NL2024263B1 - A motion compensation system, a motion compensation method, and a computer program product. - Google Patents

A motion compensation system, a motion compensation method, and a computer program product. Download PDF

Info

Publication number
NL2024263B1
NL2024263B1 NL2024263A NL2024263A NL2024263B1 NL 2024263 B1 NL2024263 B1 NL 2024263B1 NL 2024263 A NL2024263 A NL 2024263A NL 2024263 A NL2024263 A NL 2024263A NL 2024263 B1 NL2024263 B1 NL 2024263B1
Authority
NL
Netherlands
Prior art keywords
motion compensation
compensation system
actuator
moving
movable element
Prior art date
Application number
NL2024263A
Other languages
Dutch (nl)
Inventor
Niels Van Der Geld Stefan
Germain Verweij Alexander
Original Assignee
Ampelmann Holding B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ampelmann Holding B V filed Critical Ampelmann Holding B V
Priority to NL2024263A priority Critical patent/NL2024263B1/en
Priority to PCT/NL2020/050720 priority patent/WO2021101373A1/en
Application granted granted Critical
Publication of NL2024263B1 publication Critical patent/NL2024263B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/14Arrangement of ship-based loading or unloading equipment for cargo or passengers of ramps, gangways or outboard ladders ; Pilot lifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B2017/0072Seaway compensators

Abstract

A motion compensation system for compensating motion of a floating body such as a boat floating on water. The system comprises a carrier for bearing, moving and/or transferring a load on the floating body, and one or more actuators for moving the carrier. The one or more actuators include a movable element and a motor module for driving the movable element. Further, the motor module of at least one actuator includes an electric machine that is arranged for using a movement of the movable element for regenerating electric power.

Description

P124574NL00 Title: A motion compensation system, a motion compensation method, and a computer program product.
The invention relates to a motion compensation system, in particular a motion compensation system for compensating motion of a floating body such as a boat floating on water.
Motion compensation systems are generally known and are for example used for transferring loads, in particular people, to and/or from a vessel. For example from the Ampelmann® system as disclosed in general in NL1027103, or systems disclosed in WO2012/138227 and WO2013/10564.
NL1027103 discloses a vessel with a Stewart platform, also known as a hexapod, for compensating motions of a ship. The platform comprises a surface, borne on six hydraulic cylinders, and motion sensors. During use, with the aid of the sensors, the motions of the vessel are measured. With the aid of these measurements, the orientation of the cylinders is driven continuously so that the surface remains approximately stationary relative to the fixed world. A luffing gangway is connected to the platform. In this manner, motions of the vessel are compensated and for instance people or loads can be transferred from the vessel onto a stationary offshore construction, or vice versa.
The hydraulic cylinders and/or actuators used in known motion compensation systems are powered by means of a hydraulic system which includes a fluid reservoir, a pressure line, a return line and a pump. The pump can move fluid from the reservoir via the pressure line to the cylinder in order to extend or retract the cylinder. In particular, one can shift a control valve, to direct the fluid from the pump to one side of the piston. Fluid from the other side of the piston can return to the reservoir via the return line. A disadvantage of known motion-compensation systems is that a considerable amount of energy is wasted during operation of the system.
Therefore, it is an object of the invention to provide a motion compensation system that is more energy-efficient than known motion compensation systems.
To this end, the invention provides a motion compensation system for compensating motion of a floating body such as a boat floating on water, comprising a carrier for bearing, moving and/or transferring a load on the floating body, and one or more actuators for moving the carrier, the one or more actuator including a movable element and a motor module for driving the movable element, wherein the motor module of at least one actuator includes an electric machine that is arranged for using a movement of the movable element for regenerating electric power.
By providing a motor module that includes an electric machine that is arranged for using a movement of the movable element to regenerate electric power a more energy-efficient system is obtained. Typically, a substantial part of the motion that is compensated, e.g. the motion induced by sea waves, averages out over time. As a consequence, in motion compensation applications the energy generated by braking the platform is roughly equal to the energy consumed by driving the platform. According to the invention one is able to regenerate the braking energy, which would otherwise have been wasted. One can, for example, use this energy instantaneously for driving other actuators or for powering other systems. In this way a more energy efficient motion-compensation system is obtained.
The system can advantageously be used so as to benefit from a periodic movement that is carried out by the movable element. The periodic movement may be associated with periodic external conditions such as a periodic movement of a local water level induced by surface waves on the sea.
Advantageously, the electric machine may be arranged for alternatingly driving the movable element as a motor and using a movement of the movable element for regenerating electric power as a generator. However, in principle one actuator may be solely used as a generator, while a second actuator is solely used for driving the carrier.
According to a further aspect, the system may comprise an electric power storage unit connected to the motor module of the actuator. By providing an electric power storage unit, one is able to momentarily store the regenerated energy, which can then be used at a later time for powering the same or other actuators. Furthermore, the power storage unit can act as an emergency power supply.
Preferably, the motor module further includes a DC/AC converter having an AC terminal that is connected to the electric machine, and a DC terminal that is connected to the electric power storage unit.
Advantageously, the electric power storage unit may include a capacitor rack. By providing a capacitor one is able to quickly store and release the regenerated energy. In addition, by providing the capacitors in a rack a compact system is obtained.
Optionally, the electric power storage unit also includes a power input unit for receiving electric power from an boat AC power supply. In addition or instead of the AC power input unit a DC power input unit can be provided.
Preferably, the system comprises a common DC bus interconnecting DC terminals of respective DC/AC converters to the electric power storage unit.
Preferably, the one or more actuators are electro-hydraulic actuators. For example, this allows one to make optimal use of present hydraulic technology.
Advantageously, the system may further comprise a control unit for controlling an initial charging process of the one or more motor modules and/or the electric power storage unit.
Further, the system may comprise a current limiting element and/or a current interrupting element for limiting and/or interrupting an electric current flowing from the power input unit towards a motor module of the respective one or more actuators. By providing a current interrupting element and/or limiting element one is able to limit the total current. For example, this allows one to connect the system to an external AC power supply with a DC/AC converter that has a relatively low maximal wattage, thereby reducing the overall system size.
Advantageously, the system may further be provided with a switching element controlled by the control unit for bypassing the current limiting element and/or the current interrupting element. For example, this allows one to by-pass the current limiting and/or the current interrupting element once the system is sufficiently charged. In this way, the energy efficiency of the system is further improved.
The motion compensation system may comprise an actuator control unit for controlling operation the electric machine of the at least one actuator. Preferably, such an actuator control unit is arranged for configuring the electric machine to act as a motor when the driving force direction and the moving direction of the movable element coincide, and for configuring the electric machine to act as a generator when the driving force direction and the moving direction of the movable element are opposite to each other. In this way, a maximum amount of energy may be regenerated from the external environment.
The motion compensation system may optionally comprise multiple carriers for bearing, moving, and/or transferring a load.
According to a further aspect, at least one carrier of the motion compensation system is a motion compensation platform, a gangway or a crane.
Also, the invention relates to a motion compensation method of a boat floating on water, comprising a step of providing one or more motor modules for driving a movable element of a respective actuator for moving a carrier for bearing, moving and/or transferring a load, further comprising a step of using a movement of the movable element of at least one actuator for regenerating electric power via an electric machine of the respective motor module.
Optionally, the motion compensation method comprises a step of 5 controlling an initial charging process of the one or more motor modules and/or an electric power storage unit connected to the one or more motor modules.
Further, the invention relates to a computer program product, comprising computer readable instructions for causing a processor to perform a motion compensation method of a boat floating on water, the method comprising a step of providing one or more motor modules for driving a movable element of a respective actuator for moving a carrier for bearing, moving and/or transferring a load, and a step of using a movement of the movable element of at least one actuator for regenerating electric power via an electric machine of the respective motor module.
The invention will be further elucidated on the basis of exemplary embodiments which are represented in the drawings. The exemplary embodiments are given by way of non-limitative illustration of the invention. In the drawings: Fig. 1 shows a boat provided with a motion compensation system according to the invention; Fig. 2 shows a diagrammatic view of a motion compensation system according to the invention; Fig. 3 shows a further diagrammatic view of another motion compensation system according to the invention; Fig. 4 shows a close-up of an actuator of the system of Fig. 2 in four different stages of motion-compensation; Fig. 5a shows a first embodiment of the motion compensation system according to the invention provided with a current limiting, interrupting and/or switching element;
Fig. 5b shows a second embodiment of a motion compensation system according to the invention provided with a current limiting, interrupting and/or switching element, and Fig. 6 shows a flow-chart for a motion compensation method.
In the figures identical or corresponding parts are represented with the same reference numerals. The drawings are only schematic representations of embodiments of the invention, which are given by manner of non-limited examples.
Fig. 1 shows a boat 2 provided with a motion-compensation system 1 according to the invention. The system 1 comprises a carrier 3, which is embodied as a platform mounted on a hexapod on the boat 2, the hexapod comprising six actuators 4. The carrier 3 further includes a gangway.
Fig. 2 shows a diagrammatic view of a motion compensation system 1 according to the invention. Said system 1 is arranged for compensating motion of a boat 2 or another floating body floating on water, such as a pontoon. In particular, said system 1 comprises a carrier 3 or arm for bearing, moving, transferring and/or lifting a load on the boat. For example, the carrier may be implemented as a gangway, a platform or a crane arm. Said system 1 may comprise multiple carriers 3 for bearing, moving, transferring and/or lifting load. The motion compensation system 1 comprises one or more actuators 4, for moving the carrier 3. For example, the one or more actuators 4 can move the carrier relative to the boat by translational and/or rotational movement. Translational movement may include horizontal movement in the plane parallel to the water surface, as well as vertical movement perpendicular to the water surface, and rotational movement may include pitch, yaw and/or roll motion. The system 1 shown in Fig. 2 has six actuators 4a-4f for driving a hexapod and three other actuators 4g-4i for driving a gangway. For example, a platform may be mounted on the hexapod having six actuators 4a-4f, which is able to compensate for linear/translational and rotational movement of the floating object. The gangway may be attached to the platform, and may be movable relative to the platform using the three actuators 4g-4i. The one or more actuators 4 include a movable element 4-1, see also Fig. 3, and a motor module 4-2 for driving the movable element 4-1. For example, by connecting an output of the motor module, e.g. an output shaft, with the movable element one is able to retract or extend the actuator. The output of the motor module may directly be connected to the movable element 4-1, or the movable element may be moved by an hydraulic system that is operated using a pump 4-5 that is driven by the output of the motor module. The motor module 4-2 of at least one actuator includes an electric machine 4-3, also referred to as M, that is arranged for using a movement of the movable element for regenerating electric power. Said electric machine 4-3 may, for example, be implemented as a single motor-generator unit. It is noted, however, that, alternatively, the generator and motor may be implemented as separate units. It is further noted that the at least one actuator which includes an electric machine 4-3 may solely be used for regenerating electric power, while a further actuator is used for driving the carrier.
In a preferred embodiment the electric machine 4-3 is arranged for alternatingly driving the movable element 4-1 as a motor and using a movement of the movable element 4-1 for regenerating electric power as a generator. To the use of movement of the movable element for regenerating power is also referred as braking. If the motor module 4-2 is driving the movable element 4-1 of the actuator 4 then power flows from the motor module 4-2 towards the movable element 4-1 of the actuator 4. Contrarily, if the motor module 4-2 is braking the actuator, also referred herein as regenerating, power flows from the movable element 4-1 towards the motor module 4-2.
The motor module 4-2 for driving the movable element, preferably, includes a DC/AC converter 4-24 having an AC terminal 4-2a’ that is connected to the electric machine, and a DC terminal 4-24” that is connected to the electric power storage unit 5. In case a DC motor is driving the movable element of the actuator, the system may include a DC/DC converter instead. The electric machine 4-3 is a high power electric machine 4-3 designed for delivering relatively high power for supporting and moving the one or more carriers 3. However, alternatively, the electric machine may be designed so as to deliver less power, e.g. for controlling a relatively small size crane.
The system 1 shown in Fig. 2 has the optional feature of an electric power storage unit 5 that is connected to the motor module 4-2 of the actuator 4. Such power storage unit may for example include a battery pack or a capacitor 5-2. In particular, a capacitor 5-2 has the advantage that it can be quickly charged, and is able to provide a high power. In a preferred embodiment, the capacitor 5-2 may be a so-called ultra-capacitor. To obtain a compact system the ultra-capacitors can advantageously be arranged in a rack. It is also possible that the power storage unit 5 includes a battery pack as well as a capacitor 5-1. The provision of a power storage unit 5 may be beneficial for various reasons. For example, it enables one to store the regenerated energy, which can then be subsequently used in driving the actuators. Further, it may serve as back-up power supply if another power source fails.
Optionally, the electric power storage unit 5 includes a power input unit 5-1, as shown in Fig. 2, for receiving electric power, for example from an AC power supply on the boat or floating object. Said AC power may for example be generated using a generator. Alternatively, the electric power storage unit 5 includes a power input unit for receiving electric power from a DC power supply. Preferably the power input unit includes an AC/DC or DC/DC converter for converting the AC or DC power that is generated on the boat or floating object to DC. An AC/DC converter may for example be implemented as an active line module.
The system 1 preferably comprises a common DC bus 6, as shown in Fig. 2, interconnecting DC terminals of respective DC/AC and/or DC/DC converters to the electric power storage unit. Such a DC bus 6 may, for example, be formed by a DC busbar. In the network topology, shown in Fig. 1, the capacitor 5-2 of the power storage unit 5, the external power supply and the motor modules 4-2 are connected in parallel to the DC bus bar. In this way the external power supply can charge the capacitor 5-2 and power the motor modules 4-2. When charged, the capacitor 5-2 is able to power the actuators.
Optionally, the capacitor 5-2 1s connected to the DC bus 6 via an intermediate DC-DC converter 5-2a, as shown in Fig.2. This enables one to store more electrostatic energy in the capacitor 5-2.
Optionally, the system 1 comprises a control unit for controlling an initial charging process of the one or more motor modules and/or the electric power storage unit. Said control unit for controlling an initial charging process, also referred to as charging control unit, may for example be integrated within a central control unit 8-1 or can be implemented as a separate unit.
Advantageously, a smart-charging control unit is provided. Said smart-charging control unit may be integrated within the central control unit 8-1 or can be implemented as a separate unit. The smart-charging control unit is configured to control the charging level of the power storage unit, e.g. such that the power which is (re)generated during braking can be stored within the power storage unit, e.g. depending on sea conditions. For example, if the sea is very rough, the energy that is regenerated during braking can be very high. In order to be able to store all this energy it may be necessary to keep the charging level below a charging threshold at the beginning of the regenerating step. Thereby, it is also avoided that the batteries or capacitors are overcharged, which can have adverse effects. In case energy from multiple actuators is regenerated, then the beginning of a regenerating step may be defined as a time instant when the actuators together generate a net amount of energy. At the same time it may be advantageous to maximize the charging threshold such that in case of power failure a maximum amount of energy is available. Hence, if the sea is relatively calm, it may be beneficial to use a relatively high charging threshold, as the energy generated during the braking will be relatively low, and can thus be stored even if the charging level at the start of the regenerating step was already high. The smart-charging control unit can further be configured to control the charging level of the power storage unit to a level that is high enough to control operation of the motion compensation system after an abrupt or soft power breakdown and/or to a level that is low enough so as to minimize energy that is dissipated after terminating normal operation of the motion compensation system.
Preferably, the system 1 comprises an actuator control unit for controlling operation of the electric machine of the at least one actuator. For example the actuator control unit may be arranged for configuring the electric machine 4-3 to act as a motor when the driving force direction and the moving direction of the movable element 4-1 coincide, and for configuring the electric machine to act as a generator when the driving force direction and the moving direction of the movable element are opposite to each other. The actuator control unit may be integrated within the motor module 4-2, or can be part of the central control unit 8-1, or can be implemented as a separate unit.
The system 1 shown in Fig. 2 further includes the optional feature of one or multiple discharge resistors 5-2b connected to the DC bus 6 via a discharge control unit 5-2c.
Fig. 3 shows a further diagrammatic view of another motion compensation system according to the invention. The system 1 has one actuator 4 with a movable element 4-1 which is provided within a cylinder 4-4. The movable element 4-1 of the actuator can be driven by a motor module 4-2. Said motor module 4-2 is connected to a DC bus 6 via a DC-AC converter 4-2a. Further, the motor module 4-2 includes an electric machine 4-3. In the shown embodiment, an output of the electric machine is connected to a pump 4-5, which can operate or drive a movement of the movable element 4-1. The electric machine 4-3 is arranged for using a movement of the movable element 4-1 relative to the cylinder 4-4 for (re)- generating electric power. Put differently, the electric machine 4-3 can be used as an electric power generator, powered by a movement of the movable element 4-1. If the electric machine is used as an electric power generator, power flows from the actuator 4 towards the DC bus 6. Then it can power or charge another unit connected to the DC bus 6. In particular, it can charge the power storage unit 5 that is connected to the DC bus 6. The power storage unit 5 includes a capacitor 5-2 that is connected to the DC bus 6 via a DC-DC converter 5-3. In addition, the system 1 includes a power input unit, herein embodied as a AC-DC converter 5-1, for receiving electric power from a boat AC power supply.
Fig. 4 shows a close-up of the system of Fig. 2 in four different stages of motion-compensation. In particular, each of the four panels of Fig. 3 depicts an actuator 4, in this specific embodiment corresponding to an hydraulic cylinder 4-4, of which the movable element 4-1 can be extended or retracted via a pump 4-5 that is driven by an output of the motor module 4- 1, more specifically by the electric machine 4-3. Said motor module also comprises an electric machine that is arranged for using a movement of the movable element for regenerating electric power. Put differently, the actuator can also act as a generator.
The upper left panel, Fig. 4 (a) corresponds to the situation wherein the actuator is extending or moving upwardly with a velocity veylinder and wherein the hydraulic pump generates a force Feylinder acting in the same direction as the velocity veylinder. Hence, the actuator is consuming power P=| Feylinder | * | veylinder | . Such a situation may for example arise when a wave 1s lowering a vessel with a motion compensated platform mounted thereon.
Then, the actuator is expanding, thereby keeping the platform at a constant height, while the vessel is moving downwards.
In order to compensate for the force of gravity acting on the platform, the actuator has to apply a force Fcylinder in the opposite direction.
The actuator is then consuming power P=| Feylinder | * | veylinder | . If the capacitor is charged, the power will flow from the capacitor towards the motor module and/or actuator.
The upper right panel, Fig. 4 (b) corresponds to the situation wherein the actuator is retracting or moving downwardly with a velocity veylinder, while the hydraulic pump generates a force Fcylinder acting against the retraction.
Put differently, the force Feylinder and the velocity of the actuator vcylinder are pointing in opposite directions.
Such a situation may for example arise when a wave is lifting a vessel with a motion compensated platform mounted thereon.
Then, the actuator is retracting, thereby keeping the platform at a constant height, whereas the vessel is rising.
In order to compensate for the force of gravity acting on the platform, the actuator has to apply a force Feyl in the opposite direction.
So contrary to the situation shown in Fig. 4 (a),, the actuator is (re)generating power P=|Fcylinder | * | veylinder |. This power can be used to (re)charge the power storage unit 5, e.g. the capacitor 5-2. To this end, the busbar or DC bus 6 connecting the motor module and the capacitor allows for a bidirectional power flow.
Both in Fig. 4(a) and Fig. 4(b) the force Feylinder is pointing in the upward direction, corresponding to a pushing action.
This may, for example, be the case when the motion-compensated platform is supported by the actuator from below.
The lower left panel, Fig. 4 (c), corresponds to the situation wherein the actuator is extending upwardly, while the hydraulic pump generates a force Feylinder acting against the extension, i.e. in the direction opposite to the velocity veylinder. As in Fig. 4 (b) the actuator is (re)generating power P=| Feylinder | * | veylinder |, which can be used to (re)charge the capacitor. The lower-right panel, Fig. 4(d), corresponds to the situation wherein the actuator is retracting downwardly, and the hydraulic pump generates a force Fcylinder acting in the same direction as the velocity of the cylinder veylinder. Both in Fig. 4(c) and Fig. 4(d) the force Fcylinder is pointing in the downward direction, corresponding to a pulling action. This may, for example, be the case if a motion-compensated gangway 1s suspended from above by an actuator.
Typically, a substantial part of the motion that is compensated, e.g. the motion induced by sea waves, averages out over time. As a consequence, in motion compensation applications the energy generated by braking and consumed by driving the actuators are roughly equal to each other. As the system 1 allows one to momentarily store the braking energy in the capacitors one obtains a system that is more energy efficient than existing motion-compensation systems. Since in the system 1, the power storage unit 5, and/or the capacitor 5-1 is able to provide the major part of the power that is delivered to the actuator 4, one 1s able to use an external power source with relatively low instantaneous power compared to the maximum instantaneous power consumed by the actuator. Further, one is able to use an AC-DC converter for connecting the system to an external power source with a reduced maximum instantaneous power. In this way, the system can be kept compact and/or relatively inexpensive. Furthermore, the power storage unit 5 can be used as an emergency power source in case the external power source fails.
It is noted instead of using electro-hydraulic actuators, the system 1 may use fully electronic actuators or a combination of electro-hydraulic and fully electronic actuators. Fig. 5(a) and (b) depict a diagrammatic view of a motion compensation system 1 with a current limiting element and/or current interrupting element 7 for limiting and/or interrupting an electric current flowing from the power input unit towards a motor module of the respective one or more actuators.
Preferably, the system 1 further comprises a switching element for by-passing the current limiting element and/or the current interrupting element.
Such a current interrupting element and/or a switching element, for example a by-pass relay, may be controlled by a control unit, for example by the control unit for controlling an initial charging process of the one or more motor modules and/or the electric power storage unit.
The control unit may be integrated with the central control unit 8-1. The system 1 depicted in Fig. 5(a) includes four motor modules of a first group FG and six motor modules of a second group SG.
The first group of motor modules FG may for example drive a motion-compensated gangway, and the second group of motor modules SG may for example drive a hexapod.
The individual motor modules are also referred to as MM.
In the shown embodiment, a capacitor 5-2 and the motor modules 4-2 are all connected 1n parallel.
In addition, Fig. 5(a) shows a pre-charging module 7 that is connected in series with the second group of motor modules SG and the capacitor 5-2. The combination of the second group of motor modules SG, the capacitor 5-2 and the pre-charging module 7 is connected in parallel with the first group of motor modules FG.
The pre-charging module 7 comprises a current limiting element, here embodied as a pre-charging resistor 7-1, and a switching element, here embodied as a by-pass relay 7-2. When powering on the system 1 shown in Fig. 5(a) the pre-charging module 7, with the by-pass relay 7-2 open, limits the current that powers the second group of motor modules SG.
Once the system 1 is charged, e.g. 99.3% charged, the by-pass relay 7-2 can be closed, and subsequently the system 1 can be operated normally, i.e. can be used to compensate motion.
It is noted that the pre-charging module 7 in the system 1 shown in Fig. 5(a) may also be used in the absence of the first group of motor modules.
Further, the number of motor modules in the first and/or second group can also be different. Fig. 5(b) shows a diagrammatic view of a motion compensation system 1 with a pre-charging module 7. The system 1 in Fig. 5(b) includes a first group of motor modules FG and a second group of motor modules SG.
The first group comprises four motor modules, e.g. for driving a gangway, and the second group comprises six motor modules, e.g. for driving a hexapod on which a platform is mounted. The motor modules of the first group are connected in parallel to the external power supply. Each of the motor modules of the second group is connected via the pre-charging module 7 to the external power supply. The pre-charging module 7 comprises a current limiting element 7-1, here embodied as a pre-charge resistor, connected in parallel with a switching element 7-2, here embodied as by-pass relay, which together are connected in series with a current interrupting element 7-3, here embodied as an isolator relay. By having the isolator relay open, the external power supply charges only the first group. When, the first group of motor modules FG is charged, e.g. up to 99.3%, the isolator relay may be closed, while keeping the by-pass relay open. Then the second group of motor modules SG is being charged, during which the pre- charging resistor limits the current. When both the first and second group of motor modules are charged, the by-pass relay can be closed, thereby enabling the normal operation of the system 1. It is noted that the first and second groups of actuators may also include different numbers of actuators.
By providing a current limiting, a current interrupting and/or a switching element the current flowing from the external power supply may be limited, for example during charging of the system 1. In this way, the current limiting, current interrupting and switching element allows one to connect the system 1 to the external power supply using an AC-DC converter with a reduced maximal power.
Fig. 6 shows a flow chart for a motion compensation method 100 of a floating body such as a boat floating on water. The method includes a step 110 of providing one or more motor modules for driving a movable element of a respective actuator for moving a carrier for bearing, moving, lifting and/or transferring a load on the floating body. The method further comprises a step 120 of using a movement of the movable element of at least one actuator for regenerating electric power via an electric machine of the respective motor module. Optionally, the method includes a step 130 of controlling an initial charging process of the one or more motor modules and/or an electric power storage unit connected to the one or more modules.
The method for motion compensation 100 can be performed using a dedicated hardware structures, such as FPGA, PLC and/or ASIC components. Otherwise, the method can also at least partially be performed using a computer program product comprising instructions for causing a processor, such as a dedicated processor or a general purpose computer, to perform the above described steps of the method 100 according to the invention. All steps can in principle be performed on a single processor. However, it is noted that at least one step can be performed on a separate processor. A processor can be loaded with a specific software module.
Dedicated software modules can be provided, e.g. from the Internet.
It will be clear to the skilled person that the invention is not limited to the exemplary embodiment represented here. Many variations are possible.
Such variations shall be clear to the skilled person and are considered to fall within the scope of the invention as defined in the appended claims.

Claims (18)

ConclusiesConclusions 1. Bewegingscompensatie-systeem voor het compenseren van beweging van een drijvend lichaam zoals een boot drijvend op water, omvattende een drager voor het dragen, bewegen en/of overbrengen van een last op het drijvende lichaam, en één of meer actuatoren voor het bewegen van de drager, waarbij de één of meer actuatoren een beweegbaar element en een motormodule voor het aandrijven van het beweegbare element bevatten, waarbij de motormodule van tenminste één actuator een elektrische machine bevat die is ingericht om een beweging van het beweegbare element te gebruiken voor het regenereren van elektrische energie.A motion compensation system for compensating for motion of a floating body such as a boat floating on water, comprising a carrier for carrying, moving and/or transferring a load to the floating body, and one or more actuators for moving the carrier, the one or more actuators comprising a movable element and a motor module for driving the movable element, the motor module of at least one actuator comprising an electric machine adapted to use a movement of the movable element for regenerating of electrical energy. 2. Bewegingscompensatie-systeem volgens conclusie 1, waarbij de elektrische machine is ingericht om alternerend het beweegbare element aan te drijven als een motor en een beweging van het beweegbare element te gebruiken om elektrische energie te regenereren als een generator.The motion compensation system of claim 1, wherein the electrical machine is arranged to alternately drive the movable member as a motor and use a motion of the movable member to regenerate electrical energy as a generator. 3. Bewegingscompensatie-systeem volgens conclusie 1 of 2, verder omvattende een elektrische energie opslag-eenheid die 1s verbonden met de motormodule van de actuator.The motion compensation system of claim 1 or 2, further comprising an electrical energy storage unit connected to the motor module of the actuator. 4. Bewegingscompensatie-systeem volgens conclusie 3, waarbij de motormodule verder een DC/AC omzetter bevat die een AC terminal heeft die is verbonden met de elektrische machine, en een DC terminal die verbonden is met de elektrische energie opslag-eenheid.The motion compensation system according to claim 3, wherein the motor module further comprises a DC/AC converter having an AC terminal connected to the electric machine, and a DC terminal connected to the electric energy storage unit. 5. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, waarbij de elektrische energie opslag-eenheid een condensatorrek bevat.A motion compensation system according to any preceding claim, wherein the electrical energy storage unit includes a capacitor rack. 6. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, waarbij de elektrische energie opslag-eenheid ook een energie invoer eenheid bevat voor het ontvangen van elektrische energie van een boot AC voeding.A motion compensation system according to any preceding claim, wherein the electrical energy storage unit also includes an energy input unit for receiving electrical energy from a boat AC power supply. 7. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, omvattende een gemeenschappelijke DC bus die DC terminals van respectieve DC/AC omzetters verbindt met de elektrische energie opslag-eenheid.A motion compensation system according to any one of the preceding claims, comprising a common DC bus connecting DC terminals of respective DC/AC converters to the electrical energy storage unit. 8. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, waarbij de één of meer actuatoren elektro-hydraulische actuatoren zijn.A motion compensation system according to any preceding claim, wherein the one or more actuators are electro-hydraulic actuators. 9. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, verder omvattende een besturingseenheid voor het besturen van een initieel oplaadproces van de één of meer motormodules en/of de elektrische energie opslag-eenheid.A motion compensation system according to any preceding claim, further comprising a control unit for controlling an initial charging process of the one or more motor modules and/or the electrical energy storage unit. 10. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, verder omvattende een stroom begrenzings-element en/of een stroom onderbrekings-element voor het begrenzen en/of onderbreken van een elektrische stroom die stroomt van de energie invoer eenheid naar een motormodule van de respectieve één of meer actuatoren.A motion compensation system according to any one of the preceding claims, further comprising a current limiting element and/or a current interrupting element for limiting and/or interrupting an electric current flowing from the energy input unit to a motor module of the respective one or more actuators. 11. Bewegingscompensatie-systeem volgens conclusie 10, verder omvattende een schakel-element dat wordt bestuurd door de besturingseenheid voor het omleiden van het stroom begrenzings-element en/of het stroom onderbrekings-element.The motion compensation system of claim 10, further comprising a switching element controlled by the control unit to bypass the current limiting element and/or the current interrupting element. 12. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, verder omvattende een actuator besturingseenheid voor het besturen van de werking van de elektrische machine van de tenminste ene actuator.A motion compensation system according to any preceding claim, further comprising an actuator control unit for controlling the operation of the electrical machine of the at least one actuator. 13. Bewegingscompensatie-systeem volgens conclusie 12, waarbij de actuator besturingseenheid is ingericht voor het configureren van de elektrische machine om te werken als een generator wanneer de aandrijfkracht- richting en de beweegrichting van het beweegbare element samenvallen, en voor het configureren van de elektrische machine als een generator wanner de aandrijfkracht-richting en de beweegrichting van het beweegbare element tegenovergesteld zijn aan elkaar.The motion compensation system according to claim 12, wherein the actuator control unit is arranged to configure the electric machine to act as a generator when the driving force direction and the moving direction of the movable element coincide, and to configure the electric machine as a generator when the driving force direction and the moving direction of the movable member are opposite to each other. 14. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, omvattende een meervoudig aantal dragers voor het dragen, bewegen en/of overbrengen van een last.A motion compensation system according to any one of the preceding claims, comprising a plurality of carriers for carrying, moving and/or transferring a load. 15. Bewegingscompensatie-systeem volgens één van de voorgaande conclusies, waarbij tenminste één drager een bewegingscompensatie- platform, een loopplank of een kraan is.A motion compensation system according to any one of the preceding claims, wherein at least one carrier is a motion compensation platform, gangway or crane. 16. Bewegingscompensatiewerkwijze van een drijvend lichaam zoals een boot drijvend op water, omvattende een stap van het voorzien in één of meer motormodules voor het aandrijven van een beweegbaar element van een respectieve actuator voor het bewegen van een drager voor het dragen, bewegen en/of overbrengen van een last op het drijvende lichaam, verder omvattende een stap van het gebruiken van een beweging van het beweegbare element van de tenminste één actuator voor het regenereren van elektrische energie via een elektrische machine van de respectieve motormodule.A motion compensation method of a floating body such as a boat floating on water, comprising a step of providing one or more motor modules for driving a movable member of a respective actuator for moving a carrier for carrying, moving and/or transferring a load to the floating body, further comprising a step of using a movement of the movable element of the at least one actuator to regenerate electric energy through an electric machine of the respective motor module. 17. Bewegingscompensatie werkwijze volgens conclusie 16, verder omvattende een stap van het besturen van een initieel oplaadproces van de één of meer motormodules en/of een elektrische energie opslag-eenheid die is verbonden met de één of meer motormodules.The motion compensation method of claim 16, further comprising a step of controlling an initial charging process of the one or more motor modules and/or an electrical energy storage unit connected to the one or more motor modules. 18. Computer programma product, omvattende computer leesbare instructies om een processor een bewegingscompensatie werkwijze uit te doen voeren van een drijvend lichaam zoals een boot drijvend op water, waarbij de werkwijze een stap omvat van het voorzien in één of meer motormodules voor het aandrijven van een beweegbaar element van een respectieve actuator voor het bewegen van een drager voor het dragen, bewegen en/of overbrengen van een last op het drijvende lichaam, en een stap van het gebruiken van een beweging van het beweegbare element van tenminste één actuator voor het regenereren van elektrische energie via een elektrische machine van de respectieve motormodule.A computer program product comprising computer readable instructions for causing a processor to perform a motion compensation method of a floating body such as a boat floating on water, the method comprising a step of providing one or more motor modules for driving a movable element of a respective actuator for moving a carrier for carrying, moving and/or transferring a load on the floating body, and a step of using a movement of the movable element of at least one actuator for regenerating electrical energy through an electrical machine of the respective motor module.
NL2024263A 2019-11-19 2019-11-19 A motion compensation system, a motion compensation method, and a computer program product. NL2024263B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2024263A NL2024263B1 (en) 2019-11-19 2019-11-19 A motion compensation system, a motion compensation method, and a computer program product.
PCT/NL2020/050720 WO2021101373A1 (en) 2019-11-19 2020-11-18 A motion compensation system, a motion compensation method, and a computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2024263A NL2024263B1 (en) 2019-11-19 2019-11-19 A motion compensation system, a motion compensation method, and a computer program product.

Publications (1)

Publication Number Publication Date
NL2024263B1 true NL2024263B1 (en) 2021-08-11

Family

ID=70005664

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2024263A NL2024263B1 (en) 2019-11-19 2019-11-19 A motion compensation system, a motion compensation method, and a computer program product.

Country Status (2)

Country Link
NL (1) NL2024263B1 (en)
WO (1) WO2021101373A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1027103C2 (en) 2004-09-24 2006-03-27 Univ Delft Tech Vessel is for transfer of persons or goods to an offshore construction and has an upper deck with a platform regulatable as to its position
WO2009120062A2 (en) * 2008-03-26 2009-10-01 Itrec B.V. Heave compensation system and method
WO2012112039A1 (en) * 2011-02-18 2012-08-23 Itrec B.V. Active heave compensation system and method
WO2012138227A1 (en) 2011-04-08 2012-10-11 U-Sea Beheer B.V. Transfer system, ship and method for transferring persons and/or goods to and/or from a floating ship
WO2013010564A1 (en) 2011-10-20 2013-01-24 Potemkin Alexander Method for conditioning liquid low-level radioactive waste
WO2017010890A2 (en) * 2015-07-14 2017-01-19 Mhwirth As A winch system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1027103C2 (en) 2004-09-24 2006-03-27 Univ Delft Tech Vessel is for transfer of persons or goods to an offshore construction and has an upper deck with a platform regulatable as to its position
WO2009120062A2 (en) * 2008-03-26 2009-10-01 Itrec B.V. Heave compensation system and method
WO2012112039A1 (en) * 2011-02-18 2012-08-23 Itrec B.V. Active heave compensation system and method
WO2012138227A1 (en) 2011-04-08 2012-10-11 U-Sea Beheer B.V. Transfer system, ship and method for transferring persons and/or goods to and/or from a floating ship
WO2013010564A1 (en) 2011-10-20 2013-01-24 Potemkin Alexander Method for conditioning liquid low-level radioactive waste
WO2017010890A2 (en) * 2015-07-14 2017-01-19 Mhwirth As A winch system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ACTIVE HEAVE COMPENSATION WINCHES OFFER LOW WEIGHT, POWER CONSUMPTION", OFFSHORE, PENNWELL, TULSA, OK, US, vol. 61, no. 10, 1 October 2001 (2001-10-01), pages 140, XP001116711, ISSN: 0030-0608 *

Also Published As

Publication number Publication date
WO2021101373A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
DK2534085T3 (en) Crane, in particular mobile harbor crane, with hybriddrivsystem
CN102007033B (en) Heave compensation system and method
JP6757570B2 (en) Ship power system
CA2400762C (en) Emergency current supply equipment for lift installations
CN103647500A (en) Motor speed-regulation system energy-saving controller based on super-capacitor energy storage and control method
WO2010143628A1 (en) Hybrid excavator and manufacturing method therefor
US20110112731A1 (en) Crane apparatus
EP2630073A1 (en) Energy management system
US8297392B2 (en) Hybrid energy management system
CN104619628A (en) Drive control device for drive system including vertical carrier machine
JP4949288B2 (en) Hybrid construction machine
JP2012143056A (en) Power supply device for elevator
US20150367919A1 (en) Active heave compensation system and method
NL2024263B1 (en) A motion compensation system, a motion compensation method, and a computer program product.
CN104555742A (en) Hybrid power electrical control system, crane and working method
EP2445080A1 (en) System for recovering energy used for raising a load of a draw work
JP5550954B2 (en) Hybrid work machine
JP2007254043A (en) Elevator control device
KR101329366B1 (en) Elevator control device with regenerative energy storage capability
KR101776965B1 (en) Hybrid power supply and controlling method thereof
JP2009106148A (en) Electric motor operating method
CN207021701U (en) The electric power assembly of wind-powered electricity generation mounting platform
US20230057910A1 (en) Active compensation system, intended to compensate at least partially for the effect of a wave motion on a load
JP5632419B2 (en) Hybrid power supply device for crane and control method of hybrid power supply device for crane
CN113708359A (en) Bidirectional DCDC converter control method, system and related components