NL2022180B1 - Spray device and spray nozzle unit - Google Patents

Spray device and spray nozzle unit Download PDF

Info

Publication number
NL2022180B1
NL2022180B1 NL2022180A NL2022180A NL2022180B1 NL 2022180 B1 NL2022180 B1 NL 2022180B1 NL 2022180 A NL2022180 A NL 2022180A NL 2022180 A NL2022180 A NL 2022180A NL 2022180 B1 NL2022180 B1 NL 2022180B1
Authority
NL
Netherlands
Prior art keywords
layer
spray
spray nozzle
pressure
breaking
Prior art date
Application number
NL2022180A
Other languages
Dutch (nl)
Inventor
Johannes Maria Van Rijn Cornelis
Nijdam Wietze
Petrus Johannes De Kruijf Wilhelmus
Joseph Van Egmond Henri
Original Assignee
Medspray B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medspray B V filed Critical Medspray B V
Priority to NL2022180A priority Critical patent/NL2022180B1/en
Application granted granted Critical
Publication of NL2022180B1 publication Critical patent/NL2022180B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/0005Components or details
    • B05B11/0062Outlet valves actuated by the pressure of the fluid to be sprayed
    • B05B11/007Outlet valves actuated by the pressure of the fluid to be sprayed being opened by deformation of a sealing element made of resiliently deformable material, e.g. flaps, skirts, duck-bill valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/0005Components or details
    • B05B11/0062Outlet valves actuated by the pressure of the fluid to be sprayed
    • B05B11/0072A valve member forming part of an outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/40Filters located upstream of the spraying outlets

Landscapes

  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

spray device has a spray nozzle unit (1), wherein said spray nozzle unit (1) comprises a cavity (5) with an inlet (2) for receiving a pressurized liquid at an operating pressure and an outlet (3) for releasing a liquid spray during operation. A spray nozzle body (10) is fitted sealingly within said cavity (5, having a perforated nozzle layer (14) with at least one spray orifice (16) that extends between an upstream surface and a down stream surface thereof, releasing at least onejet of said liquid spray at said downstream surface of said nozzle layer. The spray nozzle unit (1) is provided with a pressure safety device (30) downstream of said spray nozzle body (10). Said pressure safety device (30) comprises a closed burst layer (34) that closes a fluid pathway between from said inlet (2) but ruptures once a threshold pressure is exceeded. Said operating pressure exceeds said threshold pressure.

Description

Spray device and spray nozzle unit The present invention relates to a spray device having a spray nozzle unit, wherein said spray nozzle unit comprises a nozzle holder with a cavity having an inlet for receiving a pressurized liquid at an operating pressure and having an outlet for releasing a liquid spray duringoperation, wherein a spray nozzle body is fitted sealingly within said cavity of said nozzle holder, said spray nozzle body having a perforated nozzle layer with at least one spray orifice that extends between an upstream surface and a down stream surface thereof, said downstream surface receiving said pressurized liquid during operation and said at least onespray orifice releasing at least one jet of said liquid spray at said downstream surface of said nozzle layer.
A spray device of the above kind uses the spray nozzle unit to create a spray, also referred to as mist or aerosol, of extremely fine droplets out of a pressurized liquid.
Said liquid may becontained in a container like a bottle, cannister or syringe that is moreover provided with pressurizing means to force said liquid under an appropriate pressure to the inlet of the spray nozzle unit, Often said spray nozzle unit will be fitted with its inlet directly on an outlet of said container and/or of such pressurizing means like a pump or a pressurized propellant.
This allows the pressurized liquid to enter the cavity, where it is forced to the nozzle device andthrough the nozzle layer for generating the spray.
The spray device according to the invention is particularly suitable for generating a so-called micro-jet spray of very fine droplets, having a controlled pre-defined size.
Such micro-jet spray may contain many emitting jets, in which each jet will initially breakup into a mono disperseprimary droplet train according to the so-called Rayleigh breakup mechanism.
As a result, consecutive primary droplets have a same size and propagate from the nozzle orifice in a same direction, typically the diameter of the primary droplet is 1,85-2,0 times the diameter of the nozzle orifice.
Often the corresponding nozzle orifices are provided in a planar substrate yielding jets that are all directed in a same or varying spraying direction, depending on thespecific nozzle configuration.
Due to possible coalescence of mutually interfering droplets the average droplet size within the spray may eventual grow, but an actual droplet size distribution of the spray nonetheless still remains confined between relatively narrow boundaries.
-2- The spray nozzle orifices that extend through the spray nozzle layer unavoidably create an open fluid path between the liquid content of the device and the environment, On the one hand this may result in inadvertent evaporation of the liquid concerned, escaping in the downstream direction. On the hand this also allows ambient air to pass upstream while the device is not being used. This air will then enter the cavity and may finally reach the container where it will come into contact with the liquid content of the spray device. This might lead to microbial ingrowth and premature deterioration of the liquid. In practice this may reduce the shelf life of the product and may compromise its microbial integrity.
Particularly for preservative-free pharmaceutical spray liquids that are kept in a sterilized condition it is important to protect the content of the spray device against these factors. To this end, it has been proposed to seal off the spray nozzle unit with a airtight plastic foil that covers the outlet of the spray device. From a user point of view, however, this is experienced as inconvenient and complicated as the sealing foil needs to be peeled off manually before the device may be used. Especially for inhaler spray devices, which preferably are immediately ready-for-use when needed, thís is a encountered as a significant drawback. And also from a manufacturing perspective said solution is not favoured as it adds an additional production step with inherent complexity to the manufacturing process of device.
itis therefore, among others, an aim of the present invention to provide a spray nozzle device having a more convenient means of preserving the initial integrity and quality of the content of the device.
In order to achieve said object, a spray device of the type described in the opening paragraph, according to the invention, is characterized in that a pressure safety device is provided downstream of said spray nozzle body, in that said pressure safety device comprises a closed burst layer that closes a fluid pathway to said nozzle body but ruptures once a threshold pressure is exceeded, and in that said operating pressure exceeds said threshold pressure. The pressure safety device that is placed downstream of the nozzle body seals any communication path between the environment and the nozzle body by means of said closed burst layer as long as the device is not used for the first time, thereby protecting the liquid content of the spray device. However, once the pressurized liquid is released to the spray nozzle unit for the first time, the burst layer will be exposed to the operating pressure of the device, causing the burst
-3- layer to rupture or burst as this pressure exceeds the threshold pressure. This will automatically open the outlet of the spray device that will immediately start to release the intended liquid spray. This all happens without any further necessary intervention by the patient or user, rendering the device according to the invention extremely convenient and user-proof for use.
In a particular embodiment the pressure safety device is integrated in the nozzle holder of the spray nozzle unit itself. To that end, this particular embodiment of the spray nozzle device according to the invention is characterized in that said pressure safety device comprises a pressure safety body that is fitted sealingly within said cavity, downstream of said spray nozzle body, and in that said burst layer is tightened to said pressure safety body. To facilitate an easy in-line testing of the spray nozzle unit as well as a convenient post- assembly of the pressure safety device, a preferred embodiment of the spray device according to the invention is characterized in that said pressure safety device comprises a pressure safety body that is mounted directly downstream of said outlet of said nozzle holder, particularly to said outlet, wherein said burst layer is tightened to said pressure safety body. To further aid a fluid-tight placement of the pressure safety device, a further preferred embodiment of the spray device according to the invention is characterized in that said pressure safety body is fitted sealingly in an adapter ring that surrounds the pressure safety body and is mounted to said nozzle holder, particularly by fusion or gluing. The adapter ring in that case fills any intervening space between the pressure safety body and the nozzle holder to which it is being mounted. The adapter ring may be sealed inside the cavity or to the outlet using proven sealing techniques, like fusing and gluing. To that end a further preferred embodiment of the spray device according to the invention is characterized in that both said nozzle holder and said adapter ring comprise a suitable plastic, particularly a thermoplastic polymer, more particularly a same plastic. In a particular embodiment, wherein said spray nozzle body comprises a first plate body having at least one first opening extending throughout a thickness thereof, wherein said nozzle layer extends over said at least one first opening, the spray nozzle device according to the invention is further characterized in that said pressure safety body comprises a second plate body having at least one second opening extending throughout a thickness thereof, wherein said burst layer
-A- extends over said second opening. The steps necessary for mounting the pressure safety device within the spray nozzle unit are in that case equal or at least similar to the steps used for fitting the nozzle body. This will, hence, add no substantial complexity to the assembly of the spray nozzle unit.
A further preferred embodiment of the spray device according to the invention is characterized in that said first plate body and said second plate body each comprise a silicon body, and in that said nozzle layer and said burst layer each comprise at least one of a silicon nitride and a silicon oxide layer covering the respective silicon body. In this case not only the assembly of the spray nozzle unit but also the manufacturing of the pressure safety device fits seamlessly into that of the spray nozzle body itself. The materials used for the respective parts of the device are well known in the field of semiconductor manufacturing. As a result, both plate bodies may conveniently be created as {micro)chips using state of the art semiconductor or micro machining manufacturing technology, resulting in a high precision and reliability combined with a very well controlled reproducibility. An important factor for the device to function properly is that the burst layer should indeed break below the normal operating pressure of the device. To that end a preferred embodiment of the spray device according to the invention is characterized in that said burst layer is provided with at least one burst zone of reduced stress resistance. The formation of such one or more burst zones creates an intended weakness in the burst layer that promotes a controlled rupture below said operating pressure. In a first particular embodiment, the spray device according to the invention is characterized in that said second opening has a polygonal lateral cross section that is spanned by said burst layer. The polygonal shape of the second opening gives rise to a stress concentration in and around the corners of the cavity. This will induce a weakness in the burst layer that promotes rupture once it os exposed to the pressurized liquid at the operating pressure of the spray device.
In a further particular embodiment the spray device according to the invention is thereby characterized in that said at least one burst zone comprises at least one burst line along which said burst layer has a reduced thickness. Especially if these burst lines or zones are formed
-5- using high precision semiconductor or micro machining technology, a very well controlled and predictable behaviour of the pressure safety device may be obtained.
In a first specific embodiment, the burst layer of the device according to the invention comprises a brittle layer that will burst once exposed to the operating pressure of the spraydevice.
In order to avoid any debris of spreading, a special embodiment of the device according to the invention is characterized in that said burst layer is brittle and in that a flexible, particularly plastic retention layer is formed over the burst layer that adheres to the burst layer.
Said plastic retention layer will keep debris parts together after the burst layer has crackedunder a pressure exceeding said threshold pressure, particularly said operating pressure of the spray device.
A further preferred embodiment of the spray device is thereby characterized in that a depression is formed along a peninsula portion of the flexible layer and the burst layer at thearea of the opening, said depression extending through said plastic layer and part of a thickness of said burst layer.
In this case a portion of said flexible layer connecting said peninsula portion with an adjacent part of the flexible layer will create a hinge after the burst layer has given in.
A further specific embodiment of the spray device according to the invention is characterized inthat said burst layer is a flexible foil, particularly a plastic foil.
The provision of such a burst foil does not require relatively sophisticated technology which renders it readily adoptable and accessible as a low cost solution for certain applications.
The invention also relates to a spray nozzle unit of the kind as applied in the spray deviceaccording to the invention and will now be described in further detail with reference to one or more embodiments and an accompanying drawing.
In the drawing: Figure 1A is a cross section of a first typical example of a spray nozzle unit for use in or ona spray device according to the invention;
Figure 1B is a cross section of a second typical example of a spray nozzle unit for use in oron a spray device according to the invention; Figure 2 is a cross section of a nozzle device as applied in the spray nozzle unit of figures
1A and 1B;
-6- Figure 3 is a cross section of a sieve device as applied in the spray nozzle unit of figures 1A and 1B; Figure 4A,4B are cross sections of a pressure safety device as applied in the spray nozzle unit of figures 1A and 1B in a closed and open condition, respectively; Figure 5 is a top, planar view of the pressure safety device of figure 4A; Figure 6A is a top, planar view of a first alternative embodiment of a pressure safety device for use a spray nozzle unit of a spray device according to the invention; Figure 6B is a cross section of the pressure safety device of figure GA; Figure 7 is a top, planar view of a second alternative embodiment of a pressure safety device for use a spray nozzle unit of a spray device according to the invention; Figure 8 is a top, planar view of a third alternative embodiment of a pressure safety device for use a spray nozzle unit of a spray device according to the invention; Figure 9 is a top, planar view of a fourth alternative embodiment of a pressure safety device for use a spray nozzle unit of a spray device according to the invention; Figure 10A is a top, planar view of a fifth alternative embodiment of a pressure safety device for use a spray nozzle unit of a spray device according to the invention; Figure 10B,10C are cross sections of the pressure safety device of figure 10A in a closed and open condition, respectively; Figure 10D is a top, planar view of a sixth alternative embodiment of a pressure safety device of figure 10A; It should be noticed that the drawings are drafted purely schematically and not to scale. In particular, certain dimensions may have been exaggerated to a lesser or greater extent for sake of clarity and understanding. Corresponding parts have been identified with same reference numerals throughout the drawing.
Figure 1A shows an example of a spray nozzle unit as used in a spray device according to the invention. The nozzle unit comprises a solid or assembled nozzle holder 1 of plastic with an internal cavity 5. In the example shown both the cavity 5 and the body itself have a circular cross-section around a centre line 7, but in practice may each have any convenient design and dimension. The nozzle unit body 1 may conveniently be formed from a thermoplastic polymer, like polyethylene or poly-propylene, such that it may be manufactured using a conventional thermo-form process, like for instance blow moulding.
-7- In the present example, the spray nozzie unit presents a so-called Luer fitting that may be fitted directly on a syringe or the like that contains or supplies a fluid to be sprayed from a container and that is assumed to be known to skilled person. This fluid is received under an operating pressure of several bar to over 10 bar at an inlet 2 of the cavity 5, forced by suitably selected pressurizing means, to be delivered to a spray nozzle body 10 that is mounted at an outlet side 3 of the spray nozzle unit. The spray nozzle body 10 is depicted in greater detail in figure 3 and comprises a silicon plate body 10 (chip) of several hundreds micron thickness that is covered by a silicon oxide layer 12 and a silicon nitride layer 14. The silicon nitride layer 14 has a thickness of between 0,5 and 2,0 micron and spans one or more openings 15 formed inside the silicon body 10 to create a perforated nozzle layer {membrane} that is provided with at least one spray orifice 16 at the location of each such opening 15. The openings 15 have typically a circular cross section of the order of 50 to 100 micron diameter.
The spray orifices 16 extend throughout the thickness of said nitride layer 14 from an upstream surface to a downstream surface thereof and each have a precisely defined and etched size of a few micron to 10 or more micron. During operation, pressurized fluid that is received by the cavity 5 of said nozzle unit will enter the openings 15 of said nozzle chip 10 and will pass through these nozzle orifices 16. At the downstream outlet side 3 the liquid will then emanate in the form of a fluid ray that breaks up {so called Rayleigh breakup) into a droplet train of fluid droplets of a well controlled droplet size. This will create a spray (mist) of droplets within a very well defined droplet size distribution.
Preceding the spray nozzle, i.e. upstream, is a sieve device 20 having a plurality of sieve passages 26 of equal or smaller size than the spray nozzle orifices 16, as shown in greater detail in figure 3. These sieve passages protect the nozzle body against clogging as particles or other bodies that might otherwise block a nozzle orifice are effectively blocked and intercepted by the sieve device. Like the nozzle device 10, the sieve device 20 comprises a silicon body (chip) of the order on a few hundred micron thickness in which a opening 25 is created running throughout its thickness. On top of this silicon body 20 are a silicon oxide layer 22 and a silicon nitride layer 24. The latter extends over said opening 25 to form a sieve plate having a great number of sieve passages 26 that are precisely etched throughout its thickness. This thicknessmay exceed that of the nozzle layer 14 to gain additional strength. The number of passages 26 greatly outnumbers the number of nozzle orifices 16 in order to guarantee an uninterrupted delivery of fluid to the nozzle body 10.
Both the nozzle body 10 and the sieve device 20 allow a free flow of both fluid from within the device to the environment as well as of ambient air to within the cavity 5 of the nozzle unit. The latter may be contaminated with micro-organisms, like bacteria, fungi and viruses. In order to prevent evaporation of liquid from the pre filled syringe via the open nozzle chip and to prevent microbial ingrowth into the container, a pressure safety device 30 is placed downstream of the nozzle device 10 within the cavity 5. This pressure safety device is shown in greater detail in figures 4A and 4B. The pressure safety device contains a closed burst layer 34 extending over the outlet of the nozzle body 10. In this closed condition, the burst layer 34 initial completely seals the outlet 3 of the nozzle holder and, hence, blocks a flow path to the syringe, to prevent premature evaporation of liquid and to protect the content of the syringe, or other container to which the nozzle unit is mounted, against microbial intrusion, see figure 4A.
Once a threshold pressure of the burst layer 34 is exceeded, however, it will burst or rupture thereby opening a flow path, see figure 4B. The burst layer 34 is configured to have a threshold pressure below a normal operating pressure of the spray device in which the nozzle unit is applied, for instance between 2 and 3 Bar, such that this opening of the flow path will occur automatically once the pressure means of the device are actuated by a user and a pressurized liquid is forced under said operating pressure against said burst layer. This will expose the nozzle device 10 allowing the spray device to generate an undisturbed spray. This way the spray nozzle unit has an integrated lidding mechanism which is opened at first use. This is a one-time event. At the first operation of the spray nozzle unit, it is broken but during shelf life there is no open path between the container content and the outside world.
In this example also the pressure safety device has been formed using a similar semiconductor or micro machining manufacturing technology that has also been used for the formation of the nozzle chip 10 and sieve chip 20. As such the safety device comprises a silicon semiconductor body 30 with a central opening 35 that is spanned by a silicon nitride burst layer 34 of appropriate thickness to allow rupture of this layer below a the operating pressure of the spray device. The nitride layer 34 is given a thickness of 1 micron or less to assure breakage below theq- operating pressure. In between the nitride layer 34 and the silicon body is a thin silicon oxide layer 32. In this example the thickness of the burst layer is chosen below the respective thicknesses of the sieve layer 24 and nozzle layer 14 that are both dimensioned to withstand said operating pressure.
Because of the constructional similarity between the pressure safety device 30 and the nozzle device 10, not only a similar manufacturing technique but also similar pick-and-place methods and equipment may be used during assembly of the nozzle device for properly positioning and fastening the pressure safety device 30 within the cavity 5 of the nozzle unit, followed by the nozzle device 10, the sieve device 20 and a porous pre-filter 4 of an appropriate woven or non-woven polymer fabric, like fluffy polypropylene. An alternative embodiment of a spray nozzle unit with such an integrated pressure safety device is shown in figure 1B. Also in this case the pressure safety device contains a silicon semiconductor body 30 with a nitride burst layer 34, similar to that as in the device of figure 1A. In this example, however, the silicon body 30 is not mounted, downstream of the nozzle body, directly in the cavity 5 of the nozzle holder 1, but fitted to the device by means of an intervening adapter ring 33 that surrounds and holds the safety body 30. This adapter ring 33 may be formed of a thermoplastic polymer, particularly the same or a similar plastic as the nozzle unit 1 itself, and as such allows proven fusion techniques, like melting, welding, fusing or gluing, for mounting and sealing the safety device 30 to the outlet 3 of the nozzle holder 1. This may be done after the nozzle unit has been tested with the nozzle body 10 and sieve body 20 in place. This order of placement, hence, still enables an in line testing with air or another gas of the nozzle device 10 and sieve device 20 during assembly. The safety device 30 may in that case be mounted in place afterwards. The pressure safety device of figure 4A is shown in top view in figure 5 with the burst layer 34 extending over the central opening 35. In order to promote rupture of the burst layer one or more weakening zones or lines 38 of reduced stress resistance may be formed in the burst layer 34 as shown in figures 6A, 7 and 8 in top view and in figure 6B in cross section. As shown in figure 6B these burst lines or zones 38 are created by a local thickness reduction 38 of the nitride layer 34 along these lines or zones. This will result in a local weakening of the burst layer and a more controlled rupture along these lines or zones. Alternatively or additionally also the
-10- central opening 35 may be given a polygonal lateral cross section, for instance as shown in the embodiments of figure 8 and 9 that will lead to a stress concentration in the vicinity of the corners.
Figure 10A-10C show in planar top view and cross section, respectively, a fifth embodiment of a pressure safety device for use in a spray device according to the invention. The configuration of this embodiment is similar to that of figure 6A and 6B in that it comprises a semiconductor silicon body 30 on top of which an silicon oxide layer 32 is grown and a silicon nitride burst layer 34 is deposited with a thickness of the order on a few micron. In this embodiment, however, the structure is coated or otherwise covered by a flexible thermoplastic polymer layer 42 that sticks to the nitride layer 34. In this case parylene is used for the polymer layer 42 with a thickness of only a few micron or even less than a micron, but also other polymer layers may be used, like for instance a (negative) photo-resist layer as commonly used in semiconductor processing.
A burst line or burst zone 44 has been formed in the nitride burst layer 34 in the form of a depression or ditch 44 that extends almost along the entire periphery of the opening 35 except for a relatively small hinge portion 46. Said ditch extends entirely across the plastic layer 42 to create a peninsula like central portion 45 of the plastic layer and said nitride layer 34. The ditch 44 delivers a weakness in the nitride burst layer 34 causing the nitride layer 34 to burst at a pressure of the order of a few bar, which is below the normal operating pressure of the spray device. The plastic layer 42 on top, however, has sufficient flexibility and tensile strength to withstand this pressure and will hinge along a hinge portion 46 as shown in figure 10C, while keeping the central portion 45 of the nitride layer 34 to it. This will avoid the loss of any noticeable debris of the nitride burst layer 34 once it bursts, while creating a considerable opening 35 in the support body 30. Due to this enhanced retention of material of the burst layer 34 this embodiment might be applied down stream of the nozzle body 10 without the risk that debris of the burst layer will interfere with, or enter into the spray that is to be generated by the spray device. Instead of having a round, circular cross section, the cavity 35 may also be given a {more) rectangular shape, as for instance shown in figure 10D that will further enhance timely burst of the burst layer 45 and unlocking of the nozzle spray path.
-11- In all cases the closed burst layer effectively closes the pathway between any liquid to be sprayed and the environment before initial use of the device. The strength of the burst layer is, however, chosen such that it will burst once it is exposed to the normal operating pressure of the spray device to which the spray nozzle unit is mounted. This will automatically open said pathway without any necessary additional interference by the user and renders the device ready for use. Although the invention has been describes hereinbefore with reference to merely a few specific embodiments, it will be clear that the invention is by no means limited to these examples.
Instead many alternatives and variations are feasible for a skilled person without departing from the scope and spirit of the present invention. Other designs, materials and dimensions may be used for the safety device 30 and, particularly, the burst layer 34. This also concerns mutatis mutandis the sieve device and the nozzle device as well as the nozzle unit. Particularly the burst layer might as well comprise a polymer foil or metal foil that is attached to a support body, extending over a central opening. Also other thermoplastic materials can be used than parylene, to cover the burst layer and to form one or more flexible hinges. The plastic materials can be anchored in the micro machined silicon structure by forming anchoring holes or the like. Preferably use is made of a bio-compatible plastic in case of medical appliances. Also more that one opening may be formed in the support body of the safety device, spanned by the same or individual burst layers, to implement several parallel pathways through the device, again to assure breakage of at least one of them below the operating pressure.
In the example a so called Luer type nozzle unit has been shown for placement on a syringe. Alternative the nozzle unit may be give any appropriate design to match a particular spray device, which might, for instance, be a spray cannister, bottle, ampul or any other container holding a certain amount of fluid to be pressurized by means of appropriate pressurizing means of the spray device.

Claims (14)

-12- CONCLUSIES:-12- CONCLUSIONS: 1. Sproei-inrichting met een sproeimondeenheid, waarbij de sproeimondeenheid een sproeimondhouder omvat met een holte die een inlaat heeft voor het ontvangen van een onder druk staande vloeistof op een werkdruk en met een uitlaat voor het vrijgeven van een vloeistofspray tijdens bedrijf, waarbij een sproeimondlichaam afdichtend is aangebracht binnen de holte van de sproeimondhouder, waarbij het sproeimondlichaam een geperforeerde sproeimondlaag heeft met ten minste een sproeiopening, die zich uitstrekt tussen een stroomopwaarts gelegen oppervlak en een stroomafwaarts gelegen oppervlak daarvan, waarbij in bedrijf het stroomafwaarts gelegen oppervlak de onder druk staande vloeistof ontvangt en de ten minste ene sproeiopening ten minste een straal afgeeft van de vloeistof op het stroomafwaarts gelegen oppervlak van de sproeimondlaag, met het kenmerk, dat een drukbeveiligingsinrichting is voorzien stroomafwaarts van het sproeimondlichaam, dat de drukbeveiligingsinrichting is voorzien van een gesloten breeklaag die een fluidumbaan naar het sproeimondlichaam afsluit, maar barst wanneer een drempeldruk wordt overschreden, en dat de werkdruk de drempeldruk overschrijdt.A spraying device with a spray nozzle unit, the spray nozzle unit comprising a spray nozzle holder with a cavity having an inlet for receiving a pressurized liquid at an operating pressure and with an outlet for releasing a liquid spray during operation, a spray nozzle body sealingly disposed within the cavity of the spray nozzle holder, the spray nozzle body having a perforated spray nozzle having at least one spray opening extending between an upstream surface and a downstream surface thereof, in operation the downstream surface is the pressurized liquid and the at least one spray opening emits at least one jet of the liquid on the downstream surface of the spray nozzle, characterized in that a pressure safety device is provided downstream of the spray nozzle body, the pressure safety device is provided with e and a closed rupture layer that seals a fluid path to the spray nozzle body, but bursts when a threshold pressure is exceeded, and that the operating pressure exceeds the threshold pressure. 2. Sproei-inrichting overeenkomstig conclusie 1, met het kenmerk, dat de drukbeveiligingsinrichting een dukbeveiligingslichaam omvat dat direct stroomafwaarts is aangebracht van de uitlaat van de sproeimondhouder, in het bijzonder van de uitlaat, en dat de breeklaag is vastgehecht aan het drukbeveiligingslichaam.Spray device according to claim 1, characterized in that the pressure protection device comprises a pressure protection body which is arranged directly downstream of the outlet of the spray nozzle holder, in particular of the outlet, and that the breaking layer is adhered to the pressure protection body. 3. Sproei-inrichting overeenkomstig conclusie 1, met het kenmerk, dat de drukbeveiligingsinrichting een drukbeveiligingslichaam omvat dat afdichtend in de holte is aangebracht, stroomafwaarts van het sproeimondlichaam, en dat de breeklaag is vastgehecht aan het drukbeveiligingslichaam.Spray device according to claim 1, characterized in that the pressure protection device comprises a pressure protection body which is sealingly arranged in the cavity downstream of the spray nozzle body and the breaking layer is adhered to the pressure protection body. 4. Sproei-inrichting overeenkomstig conclusie 2 of conclusie 3, met het kenmerk, dat de drukbeveiligingslichaam afdichtend is aangebracht in een adapterring die het drukbeveiligingslichaam omringt, en díe bevestigd is aan de sproeimondhouder, in het bijzonder door middel van samenvloeien of lijmen.Spray device according to claim 2 or claim 3, characterized in that the pressure protection body is sealingly arranged in an adapter ring surrounding the pressure protection body, and which is attached to the spray nozzle holder, in particular by means of confluence or gluing. 5. Sproei-inrichting overeenkomstig conclusie 4, met het kenmerk, dat zowel de sproeimondhouder en de adapterring een kunststof omvatten, in het bijzonder een thermoplastische polymeer, meer in het bijzonder dezelfde kunststof.Spray device according to claim 4, characterized in that both the spray nozzle holder and the adapter ring comprise a plastic, in particular a thermoplastic polymer, more in particular the same plastic. -13--13- 6. Sproei-inrichting overeenkomstig een van de conclusies 2 tot en met 5, met het kenmerk, dat het sproeimondlichaam een eerste plaatlichaam omvat met ten minste een opening die zich door de dikte daarvan uitstrekt, waarbij de sproeimondlaag zich uitstrekt over de eerste opening, en dat het drukbeveiligingslichaam een tweede plaatlichaam omvat met ten minste een tweede opening die zich door de dikte daarvan uitstrekt, waarbij de breeklaag zich over de tweede opening uitstrekt.Spray device according to any one of claims 2 to 5, characterized in that the spray nozzle body comprises a first plate body with at least one opening extending through its thickness, the spray nozzle layer extending over the first opening, and in that the pressure protection body comprises a second plate body with at least a second opening extending through the thickness thereof, the breaking layer extending over the second opening. 7. Sproei-inrichting overeenkomstig conclusie 6, met het kenmerk, dat het eerste plaatlichaam en het tweede plaatlichaam elk een siliciumlichaam omvatten, en dat de sproeimondlaag en de breeklaag elk ten minste een van een nitridelaag en een siliciumoxidelaag omvatten die de respectieve siliciumlichamen bedekken.A spraying device according to claim 6, characterized in that the first plate body and the second plate body each comprise a silicon body, and that the spray nozzle layer and the breaking layer each comprise at least one of a nitride layer and a silicon oxide layer covering the respective silicon bodies. 8. Sproei-inrichting overeenkomstig conclusie 6 of conclusie 7, met het kenmerk, dat de tweede holte een veelhoekige dwarsdoorsnede hebben die wordt overspannen door de breeklaag.Spraying device according to claim 6 or claim 7, characterized in that the second cavity has a polygonal cross-section spanned by the breaking layer. 9. Sproei-inrichting overeenkomstig een van de voorgaande conclusies, met het kenmerk, dat de breeklaag is voorzien van ten minste een breekzone met een verminderde stressbestendigheid.Spraying device according to any of the preceding claims, characterized in that the breaking layer is provided with at least one breaking zone with a reduced stress resistance. 10. Sproei-inrichting overeenkomstig conclusie 9, met het kenmerk, dat de ten minste ene breekzone een breeklijn omvat waarlangs de breeklaag een verminderde dikte heeft.Spraying device according to claim 9, characterized in that the at least one breaking zone comprises a breaking line along which the breaking layer has a reduced thickness. 11. Sproei-inrichting overeenkomstig een van de voorgaande conclusies, met het kenmerk, dat de breeklaag bros is, en dat een buigzame, in het bijzonder kunststof retentielaag gevormd is over de breeklaag, waarbij de retentielaag gehecht is aan de breeklaag.Spraying device according to any one of the preceding claims, characterized in that the breaking layer is brittle, and a flexible, in particular plastic, retention layer is formed over the breaking layer, the retention layer being adhered to the breaking layer. 12. Sproei-inrichting overeenkomstig conclusie 11, met het kenmerk, dat een uitholling gevormd is langs een schiereilanddeel van de buigzame laag en de breeklaag, waarbij de uitholling zich uitstrekt door de buigzame laag en een deel van de dikte van de breeklaag.Spraying device according to claim 11, characterized in that a hollow is formed along a peninsula portion of the flexible layer and the breaking layer, the hollow extending through the flexible layer and part of the thickness of the breaking layer. 13. Sproei-inrichting overeenkomstig een van de conclusie 1 tot en met 5, met het kenmerk, dat breeklaag een buigzame folie is, in het bijzonder een kunststof laag.Spraying device according to any one of claims 1 to 5, characterized in that the breaking layer is a flexible foil, in particular a plastic layer. -14--14- 14. Sproeimondeenheid van het soort zoals toegepast in de sproei-inrichting overeenkomstig een van de voorgaande conclusies.Spray nozzle unit of the type used in the spray device according to one of the preceding claims.
NL2022180A 2018-12-11 2018-12-11 Spray device and spray nozzle unit NL2022180B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2022180A NL2022180B1 (en) 2018-12-11 2018-12-11 Spray device and spray nozzle unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2022180A NL2022180B1 (en) 2018-12-11 2018-12-11 Spray device and spray nozzle unit

Publications (1)

Publication Number Publication Date
NL2022180B1 true NL2022180B1 (en) 2020-07-02

Family

ID=65763706

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2022180A NL2022180B1 (en) 2018-12-11 2018-12-11 Spray device and spray nozzle unit

Country Status (1)

Country Link
NL (1) NL2022180B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1747816A2 (en) * 1999-09-15 2007-01-31 Aradigm Corporation Pore structures for reduced pressure aerosolization
US20070175469A1 (en) * 2005-12-02 2007-08-02 Boehringer Ingelheim International Gmbh, Dispensing device
US20170281880A1 (en) * 2014-06-20 2017-10-05 Medspray B.V. Aerosol or spray device, spray nozzle unit and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1747816A2 (en) * 1999-09-15 2007-01-31 Aradigm Corporation Pore structures for reduced pressure aerosolization
US20070175469A1 (en) * 2005-12-02 2007-08-02 Boehringer Ingelheim International Gmbh, Dispensing device
US20170281880A1 (en) * 2014-06-20 2017-10-05 Medspray B.V. Aerosol or spray device, spray nozzle unit and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN108602080B (en) Fluid sprayer
US6073812A (en) Filtered venting system for liquid containers which are susceptible to contamination from external bioburden
JPH06277297A (en) Article useful as delivery device for applying liquid contained in breakable tank container to surface
AR023880A1 (en) EXPENDED DEVICE WITH VALVE, WITH PROTECTION AGAINST LOSS OF PRIMING LIQUID
EP3397291B1 (en) Diffuser of active agents such as insecticides, perfumes, detergents or disinfectants, and manufacturing process thereof
JP7201695B2 (en) valve
NL2022180B1 (en) Spray device and spray nozzle unit
US11975342B2 (en) Spray device and spray nozzle unit
US11254488B2 (en) Spray nozzle chip and a medicament delivery device comprising the same
JP2021522920A (en) Nozzle and cartridge assembly
EP4048447B1 (en) Dispensing head for a trigger dispenser
US20220072241A1 (en) Spray nozzle chip and a medicament delivery device comprising the same
DE102004036004A1 (en) Container with a spray head and a spray nozzle, for administering a product, in particular, a hair spray comprises a closure element which seals the spray nozzle when the spray head is not operated
KR200209211Y1 (en) Air inflow device of a container for poisonous insecticides
US20200339315A1 (en) Vented protective cap for a liquid dispenser, venting insert, in particular for a protective cap, liquid dispenser having such a protective cap or such a venting insert, and method for producing a protective cap or a venting insert
JPH0490864A (en) Spray nozzle
JP2014046946A (en) Backflow prevention member