NL2023611B1 - Node, airfield ground lighting system (AGL) comprising said node and method for determining the position of said one node within the AGL - Google Patents

Node, airfield ground lighting system (AGL) comprising said node and method for determining the position of said one node within the AGL Download PDF

Info

Publication number
NL2023611B1
NL2023611B1 NL2023611A NL2023611A NL2023611B1 NL 2023611 B1 NL2023611 B1 NL 2023611B1 NL 2023611 A NL2023611 A NL 2023611A NL 2023611 A NL2023611 A NL 2023611A NL 2023611 B1 NL2023611 B1 NL 2023611B1
Authority
NL
Netherlands
Prior art keywords
node
base station
agl
lighting system
nodes
Prior art date
Application number
NL2023611A
Other languages
Dutch (nl)
Inventor
Hermanus Maria Van Der Kuil Johannes
Timmer Maikel
Original Assignee
Use System Eng Holding B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Use System Eng Holding B V filed Critical Use System Eng Holding B V
Priority to NL2023611A priority Critical patent/NL2023611B1/en
Application granted granted Critical
Publication of NL2023611B1 publication Critical patent/NL2023611B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/18Visual or acoustic landing aids
    • B64F1/20Arrangement of optical beacons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2203/00Aircraft or airfield lights using LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/21Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel
    • H05B47/22Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel with communication between the lamps and a central unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

The invention relates to a first node (Nl) for an airfield ground lighting system (AGL), wherein the airfield ground lighting system (AGL) comprises the first node (Nl), a plurality of further nodes (NZ—N6) and a base station (B) for controlling the first node (Nl) and the plurality of further nodes (NZ—N6), wherein the first node (Nl) comprises a positional information unit (P) to determine a position of the first node (Nl) within the airfield ground lighting system (AGL), wherein the first node (Nl) further comprises a communication 'unit (C) that is operationally connected to the positional information unit (P) for communicating the determined position to the base station (B). The invention further relates to an airfield ground lighting system (AGL) and. a method for determining the position of the first node (Nl) within said airfield ground lighting system (AGL).

Description

P136782NL00 Node, airfield ground lighting system (AGL) comprising said node and method for determining the position of said one node within the AGL
BACKGROUND The invention relates to a node for an airfield ground lighting system (AGL), an AGL comprising said node and a method for determining the position of said one node within the AGL.
JP 2016-110722 A discloses an airfield ground lighting system with a light control device that is arranged in a central monitoring room for controlling the lights of a runway. Each light is formed by a base that is pre-installed in a specific location along the runway and a lamp that is fitted to said base. The base is provide with an unique QR-code to identify said base in the field. A worker is equipped with a tablet terminal with a GPS- based position specifying unit to show the position of the tablet terminal on a map of the airfield, for navigation purposes. The tablet terminal is further provided with a barcode reader for scanning a QR-code at a respective one of the bases. The tablet terminal then retrieves the known position coordinates from the light control device to highlight the correct base on the map of the tablet terminal, together with information about the lamp to be inspected or installed. The worker can update the status of the light accordingly after the lamp has been installed, repaired or replaced. The worker is able to turn the lights on and off from the tablet terminal. Hence, the worker can perform maintenance independently from the operator of the light control device.
SUMMARY OF THE INVENTION A disadvantage of the known airfield ground lighting system is that the location of the base is solely determined based on the QR-code of the base.
However, the base can be positioned incorrectly or the QR-code may be applied to an incorrect base.
Hence, a lamp may be installed, repaired or replaced based on incorrect information.
Moreover, only the base of the light is identified.
The work performed on the light ís not verified at all, or only verified manually by the worker in the field.
There automatic way to verify that the lamp is correctly installed in terms of position and/or orientation.
Finally, the known system is dependent on the presence of the tablet terminal for communication with the base station.
Hence, in the absence of the tablet terminal, there is no way to monitor the condition of the lights.
It is an object of the present invention to provide a node for an airfield ground lighting system (AGL), an AGL comprising said node and a method for determining the position of said one node within the AGL, wherein the determination and/or verification of the position of the node can be improved.
According to a first aspect, the invention provides a first node for an airfield ground lighting system, wherein the airfield ground Lighting system comprises the first node, a plurality of further nodes and a base station for controlling the first node and the plurality of further nodes, wherein the {first node comprises a positional information unit to determine a position of the first node within the airfield ground lighting system, wherein the first node further comprises a communication unit that is operationally connected to the positional information unit for communicating the determined position to the base station.
Because of the built-in positional information unit and the built-in communication unit, the first node itself is capable of determining and communicating its position within the airfield ground lighting system. The position can thus be communicated during and/or after installation, and is not reliant on the presence of maintenance personnel. Moreover, the position of the first node is not based on indirect position information, such as the coordinates of a base in which the first node is received. Instead, the position can be determined directly based on the actual position of the first node itself.
Consequently, the position of the first node can be determined more reliably.
In a preferred embodiment the airfield ground lighting system comprises a power line for powering the first node and the plurality of further nodes, wherein the first node comprises a power connection member for connecting the first node to the power line. The first node can thus pick up power from a power line common to other nodes.
Preferably, the power connection member is arranged for inductively picking up power from the power line. Inductively picking up power is known per se from WO 2014/173962 Al. The same technology can also be used to transfer data over the power line. In other words, the technology is capable of power line communication.
In a further embodiment thereof the positional information unit and the communication unit are arranged for automatically determining and communicating, respectively, the position of the first node when the first node is connected to and powered up by the power line.
Hence, after installation, the first node is not dependent on maintenance personnel to determine its position. The position can be determined and communicated automatically. Once the base station has received the positional information, said information can be fed back to an operator of the airfield ground lighting system and/or to the maintenance personnel to check if the position corresponds to the predefined or planned position of the first node.
Additionally or alternatively, the communication unit is operationally coupled to the power connection member for communication with the base station over the power line via the power connection member. The first node may be as far away as two kilometers from the base station. As the communication unit can communicate with the base station over the power line via the power connection member, the communication unit does not require any transmitters with a large communication range. Instead, it may be physically connected, within the housing of the first node, to the power connection member. Hence, the communication unit can be relatively simple to reduce the cost and/or complexity of the first node. Moreover, communication over the power line is less likely to experience interference from or to interfere with the other modes of communications at an airfield.
In another embodiment the first node has an identifier, wherein the communication unit is arranged for communicating the identifier of the first node to the base station. Hence, the identifier can be associated with the positional information sent to the base station to provide more detailed information to the operator of the airfield ground lighting system and/or the maintenance personnel about the first node. The identifier may further be associated with or provide information on the type of the first node, i.e. whether the first node is an inset light or an elevated light, a runway light or a taxiway light, or a different component of the airfield ground Lighting system.
In another embodiment the first node further comprises a compass for determining an orientation of the first node, wherein the communication unit is operationally connected to the compass for communicating the determined orientation to the base station. By providing information to the base station about the orientation of the first node, it can be determined whether the node is correctly installed, i.e. in the right direction with respect to a geographic cardinal direction. The orientation information may also be used to check continuously or at a regular interval if the first node has moved since its 5 installation, i.e. if it has been dislodged for some reason.
In another embodiment the first node further comprises an accelerometer for determining an acceleration of the first node in at least one direction, wherein the communication unit is operationally connected to the accelerometer for communicating the determined acceleration to the base station. The acceleration information can be used to check continuously or at a regular interval if the first node has been subjected to any sudden movements or vibrations that could have potentially damaged or dislodged the first node.
In another embodiment the communication unit is arranged for receiving a verification signal from the base station when the base station has verified that the determined position of the first node corresponds to a planned position of the first node, wherein the first node further comprises an indicator that is operationally connected to the communication unit to generate a visible indication of the verification in response to the verification signal. The indicator can provide useful feedback to maintenance personnel during installation, inspection or maintenance of the first node. In particular, maintenance personnel can immediately see if the first node is correctly positioned by viewing the indicator, without additional interaction with handheld devices or communication between the maintenance personnel and the operator of the airfield ground lighting system.
In another embodiment the first node is an inset light or an elevated light. Preferably, the first node comprises a housing and at least one lamp contained in said housing, wherein the positional information unit is contained in the same housing as the at least one lamp. In other words, the positional information unit is build-in or integrated into the first node. Consequently, the first node can be immediately operational upon installation without requiring further assembly of the positional information unit.
According to a second aspect, the invention provides an airfield ground lighting system comprising the first node according to any one of the aforementioned embodiments, a plurality of further nodes and a base station. The airfield ground lighting system comprises the first node according to the first aspect of the invention and thus has the same technical advantages, which will not be repeated hereafter. The plurality of further nodes may be of the same type as or identical to the first node, or may be different types of nodes, i.e. inset lights, elevated lights, taxiway lights, runway lights, terminators, etc. Each of the plurality of further nodes may be arranged to determine and communicate its position to the base station in the same or substantially the same way as the first node.
Preferably, the positional information unit is arranged for determining the position of the first node in cooperation with a satellite-based positioning system. Hence, no reference stations are required at the airfield itself.
Alternatively, the airfield ground lighting system comprises one or more land-based reference stations, wherein the positional information unit is arranged for determining the position of the first node in cooperation with the one or more land-based reference stations. The land-based reference stations may be more accurate than a satellite-based positioning system.
In a further embodiment the base station comprises a memory for storing a plan with positional information for a plurality of planned nodes within the airfield ground lighting system, wherein the base station further comprises a control unit for receiving the determined position of the first node from the communication unit of the first node and for comparing the determined position with the positional information of the plurality of planned nodes. The comparison can reveal if the first node has been correctly positioned, i.e.
corresponding to the positional information of one of the planned nodes.
In a preferred embodiment thereof the control unit is configured for storing status information for each planned node of the plurality of planned nodes in the memory, wherein the control unit is further configured for updating the status information of one planned node of the plurality of planned nodes when the determined position of the first node corresponds or substantially corresponds to the positional information for said one planned node. The status information can provide feedback to the operator of the airfield ground lighting system and/or the maintenance personnel on the state of the planned nodes. The status information may be displayed on display, i.e. as an overlay of a map displaying the airfield ground lighting system. For example, the status information of one of the planned nodes may be changed from a first state equivalent to ‘not installed, ‘not ok’ or ‘incorrectly installed’ to a second state equivalent to ‘installed’, ‘ok’ or ‘correctly installed’ depending on whether the determined position received from the first node corresponds to said one planned node. The status information may also be represented by a color, i.e. green for ‘ok’ and red for ‘not ok’, a symbol or any other suitable visual representation.
In a further preferred embodiment thereof the first node has an identifier, wherein the communication unit 1s arranged for communicating the identifier of the first node to the base station, wherein the control unit is configured for assigning the identifier of the first node to said one planned node when the determined position of the first node corresponds or substantially corresponds to the positional information for said one planned node. Hence, not only the position, but also the identifier can be associated with said one planned node. The identifier may further be associated with or provide information on the type of the first node, i.e. whether the first node is an inset light or an elevated light, a runway light or a taxiway light, or a different component of the airfield ground lighting system. Said additional information may be displayed next to said one planned node, or may be called upon when selecting said one planned node in an interface. Additionally or alternatively, the positional information for the plurality of planned nodes includes information about the planned orientation of each planned node of the plurality of planned nodes, wherein the first node comprises a compass for determining the orientation of the first node, wherein the communication unit is cperaticonally connected to the compass for communicating the determined orientation to the base station, wherein the control unit of the base station is configured for comparing the determined orientation of the first node with the planned orientation of said one planned node. In airfield ground lighting systems, the orientation of the first nodes is critical, in particular for nodes having one or more lamps facing in specific directions. For example, taxiway lights may comprise different colored lamps facing in opposite directions. By not only comparing the position, but also the orientation of the first node with the planned orientation at the base station, an incorrect orientation of the first node can be detected and appropriate action can be taken. The base station may also check the orientation of the first node continuously or at a regular interval to determine if the first node is still in its original orientation.
In another embodiment the airfield ground lighting system further comprises a handheld device with a display, wherein the handheld device is configured for wireless communication with the base station for retrieving and displaying the plan with the positional information for the plurality of planned nodes within the airfield ground lighting system and to provide feedback on the comparison. The handheld device may be used by maintenance personnel for installation, inspection and/or maintenance purposes. Maintenance personnel can for example check immediately if the first node is correctly installed, i.e. according to the positional information of the plan stored in the memory at the base station.
In another embodiment the control unit is configured to monitor the position of the first node at regular intervals or continuously. Hence, the position can be checked not only at the moment of installation, but also thereafter to check if the first node is still correctly positioned or has been dislodged for some reason.
According to a third aspect, the invention provides a method for determining a position of a first node within an airfield ground lighting system according to any one of the embodiments according to the second aspect of the invention, wherein the method comprises the steps of: — determining the position of the first node within the airfield ground lighting system with the use of the positional information unit of the first node; and — communicating the determined position to the base station with the use of the communication unit of the first node.
The method relates to the practical implementation of the first node in the airfield ground Lighting system according to the second aspect of the invention and thus has the same technical advantages, which will not be repeated hereafter.
Preferably, the airfield ground lighting system comprises a power line for powering the first node and the plurality of further nodes, wherein the method comprises the step of connecting the first node to the power line.
More preferably, the positional information unit and the communication unit are arranged for automatically determining and communicating, respectively, the position of the first node when the first node is connected to and powered up by the power line.
Additionally or alternatively, the step of communicating the position of the first node to the base station involves sending communication signals from the communication unit to the base station over the power line.
In another embodiment of the method, the first node has an identifier, wherein the method comprises the step of communicating the identifier of the first node to the base station with the use of the communication unit.
In another embodiment of the method, the first node further comprises a compass, wherein the method further comprises the steps of: - determining an orientation of the first node with the use of the compass; and - communicating the determined orientation to the base station with the use of the communication unit of the first node.
In another embodiment of the method, the first node further comprises an accelerometer, wherein the method further comprises the steps of: - determining an acceleration of the first node in at least one direction with the use of the accelerometer; and - communicating the determined acceleration to the base station with the use of the communication unit of the first node.
In another embodiment of the method, the method further comprises the steps of: = providing a plan with positional information for a plurality of planned nodes within the airfield ground lighting system; and - comparing the determined position of the first node with the positional information of the plurality of planned nodes.
Preferably, the method further comprises the step of updating status information of one planned node of the plurality of planned nodes when the determined position of the first node corresponds or substantially corresponds to the positional information for said one planned node.
More preferably, the first node has an identifier, wherein the method further comprises the steps of: - communicating the identifier of the first node to the base station with the use of the communication unit; and ~ assigning the identifier of the first node to said one planned node when the determined position of the first node corresponds or substantially corresponds to the positional information for said one planned node.
Additionally or alternatively, the positional information for the plurality of planned nodes includes information about the planned orientation of each planned node of the plurality of planned nodes, wherein the first node comprises a compass, wherein the method further comprises the steps of: - determining an orientation of the first node with the use of the compass; — communicating the determined orientation to the base station with the use of the communication unit of the first node; and — comparing the determined orientation of the first node with the planned orientation of said one planned node, In another embodiment the method further comprises the step of monitoring the position of the first node at regular intervals or continuously.
The various aspects and features described and shown in the specification can be applied, individually, wherever possible. These individual aspects, in particular the aspects and features described in the attached dependent claims, can be made subject of divisional patent applications.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be elucidated on the basis of an exemplary embodiment shown in the attached schematic drawings, in which: figure 1 shows a schematic representation of an airfield ground lighting system communicating with a satellite-based positioning system (GPS); figure 2 shows the airfield ground lighting system according to figure 1 communicating with a land- based positioning system; figure 3 shows a top view of a node and a power line of the airfield ground lighting system according to figures 1 and 2; figure 4 shows a top view of the airfield ground lighting system and a handheld device displaying a plan for the airfield ground lighting system; and figure 5 shows the handheld device of figure 4 with a zoomed-in portion of the plan for the airfield ground lighting system.
DETAILED DESCRIPTION OF THE INVENTICN Figures 1 and 2 show an airfield ground lighting system AGL according to an exemplary embodiment of the invention for use at an airfield. The AGL comprises a base station B, a group of nodes N1-N6 and a power line L that powers the group of nodes N1-N6. The power line L is adapted for power line communication in a manner known per se and is operationally connected to the base station B to allow for communication between the group of nodes N1-N6 and the base station B. Several base stations B and power lines L may be combined depending on the size and infrastructure of the airfield. The power line L may be relatively long, i.e. up to one or two kilometers, or even longer. The number of nodes N1-N6 connected to the power line L may also be considerable. A power line L may power several hundreds of nodes N1-N6. The power line L is connected to the base station B at one end and is typically terminated by a power line terminator N99 at the opposite end. In the context of the present invention, said power line terminator N99 may also be considered a node.
The group of nodes N1-N6 comprises a first node Nl and a plurality of further nodes N2-N6 which may be of the same type as the first node Nl or of a different type. The first node Nl may for example be an inset light or an elevated light. The first node Nl may also be a sensor or a power line terminator. In this exemplary embodiment, the first node Nl is an inset light and the plurality of further nodes N2-N6 are inset lights identical to the first node Nl. Hence, only the first node Nl will be described in more detail hereafter.
As best seen in figure 3, the first node Nl comprises a housing H that contains the internal components of the first node Nl. In this case, the first node Nl is an inset light. Hence, the housing H is arranged to be recessed into the ground with only the top part of the housing H extending above the ground. In this exemplary embodiment, the first node Nl further comprises a first lamp V1 facing in a first direction and a second lamp V2 facing in a second direction opposite to the first direction. The first node Nl is further provided with a positional information unit P to determine a position of the first node Nl within the airfield ground lighting system AGL and a communication unit C that is operationally connected to the positional information unit P for communicating the determined position to the base station B. The position of the first node Nl relative to the other nodes N2-N6 and AGL as a whole is critical to properly guide the traffic over the airfield and to provide the correct visual information to pilots during landing and take-off.
In one exemplary embodiment, the positional information unit P is arranged for determining the position of the first node Nl in cooperation with a satellite-based positioning system GPS, as shown in figure 1. Alternatively, the AGL comprises one or more land-based reference stations Rl, R2, R3, as shown in figure 2. In that case the positional information unit P is arranged for determining the position of the first node ‚Nl in cooperation with the one or more land-based reference stations Rl, R2, R3.
The positional information unit P, the communication unit C and the lamps Vl, V2 are all contained in the same housing H. Hence, the first node Nl can be installed in the AGL without requiring any further assembly of the positional information unit P, the communication unit C and the lamps Vl, V2.
The first node Nl is provided with an identifier I that is unique for each node Nl1-N6. The identifier I is electronically stored the first node Nl so that it may be sent together with the determined position to the base station B. Optionally, the identifier I may be shown on a label on an internal or external surface of the first node Nl so that maintenance personnel can identify the first node N1 in the field.
As schematically shown, the first node N1 comprises a power connection member F for connecting the first node Nl to the power line L. Said power connection member F is arranged for inductively picking up power from the power line L in a manner known per se. the power connection member F may for example be an inductive clamp, in particular an inductive clamp that comprises a ferrite core. In this exemplary embodiment, the communication unit C is operationally connected to the power connection member F to communicate data, signals or information over the power line L. The data can be transmitted over the power line L through modulation in a manner known per se. The first node Nl further comprises a compass K for determining an orientation G of the first node Nl. In particular, the compass K is arranged for determining the orientation G of the first node Nl relative to at least one geographic cardinal direction, i.e. North, South, East or West. Said orientation may be critical when the first node Nl needs to be placed in a specific orientation, i.e. to properly direct the light from the lamps Vl, V2. The communication unit C is operationally connected to the compass K for communicating the determined orientation G to the base station B.
The first node Nl may optionally comprise an accelerometer S for determining an acceleration of the first node Nl in at least one direction. The communication unit C is also operationally connected to the accelerometer S for communicating the determined acceleration to the base station B.
The first node Nl may further optionally comprise an indicator E that can indicate a status of the first node Nl to maintenance personnel in the field. The status indication may for example show that the first node Nl is correctly installed. The indicator B may be a light that changes color or a small display that shows information.
As shown in figures 1 and 2, the base station B comprises a control unit U that is arranged for receiving and processing the data received from the nodes N1-N6. The base station B may further comprise a memory M for storing data. The base station B may be part of a control room where it may be accessed by an operator, i.e. in the tower of the airfield. Alternatively, the base station B can be placed in a convenient location close to the group of nodes N1-N6, i.e. in a cabinet.
As shown in figures 4 and 5, the AGL may further comprises one or more handheld devices T, i.e. a tablet or a smart phone. Each handheld device T is configured for wireless communication with the base station B and has a display D to display relevant information retrieved from said base station B. The handheld device T may be used by maintenance personnel to provide useful feedback during inspection, installation and/or maintenance of the AGL.
In this exemplary embodiment, the memory M of the base station B is loaded with a plan A with positional information for a plurality of planned nodes Al-A6, as schematically shown on the display D of the handheld device T in figure 4. The positional information may include the planned position of the planned nodes Al-A6, the planned orientation Gl1-G6 of the planned nodes Al-A6, as shown in figure 5, and/or the type or requirements for each of the planned nodes A1-A6.
A method for determining the position of the first node Nl within the aforementioned AGL will now be elucidated with reference to figures 1-5.
The first step of the method involves determining the position of the first node Nl within the airfield ground lighting system AGL, as shown in figures 1 and 2, with the use of the positional information unit P of the first node Nl, as shown in figure 3. Once the position has been determined, the positional information unit P sends a signal containing the determined position to the communication unit C. The determined position of the first node Nl is then communicated to the base station B, as shown in figures 1 and 2, with the use of the communication unit C of the first node Nl, as shown in figure 3.
Optionally, the orientation G of the first node Nl is determined with the use of the compass K and a signal containing the determined orientation G is also send through the communication unit U towards the base station B of figures 1 and 2. Alternatively or additionally, the acceleration sensor S, as shown in figure 3, may be used to determine the acceleration to which the first node Nl is subjected, which acceleration data can also be send in the same manner to the base station B of figures 1 and 2.
Preferably, the communication unit C€ also sends the identifier I of the first node Nl, as shown in figure 3, to the base station B of figures 1 and 2, together with the determined position, the determined orientation and/or acceleration data of said first node NI.
The positional information unit P and the communication unit C are preferably arranged for automatically determining and communicating, respectively, the position of the first node Nl when the first node Nl is connected to and powered up by the power line L. Hence, there are no separate actions required for determining the position of the first node Nl other than simply connection the first node Nl to the power line L.
In this exemplary embodiment the signals containing the determined position, the determined orientation G and/or the acceleration data are sent from the communication unit C via the power connection member F over the power line L. The signal are subsequently received by the base station B and processed by the control unit U thereof. As mentioned before, the memory M of the base station B is loaded with a plan A with positional information for a plurality of planned nodes Al-A6 within the airfield ground lighting system AGL, as schematically shown in figure 4. The plan A may be shown on a display, either to an operator in a control room or on the handheld device T of figure 4. The plan A may be shown as an overlay of a map displaying the AGL.
The method further comprises the step of comparing the determined position of the first node Nl with the positional information of the plurality of planned nodes Al-A6. When the determined position of the first node Nl substantially corresponds to or matches with the positional information of one of the planned nodes Al-A6, the determined position of the first node Nl can be assigned to said one planned node Al. In other words, the first node Nl and the one planned node Al are linked. In particular, the identifier I of the first node Nl may be associated with said one planned node Al. The identifier I can be used to specifically keep track of the positions of the nodes N1-N6 within the AGL and/or to check if the type or specification associated with the particular identifier I matches the plan A. The result of the comparison can subsequently be send to an operator in a control room. It can also be displayed on the display D of the handheld device T. Preferably, the planned nodes Al-A6 are given a status corresponding to the data or information received from the group of nodes Nl1-N6. In particular, the status information of one of the planned nodes may be changed from a first state eguivalent to ‘not installed, ‘not ok’ or ‘incorrectly installed’ to a second state equivalent to ‘installed’, ‘ok’ or ‘correctly installed’ depending on whether the determined position received from the first node Nl corresponds to said one planned node Al. The status information may also be represented by a color, i.e. green for ‘ok’ and red for ‘not ok’, a symbol or any other suitable visual representation.
When the control unit U of the base station B has matched the position of the first node Nl to the planned position of said one planned node Al, the control unit U of the base station B may further compare the determined orientation G of the first node Nl with the planned orientations Gl of said one planned node Al. If the determined orientation G matches with the planned orientation Gl of said one planned node Al, the status of said one planned node Al can be set to anything equivalent to ‘ok’, ‘correctly installed’ or ‘correctly orientated’.
If, however, the determined orientation G does not match with the planned orientation Gl of said one planned node Al, e.g. if the first node Nl is installed in a backwards orientation, then the control unit U will update the status of said one planned node Al to anything equivalent with not ok’, ‘incorrectly installed’ or ‘incorrectly orientated’. The control unit U may also set detailed or split status information for, i.e. ‘correctly positioned’
and ‘incorrectly orientated’.
In this example, in figure 5, a warning W is shown next to said one planned node Al because the corresponding first node Nl is facing in the wrong direction, i.e. the determined orientation G is pointing East opposite to the planned orientation Gl of the one planned node Al, which is West, see figure 4. Once, the base station B has determined that the first node Nl is correctly installed, the base station B may send a verification signal back to the first node Nl. The communication unit C of the first node Nl is arranged for receiving said verification signal {from the base station B. The verification signal can subsequently be used to control the indicator E on the first node Nl to generate a visible indication of the verification in response to the verification signal. Hence, maintenance personnel can immediately see if the first node Nl is correctly positioned by viewing the indicator B, without additional interaction with handheld devices or communication between the maintenance personnel and the operator of the AGL.
The method optionally comprises the step of monitoring the position of the first node Nl at regular intervals or continuously to determine if the first node Nl is still in its original orientation. The monitoring can be initiated automatically by the base station B or manually by an operator. The first node Nl may also send information to the base station B at regular intervals.
It is to be understood that the above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention. From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the scope of the present invention.

Claims (32)

CONCLUSIESCONCLUSIONS 1. Eerste node (N1) voor een vliegveldgrondverlichtingssysteem (AGL), waarbij het vliegveldgrondverlichtingssysteem (AGL) een eerste node (Nl) omvat, een meervoud van verdere nodes (N2-N6) en een basisstation (B) voor het regelen van de eerste node (N1) en het meervoud van verdere nodes {(N2-N6)}), waarbij de eerste node (Nl) een positie informatie-eenheid (P) omvat die een positie van de eerste node (N1) binnen het vliegveldgrondverlichtingssysteem (AGL) vaststelt, waarbij de eerste node (Nl) verder een communicatie-eenheid (C) omvat die operationeel verbonden is met de positie informatie- eenheid (P) voor het communiceren van de vastgestelde positie aan het basisstation (B).First node (N1) for an aerodrome ground lighting system (AGL), the aerodrome ground lighting system (AGL) comprising a first node (N1), a plurality of further nodes (N2-N6) and a base station (B) for controlling the first node (N1) and the plurality of further nodes {(N2-N6)}), wherein the first node (N1) includes a position information unit (P) that contains a position of the first node (N1) within the aerodrome ground lighting system (AGL ), wherein the first node (N1) further comprises a communication unit (C) operably connected to the position information unit (P) for communicating the determined position to the base station (B). 2. Eerste Node (NI) volgens conclusie 1, waarbij het vliegveldgrondverlichtingssysteem (AGL) een bekrachtigingslijn (L) omvat voor het bekrachtigen van de eerste node (Nl) en het meervoud van verdere nodes (N2-N6), waarbij de eerste node (Nl) een bekrachtigingsverbindingsdeel (PF) omvat voor het verbinden van de eerste node (Nl) met de bekrachtigingslijn (L).The first node (NI) of claim 1, wherein the aerodrome ground lighting system (AGL) includes an excitation line (L) for powering the first node (N1) and the plurality of further nodes (N2-N6), wherein the first node ( N1) includes an energizing connecting part (PF) for connecting the first node (N1) to the energizing line (L). 3. Eerste node (Nl) volgens conclusie 2, waarbij het bekrachtigingsverbindingsdeel (F) is ingericht voor het inductief oppikken van kracht van de bekrachtigingslijn (L).The first node (N1) according to claim 2, wherein the energizing connector part (F) is arranged to pick up power inductively from the energizing line (L). 4. Eerste Node (Nl) volgens conclusie 2 of 3, waarbij de positie informatie-eenheid (P) en de communicatie- eenheid (C) zijn ingericht voor het automatisch respectievelijk vaststellen en communiceren van de positie van de eerste node (Nl) wanneer de eerste node (N1) verbonden is met en bekrachtigd is door de bekrachtigingslijn (L).The first node (N1) according to claim 2 or 3, wherein the position information unit (P) and the communication unit (C) are arranged to automatically determine and communicate, respectively, the position of the first node (N1) when the first node (N1) is connected to and powered by the energizing line (L). 5. Eerste node (Nl) volgens een der conclusies 2- 4, waarbij de communicatie-eenheid (C) operationeel gekoppeld is met het bekrachtigingsverbindingsdeel (F) voor communicatie met het basisstation (B) over de bekrachtigingslijn (L) via het bekrachtigingsverbindingsdeelThe first node (N1) according to any one of claims 2-4, wherein the communication unit (C) is operationally coupled to the energizing connection part (F) for communication with the base station (B) over the energizing line (L) via the energizing connection part. (F) .(F). 6. Eerste node (Nl) volgens een der voorgaande conclusies, waarbij de eerste node (Nl) een identificatie (I) heeft, waarbij de communicatie-eenheid (C) is ingericht voor het communiceren van de identificatie (I) van de eerste node (Nl) aan het basisstation (B).First node (N1) according to any one of the preceding claims, wherein the first node (N1) has an identifier (I), wherein the communication unit (C) is arranged to communicate the identifier (I) of the first node. (En) to the base station (B). 7. Eerste node (Nl) volgens een der voorgaande conclusies, waarbij de eerste node (Nl) verder een kompas (K) omvat voor het vaststellen van een oriëntatie (G)}) van de eerste node (Nl), waarbij de communicatie-eenheid (C) operationeel verbonden is met het kompas (K) voor het communiceren van de vastgestelde oriëntatie (G) aan het basisstation (B).The first node (N1) according to any one of the preceding claims, wherein the first node (N1) further comprises a compass (K) for determining an orientation (G)) of the first node (N1), wherein the communication unit (C) is operationally connected to the compass (K) for communicating the determined orientation (G) to the base station (B). 8. Eerste node (Nl) volgens een der voorgaande conclusies, waarbij de eerste node (N1) verder een versnellingsmeter (8S) omvat voor het vaststellen van een versnelling van de eerste node (Nl) in tenminste één richting, waarbij de comnunicatie-eenheid (C) operationeel verbonden is met de versnellingsmeter {(S} voor het communiceren van de vastgestelde versnelling aan het basisstation (B).The first node (N1) according to any one of the preceding claims, wherein the first node (N1) further comprises an accelerometer (8S) for determining an acceleration of the first node (N1) in at least one direction, wherein the communication unit (C) is operationally connected to the accelerometer {(S}) for communicating the determined acceleration to the base station (B). 9, Eerste node (Nl) volgens een der voorgaande conclusies, waarbij de comnunicatie-eenheid (C) is ingericht voor het ontvangen van een verificatiesignaal van het basisstation (B) wanneer het basisstation (B) geverifieerd heeft dat de vastgestelde positie van de eerste node (Nl) overeenkomt met een geplande positie (Al) van de eerste node (N1), waarbij de eerste Node (Nl) verder een indicator (E) omvat die operationeel verbonden is met de communicatie- eenheid {C} teneinde een zichtbare indicatie te generen van de verificatie in reactie op het verificatiesignaal.9. First node (N1) according to any one of the preceding claims, wherein the communication unit (C) is arranged to receive a verification signal from the base station (B) when the base station (B) has verified that the determined position of the first node (N1) corresponds to a planned position (A1) of the first node (N1), the first node (N1) further comprising an indicator (E) operably connected to the communication unit {C} to provide a visible indication to generate the verification in response to the verification signal. 10. Eerste node (Nl) volgens een der voorgaande conclusies, waarbij de eerste node (Nl) een inbouwverlichting of een verhoogde verlichting is.First node (N1) according to any one of the preceding claims, wherein the first node (N1) is a recessed lighting or an elevated lighting. 11. Eerste node (Nl) volgens conclusie 10, waarbij de eerste node (Nl} een behuizing (H) omvat en tenminste één lamp (V1, V2} die bevat is in de behuizing (B), waarbij de positie informatie-eenheid {(P) bevat is in de zelfde behuizing (H) als de tenminste ene lamp (V1, V2).The first node (N1) according to claim 10, wherein the first node (N1} comprises a housing (H) and at least one lamp (V1, V2} contained in the housing (B), the position information unit { (P) is in the same housing (H) as the at least one lamp (V1, V2). 12. vliegveldgrondverlichtingssysteem (AGL) omvattend de eerste node (Nl) volgens een der voorgaande conclusies, een meervoud van verdere nodes (N2-N6) en een basisstation (B).Airport ground lighting system (AGL) comprising the first node (N1) according to any one of the preceding claims, a plurality of further nodes (N2-N6) and a base station (B). 13. vliegveldgrondverlichtingssysteem (AGL) volgens conclusie 12, waarbij de positie informatie-eenheid (P) is ingericht voor het vaststellen van de positie van de eerste node (Nl) in samenwerking met een op satelliet gebaseerd positiesysteem (GPS).Aerodrome ground lighting system (AGL) according to claim 12, wherein the position information unit (P) is arranged to determine the position of the first node (N1) in conjunction with a satellite based position system (GPS). 14. vliegveldgrondverlichtingssysteem (AGL) volgens conclusie 11, waarbij het vliegveldgrondverlichtingssysteem (AGL) één of meer op land gebaseerde referentiestations (Rl, R2, R3}) omvat, waarbij de positie informatie-eenheid (P) is ingericht voor het vaststellen van de positie van de eerste node (Nl) in samenwerking met de één of meer op land gebaseerde referentiestations (Rl, R2, R3).Aerodrome ground lighting system (AGL) according to claim 11, wherein the aerodrome ground lighting system (AGL) comprises one or more land-based reference stations (R1, R2, R3}), the position information unit (P) being arranged to determine the position of the first node (N1) in conjunction with the one or more land-based reference stations (R1, R2, R3). 15. vliegveldgrondverlichtingssysteem (AGL) volgens een der conclusies 12-14, waarbij het basisstation {B) een geheugen (M) omvat voor het opslaan van een plan (A) met positie informatie voor een meervoud van geplande nodes (Al-A6) binnen het vliegveldgrondverlichtingssysteem (AGL), waarbij het basisstation (B) verder een regeleenheid (U) omvat voor het ontvangen van de vastgestelde positie van de eerste node (Nl) van de communicatie—eenheid (C) van de eerste node (Nl) en voor het vergelijken van de vastgestelde positie met de positie informatie van het meervoud van geplande nodes {(Al-A6).The aerodrome ground lighting system (AGL) according to any one of claims 12-14, wherein the base station {B) comprises a memory (M) for storing a plan (A) with position information for a plurality of planned nodes (A1-A6) within the aerodrome ground lighting system (AGL), the base station (B) further comprising a control unit (U) for receiving the determined position of the first node (N1) of the communication unit (C) of the first node (N1) and for comparing the determined position with the position information of the plurality of planned nodes {(A1-A6). 16. vliegveldgrondverlichtingssysteem (AGL) volgens conclusie 15, waarbij de regeleenheid (U) geconfigureerd is voor het opslaan van statusinformatie voor elke geplande node (Al-A6) van het meervoud van geplande nodes (Al-A6) in het geheugen (M), waarbij de regeleenheid (U) verder geconfigureerd is voor het verversen van de statusinformatie van een geplande node (Al) van het meervoud van geplande nodes (Al-A6) wanneer de vastgestelde positie van de eerste node (N1) overeenkomt of in hoofdzaak overeenkomt met de positie informatie voor die ene geplande node (Al).The aerodrome ground lighting system (AGL) according to claim 15, wherein the control unit (U) is configured to store status information for each scheduled node (A1-A6) of the plurality of scheduled nodes (A1-A6) in the memory (M), wherein the control unit (U) is further configured to update the status information of a scheduled node (A1) of the plurality of scheduled nodes (A1-A6) when the determined position of the first node (N1) matches or substantially matches the position information for that one scheduled node (A1). 17. vliegveldgrondverlichtingssysteem (AGL) volgens conclusie 16, waarbij de eerste node (Nl) een identificatie (I) heeft, waarbij de communicatie-eenheid (QC) is ingericht voor het communiceren van de identificatie (I) van de eerste node (Nl) aan het basisstation (B), waarbij de regeleenheid (U) is geconfigureerd voor het toewijzen van de identificatie (I) van de eerste node (Nl) aan die ene geplande node (Al) wanneer de vastgestelde positie van de eerste node (N1) overeenkomt of in hoofdzaak overeenkomt met de positie informatie voor die ene geplande node (Al).An aerodrome ground lighting system (AGL) according to claim 16, wherein the first node (N1) has an identifier (I), the communication unit (QC) being arranged to communicate the identifier (I) of the first node (N1) to the base station (B), where the control unit (U) is configured to assign the identification (I) of the first node (N1) to that one scheduled node (A1) when the determined position of the first node (N1) matches or substantially matches the position information for that one scheduled node (A1). 18. vliegveldgrondverlichtingssysteem (AGL) volgens conclusie 16 of 17, waarbij de positie informatie voor het meervoud van geplande nodes (Al-A6) informatie omvat over de geplande oriëntatie (G1-G56) van elke geplande node (Al-A6) van het meervoud van geplande nodes (Al-A6), waarbij de eerste node (Nl) een kompas (K) omvat voor het vaststellen van de oriëntatie (G) van de eerste node (Nl), waarbij de communicatie-eenheid (C) operationeel verbonden is met het kompas (K) voor het communiceren van de vastgestelde oriëntatie (G) aan het basisstation (B), waarbij de regeleenheid (U) van het basisstation (B) geconfigureerd is voor het vergelijken van de vastgestelde oriëntatie (G) van de eerste node (Nl) met de geplande oriëntatie (Gl) van die ene geplande node (Al).The aerodrome ground lighting system (AGL) according to claim 16 or 17, wherein the position information for the plurality of planned nodes (A1-A6) includes information about the planned orientation (G1-G56) of each planned node (A1-A6) of the plurality of planned nodes (A1-A6), wherein the first node (N1) includes a compass (K) for determining the orientation (G) of the first node (N1), the communication unit (C) being operationally connected with the compass (K) for communicating the determined orientation (G) to the base station (B), wherein the control unit (U) of the base station (B) is configured to compare the determined orientation (G) of the first node (N1) with the scheduled orientation (Gl) of that one scheduled node (A1). 19. vliegveldgrondverlichtingssysteem (AGL) volgens een der conclusies 15-18, waarbij het vliegveldgrondverlichtingssysteem (AGL) verder een handgedragen inrichting (T) omvat met een scherm (D}, waarbij de handgedragen inrichting (T) is geconfigureerd voor draadloze communicatie met het basisstation (B) voor het ophalen en weergeven van het plan (A) met de positie informatie voor het meervoud van de geplande nodes (Al-A6) in het vliegveldgrondverlichtingssysteem (AGL) en teneinde terugkoppeling te geven op de vergelijking,The aerodrome ground lighting system (AGL) according to any one of claims 15-18, wherein the aerodrome ground lighting system (AGL) further comprises a handheld device (T) with a display (D}, the handheld device (T) being configured for wireless communication with the base station (B) to retrieve and display the plan (A) with the position information for the plurality of the planned nodes (A1-A6) in the aerodrome ground lighting system (AGL) and to provide feedback on the comparison, 20. vliegveldgrondverlichtingssysteem (AGL) volgens een der conclusies 12-19, waarbij de regeleenheid (U) is geconfigureerd teneinde de positie van de eerste node (N1) regelmatige intervallen of continu te bewaken.An aerodrome ground lighting system (AGL) according to any one of claims 12-19, wherein the control unit (U) is configured to monitor the position of the first node (N1) at regular intervals or continuously. 21. Werkwijze voor het vaststellen van een positie van een eerste node {N1) binnen een vliegveldgrondverlichtingssysteem (AGL) volgens een der conclusies 12-20, waarbij de werkwijze de stappen omvat van: — het vaststellen van de positie van een eerste node (Nl) binnen het vliegveldgrondverlichtingssysteem (AGL) met gebruikmaking van de positie informatie-eenheid (P) van de eerste node (Nl); en — het communiceren van de vastgestelde positie aan het basisstation (B) met gebruikmaking van de communicatie- eenheid (C) van de eerste node (Nl).A method for determining a position of a first node (N1) within an airfield ground lighting system (AGL) according to any one of claims 12-20, the method comprising the steps of: - determining the position of a first node (N1) ) within the aerodrome ground lighting system (AGL) using the position information unit (P) of the first node (N1); and - communicating the determined position to the base station (B) using the communication unit (C) of the first node (N1). 22. Werkwijze volgens conclusie 21, waarbij het vliegveldgrondverlichtingssysteem (AGL) een bekrachtigingslijn (L) omvat voor het bekrachtigen van de eerste node (Nl) en het meervoud van verdere nodes (N2-N6), waarbij de werkwijze de stap omvat van het verbinden van de eerste node (N1) met de bekrachtigingslijn (L).The method of claim 21, wherein the aerodrome ground lighting system (AGL) includes an energizing line (L) for energizing the first node (N1) and the plurality of further nodes (N2-N6), the method comprising the step of connecting from the first node (N1) to the excitation line (L). 23. Werkwijze volgens conclusie 22, waarbij de positie informatie-eenheid (P) en de communicatie-eenheid (C) zijn ingericht voor het automatisch respectievelijk vaststellen en communiceren van de positie van de eerste node (Nl) wanneer de eerste node {N1) verbonden is met en bekrachtigd is door de bekrachtigingslijn (L).The method of claim 22, wherein the position information unit (P) and the communication unit (C) are arranged to automatically determine and communicate, respectively, the position of the first node (N1) when the first node {N1) connected to and powered by the excitation line (L). 24. Werkwijze volgens conclusies 22 of 23, waarbij de stap van het communiceren van de positie van de eerste node (Nl) aan het basisstation (B) het verzenden van communicatiesignalen behelst van de communicatie-eenheid (C) naar het basisstation (B) over de bekrachtigingslijn (L).A method according to claims 22 or 23, wherein the step of communicating the position of the first node (N1) to the base station (B) comprises sending communication signals from the communication unit (C) to the base station (B) over the excitation line (L). 25. Werkwijze volgens een der conclusies 21-24, waarbij de eerste node (Nl) een identificatie (I) heeft, waarbij de werkwijze de stap omvat van het communiceren van de identificatie (I) van de eerste node {Nl} aan het basisstation (B) met gebruikmaking van de communicatie-A method according to any one of claims 21-24, wherein the first node (N1) has an identifier (I), the method comprising the step of communicating the identifier (I) of the first node {N1} to the base station (B) using the communication eenheid (C).unit (C). 26. Werkwijze volgens een der conclusies 21-25, waarbij de eerste node (Nl) verder een kompas (K) omvat, waarbij de werkwijze verder de stappen omvat van: — het vaststellen van een oriëntatie (G) van de eerste node (N1) met gebruikmaking van het kompas (K); en — het communiceren van de vastgestelde oriëntatie (G) aan het basisstation (B) met gebruikmaking van de commnunicatie-eenheid (C) van de eerste node (N1).A method according to any one of claims 21-25, wherein the first node (N1) further comprises a compass (K), the method further comprising the steps of: - determining an orientation (G) of the first node (N1) ) using the compass (K); and - communicating the determined orientation (G) to the base station (B) using the communication unit (C) of the first node (N1). 27. Werkwijze volgens een der conclusies 21-26, waarbij de eerste node (Nl) verder een versnellingsmeter (S) omvat, waarbij de werkwijze verder de stappen omvat van: — het vaststellen van een versnelling van de eerste node (Nl) in tenminste één richting met gebruikmaking van de versnellingsmeter (3); en — het communiceren van de vastgestelde versnelling aan het basisstation (B) met gebruikmaking van de communicatie-eenheid (C) van de eerste node (Nl).A method according to any one of claims 21-26, wherein the first node (N1) further comprises an accelerometer (S), the method further comprising the steps of: - determining an acceleration of the first node (N1) in at least one direction using the accelerometer (3); and - communicating the determined gear to the base station (B) using the communication unit (C) of the first node (N1). 28. Werkwijze volgens een der conclusies 21-27, waarbij de werkwijze verder de stappen omvat van: — het verschaffen van een plan (A) met positie informatie voor het meervoud van geplande nodes (Al-A6) binnen het vliegveldgrondverlichtingssysteem (AGL); en — vergelijken van de vastgestelde positie van de eerste node (Nl) met de positie informatie van het meervoud van geplande nodes (A1-A6)}.A method according to any one of claims 21-27, wherein the method further comprises the steps of: - providing a plan (A) with position information for the plurality of planned nodes (A1-A6) within the aerodrome ground lighting system (AGL); and - comparing the determined position of the first node (N1) with the position information of the plurality of planned nodes (A1-A6)}. 29. Werkwijze volgens conclusie 28, waarbij de werkwijze verder de stap omvat van het verversen van statusinformatie van een geplande node (Al) van het meervoud van geplande nodes (Al-A6) wanneer de vastgestelde positie van de eerste node (Nl) overeenkomt of in hoofdzaak overeenkomt met de positie informatie voor die ene geplande node (Al).The method of claim 28, wherein the method further comprises the step of updating status information of a scheduled node (A1) of the plurality of scheduled nodes (A1-A6) when the determined position of the first node (N1) matches or essentially matches the position information for that one scheduled node (A1). 30. Werkwijze volgens conclusie 29, waarbij de eerste node (Nl) een identificatie (I) heeft, waarbij de werkwijze de stappen omvat van: — het communiceren van de identificatie (I) van de eerste node (Nl) aan het basisstation (B} met gebruikmaking van de communicatie-eenheid (C}); en — het toewijzen van de identificatie (I) van de eerste node {Nl} aan die ene geplande node (Al) wanneer de vastgestelde positie van de eerste node (N1) overeenkomt of in hoofdzaak overeenkomt met de positie informatie voor die ene geplande node (Al).Method according to claim 29, wherein the first node (N1) has an identification (I), the method comprising the steps of: - communicating the identification (I) of the first node (N1) to the base station (B } using the communication unit (C}), and - assigning the identifier (I) of the first node {N1} to that one scheduled node (A1) when the determined position of the first node (N1) matches or substantially matches the position information for that one scheduled node (A1). 31. Werkwijze volgens conclusie 29 of 30, waarbij de positie informatie van het meervoud van geplande nodes (Al-A6) informatie omvat over de geplande oriëntatie (G1-G6) van elke geplande node (Al-A6) van het meervoud van geplande nodes (Al1-A6), waarbij de eerste node (Nl) een kompas (K) omvat, waarbij de werkwijze verder de stappen omvat van; — het vaststellen van een oriëntatie (G) van de eerste node (Nl) met gebruikmaking van het kompas (K); — het communiceren van de vastgestelde oriëntatie (G) aan het basisstation (B) met gebruikmaking van de communicatie-eenheid (C) van de eerste node (Nl); en — het vergelijken van de vastgestelde oriëntatie (GY van de eerste node (Nl) met de geplande oriëntatie (G1) van die ene geplande node (Al).A method according to claim 29 or 30, wherein the position information of the plurality of planned nodes (A1-A6) includes information about the planned orientation (G1-G6) of each planned node (A1-A6) of the plurality of planned nodes (A1-A6), the first node (N1) comprising a compass (K), the method further comprising the steps of; - determining an orientation (G) of the first node (N1) using the compass (K); - communicating the determined orientation (G) to the base station (B) using the communication unit (C) of the first node (N1); and - comparing the determined orientation (GY of the first node (N1) with the scheduled orientation (G1) of that one scheduled node (A1). 32. Werkwijze volgens een der conclusies 21-31, waarbij de werkwijze verder de step omvat van het op regelmatige intervallen of continu bewaken van de positie van de eerste node (Nl).The method of any of claims 21-31, wherein the method further comprises the step of monitoring the position of the first node (N1) at regular intervals or continuously. -0-0-0-0-0-0-0-0--0-0-0-0-0-0-0-0-
NL2023611A 2019-08-06 2019-08-06 Node, airfield ground lighting system (AGL) comprising said node and method for determining the position of said one node within the AGL NL2023611B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2023611A NL2023611B1 (en) 2019-08-06 2019-08-06 Node, airfield ground lighting system (AGL) comprising said node and method for determining the position of said one node within the AGL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2023611A NL2023611B1 (en) 2019-08-06 2019-08-06 Node, airfield ground lighting system (AGL) comprising said node and method for determining the position of said one node within the AGL

Publications (1)

Publication Number Publication Date
NL2023611B1 true NL2023611B1 (en) 2021-02-16

Family

ID=68211149

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2023611A NL2023611B1 (en) 2019-08-06 2019-08-06 Node, airfield ground lighting system (AGL) comprising said node and method for determining the position of said one node within the AGL

Country Status (1)

Country Link
NL (1) NL2023611B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022129271A1 (en) * 2020-12-16 2022-06-23 Adb Safegate Bv Aerodrome signalling system with cellular communication capability
EP4067238A1 (en) * 2021-03-29 2022-10-05 ADB Safegate BV Aerodrome signalling system with wireless communication capability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254725A1 (en) * 2001-11-19 2004-12-16 Eric Douville System for locating and addressing the lights of a beacon network
EP2199206A1 (en) * 2008-12-15 2010-06-23 Biofly S.r.l. Network of radio-controlled light-warning devices
WO2014173962A1 (en) 2013-04-26 2014-10-30 Use System Engineering Holding B.V. Power transfer system
CN204948404U (en) * 2015-07-14 2016-01-06 广州送飞助航机电设备实业有限公司 The Internet airfield aid light display and control system
JP2016110722A (en) 2014-12-02 2016-06-20 株式会社東芝 Lamp control device, lamp control method and lamp control program
KR20170119443A (en) * 2016-04-19 2017-10-27 엘에스산전 주식회사 Mehtod monitoring aeronautical light state

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254725A1 (en) * 2001-11-19 2004-12-16 Eric Douville System for locating and addressing the lights of a beacon network
EP2199206A1 (en) * 2008-12-15 2010-06-23 Biofly S.r.l. Network of radio-controlled light-warning devices
WO2014173962A1 (en) 2013-04-26 2014-10-30 Use System Engineering Holding B.V. Power transfer system
JP2016110722A (en) 2014-12-02 2016-06-20 株式会社東芝 Lamp control device, lamp control method and lamp control program
CN204948404U (en) * 2015-07-14 2016-01-06 广州送飞助航机电设备实业有限公司 The Internet airfield aid light display and control system
KR20170119443A (en) * 2016-04-19 2017-10-27 엘에스산전 주식회사 Mehtod monitoring aeronautical light state

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022129271A1 (en) * 2020-12-16 2022-06-23 Adb Safegate Bv Aerodrome signalling system with cellular communication capability
EP4067238A1 (en) * 2021-03-29 2022-10-05 ADB Safegate BV Aerodrome signalling system with wireless communication capability

Similar Documents

Publication Publication Date Title
US10748107B2 (en) Systems, methods, and apparatuses for managing aerial drone parcel transfers
US8060262B2 (en) Airport lighting aid simulation system
US10625940B2 (en) Construction material management system and construction material management method
NL2023611B1 (en) Node, airfield ground lighting system (AGL) comprising said node and method for determining the position of said one node within the AGL
US10383198B2 (en) Maintaining a lighting system
US20170350713A1 (en) Map update system for automated vehicles
US20180026705A1 (en) Communications system for use with unmanned aerial vehicles
JPWO2018155700A1 (en) Flight management system
CA2572956A1 (en) Methods and systems for automating inventory and dispatch procedures at a staging area
KR101798996B1 (en) Method for calculating relative position of the vertical take-off and landing UAV and landing guide system for the UAV using the method
US20210248548A1 (en) Drone-based inventory management methods and systems
CN108387869B (en) Method and system for determining the position of at least one industrial truck
EP3395725A1 (en) Vehicle logistics management system
US11872965B2 (en) System and method for gyroscopic placement of vehicle ADAS targets
CN106408992A (en) Parking lot management system
US10077985B2 (en) Wireless positioning system, wireless positioning terminal, and point information transmitter
CN112133137B (en) ITWR system and ATC system correlation consistency checking method and device
US20040254725A1 (en) System for locating and addressing the lights of a beacon network
TR201808877T4 (en) Method for marking luminaires, control unit arrangement and armature.
KR102281069B1 (en) airport control system
US11847606B2 (en) System and method for cargo transportation unit tracking and monitoring device verification
JP2023522484A (en) Methods, processes and systems for automating and configuring aircraft snow and ice removal
EP1777674B1 (en) Aircraft takeoff/landing time measuring method and aircraft takeoff/landing management method using the method
CN110942265A (en) Goods cooperative distribution system and method
CN112002147B (en) Method and device for checking correlation between ATC (advanced telecom computing) system and ITWR (International telecom computing platform) system