixed flow line uses planar lines. consisting of nitrogen gas supply line, outer mixed flow line. inner mixed flow line and mixed flow discharge line. The inner and outer mixed flow lines form a double layer mixed flow line with the axis formation from bmn to the outside. The solids / loins supply line uses the conical spray line and the outer mixed flow line uses a coarse and long lead body. The inner mixed flow line is simultaneously composed of the compressed line section, horizontal flowing line section and distributed conduit section. The horizontally flowing conduit portion of the inner mixed flow conduit uses a fyn and long conduit body, while both compressed distributed conduit portions use a conical conduit body. An automatic supply control system: Said automatic supply control system includes the simulation test control system for high pressure nitrogen gas, nitrogen gas, the simulation test control system for solids / liquids under high pressure and the simulation test control system for mixed flow under high pressure. It automatically remotely controls the high pressure nitrogen gas supply, high pressure solids / liquids flow and three phase simulated flow. It automatically releases the nitrogen gas under high pressure when operating under excess pressure through the pressure relief valve and adjusts the pressure in the nitrogen gas vessel. The intelligent nitrogen gas flow meter in the high pressure nitrogen gas simulation test control system monitors the flow, flow pressure and temperature of the high pressure nitrogen gas in real time. An automatic pressure control valve is installed on the gas outlet piping network between the pressure relief valve and the nitrogen gas pressure control valve. A pressure transducer is installed on the gas transport piping network between the intelligent nitrogen gas flow meter and the nitrogen gas supply line. The intelligent nitrogen gas flow meter in the uniform pressure solids / liquids supply control system monitors the instantaneous and accumulated flow volumes of the uniform pressure solids / liquids flow. A control panel, inverter switch and frequency converter are installed on site on the front of the frequency converter motor. A floor level transducer is installed on the wall of the mixing vessel under uniform pressure and a pressure transducer is installed on the piping network for high pressure solids / liquids transport. A pressure transducer is installed on the pipe walls of the outer mixed flow line and the mixed flow discharge line. The intelligent three-phase flow meter monitors the instantaneous and the accumulated flow volumes of the three-phase simulation flow. 2. Op basis van de driefasen scheiding van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven in conclusie 1, is de functionaliteit als volgt: Stikstofgas onder hoge druk wordt opgeslagen in het stikstofgasvat van de genoemde gassimulator. De drukregelklep voor stikstofgas wordt geïnstalleerd op het leidingennetwerk voor gasafvoer en de intelligente debietmeter voor stikstofgas wordt geïnstalleerd op het leidingennetwerk voor gastransport. De drukregelklep voor stikstofgas past de aangegeven druk na aanpassing van de druk door de zelf-bediende drukregelklep door middel van de gemengde stroomdruk in het driefasen stroommengtoestel. De intelligente debietmeter voor stikstofgas maakt gebruik van de geavanceerde modus voor micro-stroomverbruik om na drukaanpassing automatisch compensatie van stikstofgas onder hoge druk en temperatuur uit te voeren.Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1, the functionality is as follows: Nitrogen gas under high pressure is stored in the nitrogen gas vessel of said gas simulator. The nitrogen gas pressure control valve is installed on the gas outlet piping network and the intelligent nitrogen gas flow meter is installed on the gas transport piping network. The nitrogen gas pressure control valve adjusts the indicated pressure after pressure adjustment by the self-operated pressure control valve by means of the mixed flow pressure in the three-phase flow mixer. The intelligent nitrogen gas flow meter uses the advanced micro power consumption mode to automatically perform compensation of nitrogen gas under high pressure and temperature after pressure adjustment. 3. Op basis van de driefasen scheiding van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven in conclusie 1, 1s de functionaliteit als volgt: Er wordt een intelligente debietmeter voor vaste stoffen/vloeistoffen geïnstalleerd op leidingennetwerk voor vaste stoffen/vloeistoffen onder gelijkmatige druk van het genoemde mengtoestel voor vaste stoffen/vloeistoffen. De mtelligente debietmeter voor vaste stoffen/vloeistoffen maakt gebruik van micro-machineregeling en ultralaag stroomverbruik om metingen uit te voeren. De watertoevoerleiding en leiding voor afvoer van vloeistoffen van het mengvat onder gelijkmatige druk worden respectievelijk geïnstalleerd op de bovenste en onderste onderdelen van het mengvat. De pompbeugel wordt op de bovenkant van het mengvat vastgelast. Er wordt gelijktijdig een dubbele flens geïnstalleerd op de kruiselingse stalen steunbalkconstructie van de pompbeugel.3. Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1, the functionality as follows: An intelligent solids / liquids flow meter is installed on solids / liquids piping network under uniform pressure from said solid / liquid mixing device. The intelligent flow meter for solids / liquids uses micro-machine control and ultra-low power consumption to take measurements. The water supply line and liquid discharge line from the mixing vessel under uniform pressure are respectively installed on the upper and lower parts of the mixing vessel. The pump bracket is welded to the top of the mixing vessel. A double flange is simultaneously installed on the cross steel support beam structure of the pump bracket. 4. Op basis van de driefasen scheiding van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven in conclusie 1 of 3, is de functionaliteit als volgt: De mengpomp voor vaste deeltjes van het genoemde mengtoestel voor vaste stoffen/vloeistoffen pompt gedistilleerd water in het mengvat onder gelijkmatige druk via de watertoevoerleiding en roert de tweefasen stroom van vaste stoffen/vloeistoffen m het mengvat.Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1 or 3, the functionality is as follows: The solids / liquids mixing pump of said solids / liquids mixing device pumps distilled water in the mixing vessel under uniform pressure through the water supply line and stirring the two-phase flow of solids / liquids into the mixing vessel. De onderkant van de centrifugaalpomp in de mengpomp voor vaste deeltjes bevestigt de mengpomp voor vaste deeltjes met een flens op de dubbele flens van de pompbeugel van het mengvat onder gelijkmatige druk. Het uitende van de pompas van de centrifugaalpomp steekt gelijktijdig uit de pomp en wordt door een askoppeling geïntegreerd met het mengwiel met lange as van de mengpomp voor vaste deeltjes. De mengnokkenwielen maken op ieder niveau van het mengwiel met lange gebruik van roterende nokken die in dezelfde richting draaien.The bottom of the centrifugal pump in the solids mixing pump attaches the solids mixing pump with a flange on the double flange of the mixing vessel pump bracket under uniform pressure. The end of the pump shaft of the centrifugal pump simultaneously protrudes from the pump and is integrated by a shaft coupling with the long shaft mixing wheel of the solid particle mixing pump. The mixing cam wheels make long use of rotating cams rotating in the same direction at each level of the mixing wheel. 5. Op basis van de driefasen scheiding van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven 1n conclusie 1, is de functionaliteit als volgt: Een pomp voor de watertoevoerleiding en een pomp voor waterafvoerleiding worden respectievelijk geïnstalleerd aan de in- en uitgang van de drukverhogingspomp voor vaste stoffen/vloeistoffen in de genoemde drukverhoger voor vaste stoffen/vloeistoffen. De schroefas van de drukverhogingspomp voor vaste stoffen/vloeistoffen wordt aangesloten op het pompchassis door de asblokkering en de schroefas wordt gemaakt door de geïntegreerde verwerking van een kolomas. Eén uiteinde van de schroefas steekt uit de pomp en wordt door een askoppeling geïntegreerd met de frequentieomvormermotor.5. Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1, the functionality is as follows: A pump for the water supply line and a pump for the water discharge line are respectively installed at the inlet and output of the solids / liquids booster pump into said solids / liquids booster pump. The propeller shaft of the solids / liquid booster pump is connected to the pump chassis by the shaft lock, and the propeller shaft is made by the integrated processing of a column shaft. One end of the propeller shaft protrudes from the pump and is integrated with the frequency converter motor by a shaft coupling. Eer wordt een regelklep voor vaste stoffenAloerstoffen geïnstalleerd op het leidingennetwerk voor vaste stoffen/vloeistoffen onder hoge druk van de genoemde drukverhoger voor vaste stoffen/vloeistoffen. De regelklep voor vaste stoffen/vloeistoffen past de stroomdruk na drukverhoging via de drukverhogingspomp voor vaste stoffen/vloeistoffen aan tot de gesimuleerde druk voor vaste stoffen/vloeistoffen door middel van de stroomdruk in het leidingennetwerk voor transport van vaste stoffen/vloeistoffen onder hoge druk.A solids / liquids control valve shall be installed on the high pressure solids / liquids piping network of the mentioned solids / liquids booster. The solids / liquids control valve adjusts the flow pressure after pressure increase via the solids / liquids booster pump to the simulated solids / liquids pressure by means of the flow pressure in the high pressure solids / liquids transport network. 6. Op basis van de driefasen scheiding van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven in conclusie 1, is de functionaliteit als volgt: De genoemde drnefasenleiding voor gemengde stroom van het driefasen stroommengtoestel voltooit het gelijkmatig mengen van de driefasen stroom van gas, vast stoffen en vloeistoffen en vormt een driefasen gesimuleerde stroom. De toevoerleiding voor vaste stoffen/vloeistoffen, binnenste gemengde stroomleiding en afvoerleiding voor gemengde stroom worde met de as mgesteld in een volgorde van links naar rechts. Er worden een toevoerleiding voor vaste stoffen/vloeistoffen en een toevoerleiding voor stikstofgas geïnstalleerd respectievelijk aan het zij-uiteinde van de driefasenleiding voor gemengde stroom en de leidingwand. De binnenwanden van de ringvormige holte van de toevoerleiding voor vaste stoffen/vloeistoffen bestaan uit een kolomvormige en een conische stroomdoorvoer. Eer wordt een intelligente driefasen debietmeter geïnstalleerd op de afvoerleiding voor gemengde stroom van de genoemde driefasenleiding voor gemengde stroom. De intelligente driefasen debietmeter maakt gebruik van micro-machineregeling en ultralaag stroomverbruik om metingen uit te voeren.6. Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1, the functionality is as follows: Said three-phase mixed flow line from the three-phase flow mixer completes the even mixing of the three-phase flow of gas, solids and liquids and forms a three phase simulated flow. The solid / liquid supply line, inner mixed flow line, and mixed flow discharge line are aligned with the shaft in a left-to-right order. A solid / liquid supply line and a nitrogen gas supply line are installed at the side end of the three-phase mixed flow line and the line wall respectively. The inner walls of the annular cavity of the solids / liquids supply line consist of a columnar and a conical flow passage. An intelligent three-phase flow meter is installed on the mixed flow discharge line of said three-phase mixed flow line. The intelligent three-phase flow meter uses micro-machine control and ultra-low power consumption to take measurements. 7. Op basis van de driefasen scheiding van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven in conclusie 1 of 6, is de functionaliteit als volgt: Er worden flenzen van hetzelfde model geïnstalleerd op de twee zijden van de buitenste gemengde stroomleiding in de genoemde driefasenleiding voor gemengde stroom. Er worden ronde gaten geboord in de middelpunten van de twee flenzen van de buitenste gemengde stroomleidmsg en de axiale richtingen van de toevoerleiding voor vaste stoffen/vloeistoffen en de afvoerleiding voor gemengde stroom wordt respectievelijk vastgelast. De buitenste ringoppervlakken van de twee zijden van de binnenste gemengde stroomleiding en de bmnenwanden van de ringholte van de buitenste gemengde stroomleiding maken gebruik van imterferentievergelijking om ook de axiale richtingen van de binnenste gemengde stroomleiding te verzekeren.7. Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1 or 6, the functionality is as follows: Flanges of the same model are installed on the two sides of the outer mixed flow line in the mentioned three-phase mixed flow line. Round holes are drilled in the centers of the two flanges of the outer mixed flow line and the axial directions of the solid / liquid supply line and the mixed flow line are welded, respectively. The outer ring surfaces of the two sides of the inner mixed flow line and the inner walls of the ring cavity of the outer mixed flow line use interference equation to also ensure the axial directions of the inner mixed flow line. De diameter van de binnenwanden van de ringholte van het vlakke stroomleidmgsdeel in de genoemde binnenste gemengde stroomleiding 1s groter dan dat van het ronde oppervlak van het kleine uitemde van de voorkant van de kegel waar de conische stroomdoorvoer van de toevoerleiding voor vaste stoffen/vloeistoffen wordt aangetroffen. De straalsproeier van de toevoerleiding voor vaste stoffen/vloeistoffen bevindt zich in de ringholte van het gecomprimeerde leidmmgdeel in de binnenste gemengde stroomleiding. Bovendien is het tapse deel van de voorkant van de kegel. waar de ringholte van het gecomprimeerde leidingdeel wordt aangetroffen, groter dan dat van de voorkant van de kegel waar de ringholte van het gedistribueerde leidingdeel alsmede dat van de voorkant van de kegel waar de conische stroomdoorvoer van de toevoerleiding voor vaste stoffen/vloeistoffen wordt aangetroffen. Aan de andere hand, is de kegelhoogte van de voorkant van de kegel waar de ringholte van het gecomprimeerde leidingdeel wordt aangetroffen lager dan die van de voorkant van de kegel waar de ringholte van het gedistribucerde leidingdeel wordt aangetroffen.The diameter of the inner walls of the annular cavity of the flat flow line portion in said inner mixed flow line is greater than that of the circular surface of the small part protruding from the front of the cone where the conical flow passage of the solids / liquids supply line is found. . The jet nozzle of the solids / liquids supply line is located in the annular cavity of the compressed conduit section in the inner mixed flow line. In addition, it is tapered part of the front of the cone. where the annular cavity of the compressed pipe section is found, greater than that of the front of the cone where the annular cavity of the distributed pipe section is found as well as that of the front of the cone where the conical flow passage of the solids / liquids supply line is found. On the other hand, the cone height of the front of the cone where the annular cavity of the compressed pipe section is found is lower than that of the front of the cone where the annular cavity of the distributed pipe section is found. 8. Op basis van de driefasen scheidmg van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven in conclusie 1, 1s de functionaliteit als volgt: Er wordt een drukontluchtingsklep geïnstalleerd aan de afvoeropening van het stikstofgasvat in het genoemde simulatie testregelsysteem voor stikstofgas onder hoge druk. De intelligente debietmeter voor stikstofgas zendt het bewaakte meetsignaal voor stikstofgas onder hoge druk, stroomdruksignaal en temperatuursignaal in realtime naar het gegevensverzamelsvsteem en de geaccumuleerde stroomweergave door de stroomomvormer, drukomvormer en temperatuuromvormer. De zelfbediende drukregelklep op het leidingennetwerk voor gasafvoer past de toevoerdruk van het stikstofgas onder hoge druk aan door middel van de gemengde stroomdruk van het driefasen stroommengtoestel tot de aangegeven druk die wordt gebruikt voor de scheidingskenmerkentest. Deze levert ook doorlopende en stabiele stroom van stikstofgas onder hoge druk.8. Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1, the functionality is as follows: A pressure relief valve is installed at the discharge opening of the nitrogen gas vessel in said simulation test control system for nitrogen gas. under high pressure. The intelligent nitrogen gas flow meter transmits the monitored high pressure nitrogen gas measurement signal, flow pressure signal and temperature signal to the data collection system and the accumulated flow display by the flow transducer, pressure transducer and temperature transducer in real time. The self-operated pressure control valve on the gas outlet piping network adjusts the supply pressure of the high pressure nitrogen gas by means of the mixed flow pressure of the three-phase flow mixer to the specified pressure used for the separation characteristics test. It also provides a continuous and stable flow of nitrogen gas under high pressure. De drukomvormer op de buitenste gemengde stroomleiding m het genoemde simulatie testregelsysteem voor stikstofgas onder hoge druk bewaakt de gemengde stroomdruk in de leiding in realtime. De omvormer voltooit ook de signaalomvorming en gegevensverwerking in volgorde door een drukindicatieregelaar en een elektrische omvormer. Deze regelt op zijn beurt automatisch het pneumatische volume van de drukregelklep voor stikstofgas op het leidingennetwerk voor gasafvoer en regelt ook de stroomdruk en het toevoervolume van het stikstofgas onder hoge druk. De drukomvormer van het leidingennetwerk voor gastransport bewaakt de drukaanpassing van de drukregelklep voor stikstofgas in realtime en geeft tevens de onmiddellijke gesimuleerde gasdruk weer via de drukmeter. De omvormer zendt ook gelijktijdig het gesimuleerde gasdruksignaal naar het gegevensverzamelsysteem door middel van de drukindicatieregelaar.The pressure transducer on the outer mixed flow line m said high pressure nitrogen gas simulation test control system monitors the mixed flow pressure in the line in real time. The transducer also completes signal conversion and data processing in sequence by a pressure indication controller and an electrical transducer. This, in turn, automatically controls the pneumatic volume of the nitrogen gas pressure control valve on the gas outlet piping network, and also controls the flow pressure and supply volume of the nitrogen gas under high pressure. The gas transmission piping network pressure transducer monitors the pressure adjustment of the nitrogen gas pressure control valve in real time and also displays the immediate simulated gas pressure via the pressure gauge. The transducer also simultaneously sends the simulated gas pressure signal to the data collection system through the pressure indicator controller. 9. Op basis van de driefasen scheiding van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven in conclusie 1, 1s de functionaliteit als volgt: De intelligente debietmeter voor vaste stoffen/vloeistoffen in het genoemde toevoerregelsysteem voor vaste stoffen/vloeistoffen onder gelijkmatige druk zendt het bewaakte stroomsignaal voor de vaste stoffen/vloeistoffen, in realtime naar het gegevensverzamelsysteem alsmede naar de stroomweergave en geaccumuleerde stroomweergave door de stroomomvormer.9. Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1, the functionality is as follows: The intelligent flow meter for solids / liquids in said solids / liquids supply control system under smooth pressure sends the monitored flow signal for the solids / liquids, in real time to the data collection system as well as to the flow display and accumulated flow display by the flow transducer. De vloeistofpeilomvormer op het mengvat onder gelijkmatige druk in het genoemde simulatie testregelsysteem voor vaste stoffen/vloeistoffen onder hoge druk bewaakt de wijzigingen in het vloeistofpeil in het vat in realtime. De drukomvormer op de buitenste gemengde stroomleiding bewaakt gelijktijdig de gemengde stroomdruk in de leiding in realtime. Daarna is de draaisnelheid van de schroefas van de drukverhogingspomp voor vaste stoffen/vloeistoffen aan de beurt, via de omvormfrequentie van de automatische omvormingsmotor voor aanpassing van het bedieningspaneel op locatie.The liquid level transducer on the uniform pressure mixing vessel in said high pressure solids / liquids simulation test control system monitors the changes in the liquid level in the vessel in real time. The pressure transducer on the outer mixed flow line simultaneously monitors the mixed flow pressure in the line in real time. Then it is the turn of the screw shaft of the solids / liquids booster pump, through the conversion frequency of the automatic conversion motor for on-site adjustment of the control panel. De drukomvormer op het leidmgennetwerk voor transport van vaste stoffen/vloeistoffen onder hoge druk in het genoemde simulatie testregelsysteem voor vaste stoffen/vloeistoffen onder hoge druk bewaakt de druk m het leidingennetwerk in realtime. De omvormer voltooit ook de signaalomvormmg en gegevensverwerking in volgorde door een drukindicatieregelaar en een elektrische omvormer. Deze regelt op zijn beurt automatisch het pneumatische volume van de regelklep voor vaste stoffen/vloeistoffen op het leidingennetwerk voor transport van vaste stoffen/vloeistoffen onder hoge druk en regelt tevens de stroomdruk en het toevoervolume van de stroom vaste stoffen/vloeistoffen onder hoge druk.The pressure transducer on the pipeline network for high pressure solids / liquids transport in the said high pressure solids / liquids simulation test control system monitors the pressure in the pipeline network in real time. The transducer also completes the signal conversion and data processing in sequence by a pressure indication controller and an electrical transducer. This, in turn, automatically controls the pneumatic volume of the solids / liquids control valve on the high pressure solids / liquids transfer piping network, and also controls the flow pressure and supply volume of the high pressure solids / liquids flow. 10. Op basis van de driefasen scheiding van gassen/vaste stoffen/vloeistoffen door het experimentele automatische toevoersysteem zoals beschreven in conclusie 1, 1s de functionaliteit als volgt: De drukomvormer op de buitenste gemengde stroomleiding in het genoemde simulatie testregelsysteem voor gemengde stroom onder hoge druk bewaakt de gemengde stroomdruk in de leiding in realtime. De drukomvormer op de afvoerleiding voor gemengde stroom bewaakt gelijktijdig de stroomdruk van de driefasen simulatie stroom die door het driefasen stroommengtoestel wordt geleverd. De onmiddellijke simulatie stroomdruk wordt ook via de drukmeter weergegeven. Het gesimuleerde driefasen druksignaal wordt gelijktijdig door middel van de drukindicatieregelaar naar het gegevensverzamelsysteem verzonden. De mtelligente driefasen debietmeter zendt het bewaakte stroomvolume van de gemengde stroom 1n realtime naar het gegevensverzamelsysteem en de onmiddellijke en geaccumuleerde stroomvolumeweergaven door de stroom omvormer.Based on the three-phase separation of gases / solids / liquids by the experimental automatic supply system as described in claim 1, the functionality is as follows: The pressure transducer on the outer mixed flow line in said high pressure mixed flow simulation test control system monitors the mixed flow pressure in the line in real time. The pressure transducer on the mixed flow discharge line simultaneously monitors the flow pressure of the three-phase simulation current supplied by the three-phase flow mixer. The instantaneous simulation flow pressure is also displayed via the pressure gauge. The simulated three-phase pressure signal is simultaneously sent to the data collection system by means of the pressure indication controller. The mtelligent three-phase flow meter transmits the monitored flow volume of the mixed flow 1n real time to the data collection system and the instant and accumulated flow volume displays by the flow transducer.
NL2024676A 2019-04-18 2020-01-14 Automatic Supply System For Gas-Liquid-Solid Three-Phase Separation Characteristic Test NL2024676B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910311906.8A CN109939578B (en) 2019-04-18 2019-04-18 Automatic supply system for gas-liquid-solid three-phase separation characteristic test

Publications (2)

Publication Number Publication Date
NL2024676A NL2024676A (en) 2020-10-22
NL2024676B1 true NL2024676B1 (en) 2020-11-26

Family

ID=67015589

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024676A NL2024676B1 (en) 2019-04-18 2020-01-14 Automatic Supply System For Gas-Liquid-Solid Three-Phase Separation Characteristic Test

Country Status (2)

Country Link
CN (1) CN109939578B (en)
NL (1) NL2024676B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109939578B (en) * 2019-04-18 2021-06-04 青岛理工大学 Automatic supply system for gas-liquid-solid three-phase separation characteristic test
CN115371979B (en) * 2022-10-24 2022-12-30 四川新川航空仪器有限责任公司 Three-phase eddy current separator performance evaluation test equipment
CN115389210B (en) * 2022-10-27 2023-02-03 四川新川航空仪器有限责任公司 Oil-gas simulation mechanism for oil-gas separation performance evaluation test

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2128946B1 (en) * 1996-08-01 2000-01-16 Pellicer Carlos F PROCEDURE AND INSTALLATION TO OBTAIN A FLUID FINE PASTE INTENDED TO BE HARDENED AFTER MOLDING.
US20100247702A1 (en) * 2007-05-14 2010-09-30 Rompypaz Engineering Ltd. Systems and methods for a controlled process for producing mixtures of lightweight construction materials and systems for automatic production of lightweight bricks
GB2520485B (en) * 2013-11-15 2016-08-03 Technical Simulation Consultants Ltd Engineering Educational Tool
AT515448B1 (en) * 2014-02-27 2018-04-15 Haas Food Equipment Gmbh Method and plant for producing and dispensing a baking mass
CN106430412B (en) * 2016-11-03 2019-04-02 青岛理工大学 Axial flow type underwater three-stage separation method and control system thereof
CN106761498B (en) * 2016-12-20 2018-11-30 中国科学院广州能源研究所 A kind of experimental provision and method for gas hydrates drilling fluid progress multi-phase separation
CN108283907A (en) * 2018-03-23 2018-07-17 美丽国土(北京)生态环境工程技术研究院有限公司 Dispensation apparatus
CN108798606A (en) * 2018-06-03 2018-11-13 西南石油大学 A kind of simulation gas hydrates solid state fluidizing digging experimental provision and method
CN109637327A (en) * 2018-12-19 2019-04-16 青岛理工大学 Three-dimensional analogue test high-pressure gas supply system of deep water combustible ice step-down trial production
CN109637328B (en) * 2018-12-19 2020-08-28 青岛理工大学 Temperature-adjusting high-pressure water supply system for three-dimensional simulation test of pressure reduction and trial production of deepwater combustible ice
CN109939578B (en) * 2019-04-18 2021-06-04 青岛理工大学 Automatic supply system for gas-liquid-solid three-phase separation characteristic test

Also Published As

Publication number Publication date
CN109939578B (en) 2021-06-04
NL2024676A (en) 2020-10-22
CN109939578A (en) 2019-06-28

Similar Documents

Publication Publication Date Title
NL2024676B1 (en) Automatic Supply System For Gas-Liquid-Solid Three-Phase Separation Characteristic Test
CN107067918B (en) The helium experimental loop device of fusion reactor
CN102589860B (en) Integrated testing system for aviation fuel accessories
CN103754815A (en) Drug adding device and drug adding method both convenient for drug metering and adjusting
CN102854122A (en) Multifunctional annular oil-gas-water multiphase flow corrosion simulation test device
CN102620998A (en) Device and method for pressure test and drainage tests for waved pipeline
CN109481871A (en) Vehicle-mounted big flow fire-fighting foams fluid mixing system
CN106770491A (en) Free water content on-line measurement device and method in oil pipeline
CN109397538A (en) A kind of foam slurry generator and cement slurry air charging system with pressure and its application
CN113218801A (en) Testing device and testing method for abrasion test of filling slurry conveying pipeline
CN202393590U (en) Aviation fuel accessory integrated test system
CN104634716A (en) Testing device for porosity and permeability of polluted soil and testing method thereof
CN210384676U (en) Foam fire extinguishing system test detection platform
CN106444608A (en) Multifunctional fluid testing platform for shield tunneling machine
CN107336361A (en) The constant pressure and flow foam device of light-weight foamed concrete equipment
CN208383646U (en) A kind of solution density on-line measuring device
RU179754U1 (en) Stand for research of non-stationary processes in the pipeline
CN206713988U (en) A kind of online enzyme preparation add-on system of rice protein feed liquid multistage timesharing
CN114562466A (en) Cavitation performance test system for inflow gas of vane pump
CN211179004U (en) Experimental device for testing influence of reducer pipe on full pipe rate of filling vertical pipe
CN209240290U (en) A kind of glue class Chinese medicine auxiliary material addition instrument
CN102384835A (en) Device for detecting flow characteristics of hydrate slurry in pipeline
CN113041949A (en) Online liquid preparation system
CN114876445A (en) Experimental device and experimental method for simulating deformation of sucker rod
CN102901650B (en) A kind of proving installation of cargo oil system and method

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20230201