NL2017131B1 - A solar array based pulse load charger arranged for operating around predetermined threshold values as well as a corresponding method. - Google Patents

A solar array based pulse load charger arranged for operating around predetermined threshold values as well as a corresponding method. Download PDF

Info

Publication number
NL2017131B1
NL2017131B1 NL2017131A NL2017131A NL2017131B1 NL 2017131 B1 NL2017131 B1 NL 2017131B1 NL 2017131 A NL2017131 A NL 2017131A NL 2017131 A NL2017131 A NL 2017131A NL 2017131 B1 NL2017131 B1 NL 2017131B1
Authority
NL
Netherlands
Prior art keywords
solar panel
voltage
threshold
solar array
output
Prior art date
Application number
NL2017131A
Other languages
Dutch (nl)
Inventor
Kalkwarf Douglas
Original Assignee
Kallara B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kallara B V filed Critical Kallara B V
Priority to NL2017131A priority Critical patent/NL2017131B1/en
Priority to PCT/NL2017/050459 priority patent/WO2018009071A1/en
Application granted granted Critical
Publication of NL2017131B1 publication Critical patent/NL2017131B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

A solar array based pulse load charger arranged for operating around predetermined threshold values, said pulse load charger comprising a plurality of charge circuits and an input stage, said input stage comprising a capacitor arranged for storing electrical energy from said solar array, when connected, a solar output switch for connecting/disconnecting said solar array to said transformer, a voltage sensor for determining a solar array voltage of said solar array, solar array control means, connected to said voltage sensor, for disconnecting said solar output switch in case said determined solar array voltage falls below a predetermined first threshold thereby letting said solar array voltage recover, and for connecting said solar output switch in case said determined solar array voltage exceeds a predetermined second threshold thereby increasing power drawn from said solar array such that said solar array voltage decreases.

Description

Title: A solar array based pulse load charger arranged for operating around predetermined threshold values as well as a corresponding method.
Description
The present invention is related to a solar array based pulse load charger.
Pulse chargers are known in the art and are arranged to feed a charge current to the battery in pulses. The charging rate can be controlled by varying the width of the pulses. During the charging process, short rest periods between pulses allow the chemical actions in the battery to stabilise by equalising the reaction throughout the bulk of the electrode before recommencing the charge. One of the challenges of pulse chargers with respect to solar arrays is to improve the efficiency of the pulse chargers.
In a first aspect, the invention provides in a solar array based pulse load charger arranged for operating around predetermined threshold values, said pulse load charger comprising a plurality of charge circuits, wherein each charge circuit comprises: an inductor in the form of a transformer to store the input energy and to transform the input voltage at a desired ratio, said main transformer including a primary winding connected to an input stage and a secondary winding connected to an output stage; switching means for switching said input voltage to said main transformer; rectifying means for blocking negative current flow through the secondary winding of the transformer; a load for storing, or consuming, electrical energy from said secondary winding of said main transformer; control means for generating a control signal to control the switching operation of said switching means; wherein said input stage is arranged to be connected to an output of a solar array, said input stage comprising: a capacitor arranged for storing electrical energy from said solar array, when connected; a solar output switch for connecting/disconnecting said solar array to said transformer; voltage sensor for determining a solar array voltage of said solar array; solar array control means, connected to said voltage sensor, for disconnecting said solar output switch in case said determined solar array voltage falls below a predetermined first threshold thereby letting said solar array voltage recover, and for connecting said solar output switch in case said determined solar array voltage exceeds a predetermined second threshold thereby increasing power drawn from said solar array such that said solar array voltage decreases.
It was the insight of the inventors that the efficiency of the pulse load charger is increased in case the output from the solar array is maximized as much as possible. In order to do so, a substantially maximized output is achieved, using the solar array control means monitoring the solar array voltage while current is being drawn from the array and, at the point where the voltage starts to drop, the draw on the output power from the solar panel array is temporarily suspended by the solar array control means by causing the solar output switch to disconnect the solar array from the transformer. This will stop the current flow and cause the solar array voltage to begin to increase. At the point where the voltage has recovered again, i.e. has reached the second threshold, the output power will again be applied to any of the charge circuits by the solar array control means by causing the solar output switch to connect said solar array to said transformer.
In other words, the voltage sensor is feeding the solar array control means with the solar array voltage. When too much current is being drawn from the solar array, the solar array voltage will drop. The solar array control means will sense this drop of the voltage, i.e. it fall below the first threshold, and will automatically open the solar output switch such that the transformer is disconnected from the solar array. This will stop any current from flowing in the primary windings of the transformer and will allow the solar array voltage to recover again. As soon as the solar array voltage has recovered, i.e. it exceeds a predetermined second threshold, the solar output switch will be closed again to allow the current to flow to the primary windings of the transformer again. This thus means that the frequency and duration of the control will automatically adjust to allow for maximum power drawn from the solar array.
The result of the above is that the power drawn from the solar array is maximized as much as possible, such that the objective of the present invention is achieved.
It is thus noted that, in accordance with the present invention, the solar array control means are arranged to control the switching of the solar output switch in such a way that the power drawn from the solar array is maximized as much as possible, by making sure that the voltage drop of the solar array voltage is within predefined thresholds. The inventors have found that maximum power is drawn from the solar array in case there actually is a voltage drop of the solar array voltage. The voltage drop may be set once in the solar array control means using the first threshold and the second threshold.
In an example, the predetermined first threshold is between 75% -90% of said solar array voltage.
The inventors have found that it is likely that maximum power is drawn from the solar array in case such an amount of current is drawn from the solar array that the solar array voltage drops until about 75% - 90% of the solar array voltage in case no load is applied.
In another example, the second threshold is between 1% - 10% of solar array voltage higher than said first threshold.
The advantage of this example is that the solar output switch is not continuously being switched from connecting the solar array output to the transformer to disconnecting the solar array output to the transformer, and vice versa. The solar output switch is stressed less in case the second threshold is higher compared to the first threshold.
As an alternative, the first threshold equals the second threshold such that it is more likely that maximum power is drawn continuously from the solar array.
In a further example, each charge circuit further comprises an output current sensor for determining an output current, and said control means are arranged generate said control signal to control the switching operation of said switching means based on said measured output current.
The output current is measured during the duty cycle. This means that the load, for example battery, is under full charging conditions at that time. Depending on the charge conditions of the load, i.e. battery, the control means may either increase or decrease the charge current. This can be done by increasing or decreasing the duty cycle of the pulse.
In a further example, each charge circuit further comprises an output voltage sensor arranged for determining an output voltage at said secondary winding of said transformer, and said control means are arranged to generate said control signal to control the switching operation of said switching means based on said measured output voltage.
The output voltage sensor will measure the output voltage and will feed that voltage back to the control means. The control means are arranged to measure the output voltage just before the duty cycle begins. This means that the battery will not be under charging conditions at this time and will have had a period of rest, and the output voltage sensor will measure the exact charge state of the load, i.e. the battery. Based on this information, the control means may either increase or decrease the duty cycle.
That is, in case the load is a battery, the control means may be arranged to: increase a duty cycle of said control signal in case the load of said battery is below a predetermined charge threshold; continuously decreasing a duty cycle of said control signal in case the load of said battery exceeds a predetermined charge threshold in such a way that when the battery is approximately fully charged said duty cycle is approximately zero.
The effect of the above is that the charge rate is slowly decrease as the battery gets more charged, thereby improving the storing capabilities of the battery.
In a preferred example, the pulse load charger comprises four charge circuits.
In a second aspect, the invention provides in a method of operating a solar array based pulse load charger according to any of the examples as disclosed above, said method comprising the steps of: determining, by said voltage sensor, said solar array voltage of said solar array; disconnecting, by said solar array control means, said solar output switch in case said determined solar array voltage falls below a predetermined first threshold thereby letting said solar array voltage recover, and for connecting said solar output switch in case said determined solar array voltage exceeds a predetermined second threshold thereby increasing power drawn from said solar array such that said solar array voltage decreases.
Preferably, the predetermined first threshold is between 75% - 90% of said solar array voltage.
In an example hereof, the second threshold is between 1% - 10% of solar array voltage higher than said first threshold. Alternatively ,the first threshold equals said second threshold.
In a further example, each charge circuit further comprises an output current sensor for determining an output current, and wherein said control means are arranged generate said control signal to control the switching operation of said switching means based on said measured output current.
In another example, each charge circuit further comprises an output voltage sensor arranged for determining an output voltage at said secondary winding of said transformer, and wherein said control means are arranged to generate said control signal to control the switching operation of said switching means based on said measured output voltage.
In an even further example, said load is a battery, wherein said control means are arranged to: increase a duty cycle of said control signal in case the load of said battery is below a predetermined charge threshold; continuously decreasing a duty cycle of said control signal in case the load of said battery exceeds a predetermined charge threshold in such a way that when the battery is approximately fully charged said duty cycle is approximately zero.
The above-mentioned and other features and advantages of the disclosure will be best understood from the following description referring to the attached drawings. In the drawings, like reference numerals denote identical parts or parts performing an identical or comparable function or operation.
The invention will now be explained in more detail with reference to the appended figures, which merely serve by way of illustration of the invention and which must not be construed as being limitative thereto.
Brief Description of the Drawings
Figure 1 shows, in a schematic form, a chart indicating a maximum power point at which a solar array is to be operated according to the present invention.
Figure 2 shows, in a schematic form, a circuitry with respect to the solar array based pulse load charger in accordance with the present invention.
Detailed Description
Figure 1 shows, in a schematic form, a chart 1 indicating a maximum power point 6 at which a solar array is to be operated according to the present invention.
As mentioned before, the inventors have found that the solar array should be utilized in such a manner that a substantially maximized power is drawn therefrom. As such, it was the insight that increase power is drawn from the solar array when the output voltage of the solar array begins to drop. This is indicated with the chart 1 shown in figure 1.
The output voltage of the solar array, i.e. the solar array voltage, is indicated with reference numeral 3. The vertical axis 2 is scaled with a numerical output. That is, for the solar array voltage 3 the vertical axis is divided in, for example, 0-6 volts DC. The horizontal axis 7 is scaled with the total current drawn from the solar array.
The total power drawn from the solar array is indicated with reference numeral 4. Substantially most power is drawn from the solar array when the solar array voltage 3 starts to drop. This is indicated with reference numerals 5 and 6. It was the insight that the solar array based pulse load charger should function in such a way that as much as possible power is drawn from the solar array in a continuous manner. In other words, the pulse load charger should make sure that the power that the solar array is providing is around the maximum power as indicated with reference numeral 5.
Figure 2 shows, in a schematic form, a circuitry with respect to the solar array based pulse load charger 21 in accordance with the present invention.
The solar array 22 based pulse load charger 21 is arranged for operating around predetermined threshold values. More specifically, the solar array based pulse load charger 21 is arranged to operate around the substantially maximum power point as indicated with reference numeral 5 in figure 1.
The pulse load charger 21 comprising a plurality of charge circuits 51, 52. In the present situation two charge circuits 51, 52 are shown. Typically, about four charge circuits 51, 52 may be used. According to the present invention, only one charge circuit 51, 52 is coupled to the solar array 22 at a time. Each of the charge circuits 51,52 is thus coupled to the solar array 22 one after the other. This coupling process is explained in more detail hereafter.
Each charge circuit 51, 52 comprises a transformer 30, 41 for transforming an input voltage at a desired ratio, said main transformer 30, 41 including a primary winding connected to an input stage and a secondary winding connected to an output stage. An advantage of using a transformer 30, 41 is that a transformer 30, 41 provides for an isolation between the input stage and the output stage.
Further, switching means 32, 42 are provided for switching the input voltage to the transformers 30, 41, respectively. When the switch is closed, the primary winding of the transformer 30, 41 is directly connected to the solar array output. The current through the primary winding of the transformer 30, 41 and the corresponding magnetic flux in the transformer will then increase, storing energy in the transformer 30, 41. The voltage induced in the secondary winding of the transformer 30, 41 is negative, so that the rectifying means 34, 40, for example a diode, is reverse-biased, i.e. blocked.
When the switch is opened, the current through the primary winding of the transformer 30, 41 and thus also the magnetic flux in the transformer 30, 41, drops. The voltage induced in the secondary winding of the transformer 30, 41 is then positive allowing the current to flow from the transformer via the rectifying means 34, 40.
Typically the switching means 32, 42 comprise a Field Effect
Transistor, FET.
Each charge circuit 51, 52 further comprises a load 35, 37 for storing, or consuming, electrical energy from said secondary winding of said main transformer. The load 35, 37 is typically a battery, for example a lead crystal battery, a lead acid battery of a lithium Ion battery. The batteries of each of the charge circuits 51, 52 are connected in series such that the output 45 of all the charge circuits 51,52 combined provides for an increased output voltage.
Control means 29, 31, 44, 43 are provided for generating a control signal for controlling the switching operation of the switching means 32, 42, respectively, the control signal is, for example, a square wave having a certain duty cycle. In case of, for example, four charge circuits, 51,52, the duty cycle is about 20 - 25% for each of the switching means 32, 42, respectively. The duty cycles are further shifted in time with respect to each other to make sure that none of the switching means 32, 42 are closed at the same time. The prevents that power is drawn from the solar array 22 by two or more charge circuits 51, 52 at the same time.
The input stage 53 of the solar array 22 based pulse load charger 21 is arranged to be connected, or is actually connected, to an output of the solar array 22. A capacitor 24 is provided in the input stage 53 for, at least temporarily, storing electrical energy from the solar array 22, and for providing said stored energy to any of the transformers 30, 41, if/when required.
Additional components are incorporated in the input stage 53 in order to make sure that the solar array 22 based pulse load charger 21 is operating around the maximum power point as indicated in figure 1. These components, and their functionality, will be explained in more detail here below.
First, a solar output switch 23 is provided for either connecting or disconnecting the solar array 22 to any of the transformers 30, 41. The basic concept here is that the solar array 22 should disconnect any transformer 30, 41 each time too much current is drawn from the solar array 22. That is, the solar array 22 is operated at the right side of the substantially maximum power point as indicated with reference numeral 5 of figure 1. This allows the solar array 22 to recover again such that the output voltage of the solar array, i.e. the solar array voltage, starts to increase again.
Once the output voltage of the solar array 22 has increased again to the point indicated with reference numeral 6, i.e. corresponding to the substantially maximum power point as indicated with reference numeral 5 of figure 1, the solar output switch 23 is closed again such that power is drawn from the solar array 22.
In accordance with the present invention, the solar output switch 23 may be a relay or the like.
In order to accomplish the above, a voltage sensor 25 for determining a solar array voltage of said solar array 22 is provided as well as solar array control means 26, 27, 28, connected to said voltage sensor, for disconnecting said solar output switch in case said determined solar array voltage falls below a predetermined first threshold thereby letting said solar array voltage recover, and for connecting said solar output switch 23 in case said determined solar array voltage exceeds a predetermined second threshold thereby increasing power drawn from said solar array such that said solar array voltage decreases.
The first threshold and the second threshold may be the same, i.e. a voltage corresponding to the point indicated with reference numeral 6. In order to prevent chattering of the solar output switch 23, the first threshold may differ from the second threshold. As such, some sort of hysteresis loop is provided. Typically, the first threshold is between 75% - 90% of the steady state voltage output of the solar array, and the second threshold is about 1% - 5% higher than the first threshold.
The present invention has been explained in the foregoing by means of a number of examples. As those skilled in the art will appreciate, several modifications and additions can be realised without departing from the scope of the invention as defined in the appended claims.

Claims (15)

1. Zonnepaneel gebaseerde puls-belastinglader ingericht om werkzaam te zijn rond vooraf bepaalde drempelwaarden, waarin de puls-belastinglader omvat een veelheid van laadschakelingen en een invoertrap, waarin elke invoertrap omvat: - een transformator voor het transformeren van een invoerspanning bij een gewenst verhouding, waarbij de hoofdtransformator omvat een primaire winding verbonden met een invoertrap en een secundaire winding verbonden met een uitvoertrap; - schakelmiddelen voor het schakelen van de invoerspanning naar de hoofdtransformator; - gelijkrichtmiddelen voor het blokken van negatieve stroom door de secundaire winding van de transformator; - een belasting voor het opslaan, of consumeren, van elektrische energie van de secundaire winding van de hoofdtransformator; - stuurmiddelen voor het genereren van een stuursignaal voor het sturen van de schakeloperatie van de schakelmiddelen; - waarin de invoertrap is ingericht om verbonden te zijn met een uitvoer van een zonnepaneel, waarbij de invoertrap omvat: - een capaciteit ingericht voor het opslaan van de elektrische energie van het zonnepaneel, wanneer verbonden; - een zonnepaneel-uitvoerschakelaar voor het verbinden/loskoppelen van het zonnepaneel met de transformator; - een spanningssensor voor het bepalen van een zonnepaneelspanning van de zonnepaneel; - zonnepaneel-stuurmiddelen, verbonden met de spanningssensor, voor het loskoppelen van de zonnepaneel-uitvoerschakelaar in het geval de bepaalde zonnepaneelspanning onder een vooraf bepaalde eerste drempel valt daarbij toestaan dat de zonnepaneelspanning hersteld, en voor het verbinden van de zonnepaneel-uitvoerschakelaar in het geval de bepaalde zonnepaneelspanning een vooraf bepaalde tweede drempel overschrijdt daarbij het verhogen van vermogen getrokken uit het zonnepaneel zodanig dat de zonnepaneelspanning verlaagd.A solar panel based pulse load charger adapted to operate around predetermined threshold values, wherein the pulse load charger comprises a plurality of charging circuits and an input stage, wherein each input stage comprises: - a transformer for transforming an input voltage at a desired ratio, wherein the main transformer comprises a primary winding connected to an input stage and a secondary winding connected to an output stage; - switching means for switching the input voltage to the main transformer; rectifying means for blocking negative current through the secondary winding of the transformer; - a load for storing, or consuming, electrical energy from the secondary winding of the main transformer; - control means for generating a control signal for controlling the switching operation of the switching means; - wherein the input stage is arranged to be connected to an output of a solar panel, the input stage comprising: - a capacity adapted to store the electrical energy of the solar panel when connected; - a solar panel output switch for connecting / disconnecting the solar panel to the transformer; - a voltage sensor for determining a solar panel voltage of the solar panel; - solar panel control means, connected to the voltage sensor, for disconnecting the solar panel output switch in case the determined solar panel voltage falls below a predetermined first threshold, thereby allowing the solar panel voltage to recover, and for connecting the solar panel output switch in the case the determined solar panel voltage exceeds a predetermined second threshold thereby increasing the power drawn from the solar panel such that the solar panel voltage is lowered. 2. Zonnepaneel gebaseerde puls belastinglader volgens conclusie 1, waarin de vooraf bepaalde eerste drempel tussen 75% - 90% is van de zonnepaneelspanning.The solar panel based pulse load charger according to claim 1, wherein the predetermined first threshold is between 75% - 90% of the solar panel voltage. 3. Zonnepaneel gebaseerde puls belastinglader volgens een van de voorgaande conclusies, waarin de tweede drempel tussen 1% - 10% van de zonnepaneelspanning hoger is dan de eerste drempel.A solar panel based pulse load charger according to any one of the preceding claims, wherein the second threshold is between 1% - 10% of the solar panel voltage higher than the first threshold. 4. Zonnepaneel gebaseerde puls belastinglader volgens een van de conclusies 1-2, waarin de eerste drempel gelijk is aan de tweede drempel.The solar panel based pulse load charger according to any of claims 1-2, wherein the first threshold is equal to the second threshold. 5. Zonnepaneel gebaseerde puls belastinglader volgens een van de voorgaande conclusies, waarin elke laadschakeling verder omvat een uitvoerstroomsensor voor het bepalen van uitvoerstroom, en waarin de stuurmiddelen zijn ingericht voor het genereren van het stuursignaal voor het sturen van de schakeloperatie van de schakelmiddelen op basis van de gemeten uitvoerstroom.A solar panel based pulse load charger according to any one of the preceding claims, wherein each charging circuit further comprises an output current sensor for determining output current, and wherein the control means are adapted to generate the control signal for controlling the switching operation of the switching means based on the measured output current. 6. Zonnepaneel gebaseerde puls belastinglader volgens een van de voorgaande conclusies, waarin elke laadschakeling verder omvat een uitvoerspanningssensor ingericht voor het bepalen van een uitvoerspanning bij de secundaire winding van de transformator, en waarin de stuurmiddelen zijn ingericht voor het genereren van het stuursignaal voor het sturen van de schakeloperatie van de schakelmiddelen op basis van de gemeten uitvoerspanning.A solar panel based pulse load charger according to any one of the preceding claims, wherein each charging circuit further comprises an output voltage sensor adapted to determine an output voltage at the secondary winding of the transformer, and wherein the control means are adapted to generate the control signal for controlling of the switching operation of the switching means on the basis of the measured output voltage. 7. Zonnepaneel gebaseerde puls belastinglader volgens conclusie 6, waarin de belasting een batterij is, waarin de stuurmiddelen zijn ingericht voor het: - verhogen van een duty-cycle van het stuursignaal in het geval de belasting van de batterij onder een vooraf bepaalde laaddrempel is; - continu verlagen van de duty-cycle van het stuursignaal in het geval de belasting van de batterij een vooraf bepaalde laaddrempel overschrijdt op een dusdanige manier dat wanneer de batterij ongeveer volledig opgeladen is de duty-cycle ongeveer nul is.The solar panel-based pulse load charger according to claim 6, wherein the load is a battery, wherein the control means are adapted to: - increase a duty cycle of the control signal in case the load on the battery is below a predetermined charge threshold; - continuously reducing the duty cycle of the control signal in case the load of the battery exceeds a predetermined charge threshold in such a way that when the battery is approximately fully charged, the duty cycle is approximately zero. 8. Zonnepaneel gebaseerde puls belastinglader volgens een van de voorgaande conclusies, waarin de puls belastinglader vier laadschakelingen omvat.A solar panel based pulse load charger according to any one of the preceding claims, wherein the pulse load charger comprises four load circuits. 9. Werkwijze van het bedienen van een zonnepaneel gebaseerde puls belastinglader volgens een van de voorgaande conclusies, waarbij de werkwijze de stappen omvat van het: - bepalen, door de spanningssensor, van de zonnepaneelspanning van het zonnepaneel; - ontkoppelen, door de zonnepaneelstuurmiddelen, van de zonnepaneel-uitvoerschakelaar in het geval de bepaalde zonnepaneelspanning onder een vooraf bepaalde eerste drempel valt daarbij toestaan dat de zonnepaneelspanning herstelt, en voor het verbinden van de zonnepaneel-uitvoerschakelaar in het geval de bepaalde zonnepaneelspanning een vooraf bepaalde tweede drempel overschrijdt daarbij het verhogen van vermogen getrokken uit het zonnepaneel, zodanig dat de zonnepaneelspanning verlaagd.A method of operating a solar panel based pulse load charger according to any of the preceding claims, wherein the method comprises the steps of: - determining, by the voltage sensor, the solar panel voltage of the solar panel; - disconnection, by the solar panel control means, of the solar panel output switch in case the determined solar panel voltage falls below a predetermined first threshold, thereby allowing the solar panel voltage to recover, and for connecting the solar panel output switch in the case the determined solar panel voltage is a predetermined the second threshold thereby exceeds the increase in power drawn from the solar panel, such that the solar panel voltage is reduced. 10. Werkwijze volgens conclusie 9, waarin de vooraf bepaalde eerste drempel tussen 75%-90% van de zonnepaneelspanning is.The method of claim 9, wherein the predetermined first threshold is between 75% -90% of the solar panel voltage. 11. Werkwijze volgens een van de conclusies 9-10, waarin de tweede drempel tussen 1 %-10% van de zonnepaneelspanning hoger is dan de eerste drempel.The method of any one of claims 9-10, wherein the second threshold is between 1% -10% of the solar panel voltage higher than the first threshold. 12. Werkwijze volgens een van de conclusies 9-10, waarin de eerste drempel gelijk is aan de tweede drempel.The method of any one of claims 9-10, wherein the first threshold is equal to the second threshold. 13. Werkwijze volgens een van de conclusies 9-12, waarin elke laadschakeling verder omvat een uitvoerstroomsensor voor het bepalen van een uitvoerstroom, en waarin de stuurmiddelen zijn ingericht voor het genereren van het stuursignaal voor het sturen van de schakeloperatie van de schakelmiddelen op basis van de gemeten uitvoerstroom.A method according to any of claims 9-12, wherein each charging circuit further comprises an output current sensor for determining an output current, and wherein the control means are adapted to generate the control signal for controlling the switching operation of the switching means based on the measured output current. 14. Werkwijze volgens een van de conclusies 9-13, waarin elke laadschakeling verder omvat een uitvoerspanningssensor ingericht voor het bepalen van een uitvoerspanning bij de secundaire winding van de transformator, en waarin de stuurmiddelen zijn ingericht voor het genereren van een stuursignaal voor het sturen van de schakeloperatie van de schakelmiddelen op basis van de gemeten uitvoerspanning.A method according to any of claims 9-13, wherein each charging circuit further comprises an output voltage sensor adapted to determine an output voltage at the secondary winding of the transformer, and wherein the control means are adapted to generate a control signal for controlling the switching operation of the switching means on the basis of the measured output voltage. 15. Werkwijze volgens een van de conclusies 9-14, waarin de belasting een batterij is, waarin stuurmiddelen zijn ingericht voor het: - verhogen van de duty-cycle van een stuursignaal in het geval de belasting van de batterij onder een vooraf bepaalde laaddrempel is; - continu verlagen van een duty-cycle van het stuursignaal in het geval de belasting van de batterij een vooraf bepaalde laaddrempel overschrijdt op een dusdanige manier dat wanneer de batterij ongeveer volledig opgeladen is de duty-cycle ongeveer nul is.A method according to any of claims 9-14, wherein the load is a battery, wherein control means are arranged for: - increasing the duty cycle of a control signal in case the load of the battery is below a predetermined charge threshold ; - continuously reducing a duty cycle of the control signal in case the load of the battery exceeds a predetermined charge threshold in such a way that when the battery is approximately fully charged, the duty cycle is approximately zero.
NL2017131A 2016-07-08 2016-07-08 A solar array based pulse load charger arranged for operating around predetermined threshold values as well as a corresponding method. NL2017131B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2017131A NL2017131B1 (en) 2016-07-08 2016-07-08 A solar array based pulse load charger arranged for operating around predetermined threshold values as well as a corresponding method.
PCT/NL2017/050459 WO2018009071A1 (en) 2016-07-08 2017-07-10 Pulse battery charger arranged for charging a battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2017131A NL2017131B1 (en) 2016-07-08 2016-07-08 A solar array based pulse load charger arranged for operating around predetermined threshold values as well as a corresponding method.

Publications (1)

Publication Number Publication Date
NL2017131B1 true NL2017131B1 (en) 2018-01-15

Family

ID=61190254

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2017131A NL2017131B1 (en) 2016-07-08 2016-07-08 A solar array based pulse load charger arranged for operating around predetermined threshold values as well as a corresponding method.

Country Status (1)

Country Link
NL (1) NL2017131B1 (en)

Similar Documents

Publication Publication Date Title
Gallardo-Lozano et al. Battery equalization active methods
CN100456613C (en) Switching power supply device
US20110187327A1 (en) Charge equalization apparatus
US11616368B2 (en) Power supply system including DC-to-DC converter and control method therefor
US8269455B2 (en) Charge balancing system
EP2963798A1 (en) Dc-ac conversion device and control circuit
US6791297B2 (en) Battery charger
US10027135B2 (en) Apparatus for balancing battery power
EP2685592A1 (en) Balance correction device and electricity storage system
EP2541729A1 (en) Cell balance control device and cell balance controlling method
JP2014036528A (en) Insulated charging device
JP2011103746A (en) Charging method of battery
CN1230303A (en) Method and arrangement for disconnecting consumers
CN113517730A (en) Battery charging and discharging system, circuit and method
JP6711466B2 (en) Buck-boost device for power storage device and power storage device
CN105048532B (en) Energy storage state adjusts circuit, energy storage state regulating device and accumulator group
KR101969301B1 (en) Apparatus for controlling charging and discharging of batterry for dc grid
NL2017131B1 (en) A solar array based pulse load charger arranged for operating around predetermined threshold values as well as a corresponding method.
KR101131664B1 (en) Charging equipment using switching arrangement and charging/discharging
JP4712081B2 (en) Charging circuit and charging circuit control method
WO2018009071A1 (en) Pulse battery charger arranged for charging a battery
Jian et al. Charging scenario of serial battery power modules with buck-boost converters
EP2782206A1 (en) Secondary battery control device
NL2017137B1 (en) A pulse battery charger arranged for charging a battery, as well as a corresponding method.
CN217883224U (en) DC-DC power supply circuit

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20200801