NL2016637B1 - Rail profile monitoring, e.g. geometry of the frogs. - Google Patents

Rail profile monitoring, e.g. geometry of the frogs. Download PDF

Info

Publication number
NL2016637B1
NL2016637B1 NL2016637A NL2016637A NL2016637B1 NL 2016637 B1 NL2016637 B1 NL 2016637B1 NL 2016637 A NL2016637 A NL 2016637A NL 2016637 A NL2016637 A NL 2016637A NL 2016637 B1 NL2016637 B1 NL 2016637B1
Authority
NL
Netherlands
Prior art keywords
light
millimeters
lines
rail
light lines
Prior art date
Application number
NL2016637A
Other languages
Dutch (nl)
Other versions
NL2016637A (en
Inventor
Jagtenberg Hans
Original Assignee
Volkerrail Nederland Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkerrail Nederland Bv filed Critical Volkerrail Nederland Bv
Publication of NL2016637A publication Critical patent/NL2016637A/en
Application granted granted Critical
Publication of NL2016637B1 publication Critical patent/NL2016637B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/04Control, warning, or like safety means along the route or between vehicles or vehicle trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/045Rail wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/04Control, warning, or like safety means along the route or between vehicles or vehicle trains for monitoring the mechanical state of the route
    • B61L23/042Track changes detection
    • B61L23/047Track or rail movements

Abstract

Measur ement o f a frog o f a r a ilway tur nout o r swi tch , by us i ng opt i cal means measuring the frog by p r oject i ng light lines onto 5 the fr og . A co rrect i on f acto r i s applied wh i ch i s dependent fr om the ho ri zontal and/o r ve r t i cal oscillat i ng movement o f the measuring t r a i n . The co rrect i on f acto r i s dete rmined by the use o f addi t i onal opt i cal means measuring the fr og . Five l ase r lines (31, 32) a r e used, mutually spaced i n l ongi tudi na l 10 r a il d irect i on . Two pairs (31) have sma ll mutua l spaci ng . Each pair (3 1 ) has wi de spaci ng wi th the other pair and wi th the s i ngl e line (32 ). The s i ngl e line (32 ) has wi de spaci ng wi th a ll other li nes . The s i ngl e line i s l ocated cent r a lly between the pairs (3 1).

Description

BACKGROUND
This invention relates to an apparatus and method for monitoring wear and deformation of a turnout (also called switch and crossing) of a railway or tramway line.
Prior art is e.g. provided by DE19510560A1, SE515091C2, WO2008146151A2, DEI02010019618A1 and EP2165915. These prior art documents also explain the principle of triangulation and light sectioning measurement.
The wear or deformation of a turnout is rather irregular and typically concentrates on particular locations, such as the stock rails, wing rails, check rails, point blades, frog and crossing.
Laser measurement systems, e.g. measuring distance or a profile of e.g. the rail head or different track component, such as triangulation sensors (one dimension measurement) or light sectioning sensors (a two dimensional extension of the laser triangulation method, thus a two dimensional measurement) , offer an accuracy in the range of several micrometers at a bandwidth of 10 kHz or even higher. Their speed is therefore sufficient to measure from moving platforms (e.g. a measuring train), but it is difficult or often impossible to guide the platform with a precision comparable to the measurement accuracy. To compensate this uncertainty of the relative position of the measurement system, from practice there is known to apply an acceleration sensor to establish a virtual reference line for the value measured. A typical example known from prior art practice is the corrugation measurement of the rail head with a spectral accuracy better than 10 mu m from a running train superimposed to a vertical movement of about 10 mm.
During measurement, the vehicle speed is preferably at least 40 or 60 km/h.
A rail profile monitoring system, e.g. using a laser measurement system, is designed to measure the rail profile e.g. for high speed lines, but also for conventional and metro lines. In all cases top performances and accuracies must be guaranteed, e.g. by use of a CMOS or CCD camera system able to acquire up to 500 frames/sec or even higher rates at high resolution. The camera could e.g. be of profile or area type.
Sunlight interference and blooming effects preferably need be removed, e.g. by one or more protection systems (camera technology, pulsed laser and camera acquisition synchronized, interferential filters and software filters) . The main object of the monitoring system is to give integrated indications to the track maintenance responsible for planning the interventions for the short and long term. The system preferably is able to detect and quantify all the key WEAR PARAMETERS describing the qualitative status of the infrastructure (vertical wear, transversal wear, multi-point wear, gauge).
By application of data analysis and comparison procedures, it becomes possible to optimize track maintenance plans, periodically checking and keeping under control rail degradation due to mechanical wear.
Laser light is an example of an optically coherent radiation beam. The camera is an example of a light receiving unit for monitoring the focusing projection of the radiation beam on the object of interest and converts the radiation, reflected by the object, received on a measurement surface in the receiving unit into electrical signals which are entered into the connected computer. Typically a lens, e.g. Fresnel lens, is located between the object ad the camera for focusing the radiation from the object on the measurement surface of the camera.
GEOMETRY OF THE FROGS
An object of the invention is one or more of the following: a further improvement in an attempt to sufficiently eliminate the interference of the horizontal and/or vertical oscillating movement (caused by i.a. the fact that the railway track is not perfectly straight, however in stead undulates) of the measuring train, carrying the measuring system, with the measurement results; to measure the wear or deformation of the turnout; to measure parameters of a component, such as rail, without any mechanical contact with the component and without the need to use mechanical centring devices; to acquire information relating to the actual profile of the component, its degree of wear and its vertical and transverse deformation; to be able to accurately locate the location of the measurements, particularly relative to a reference point; to effect the measurements while insensitive to oscillation and deformation of the vehicle on which the apparatus is mounted; to obtain desired results from measurements in real time; to be able to conduct the measurements at a high velocity of at least 10 or 20 km/hr of the measuring train.
This object is obtained by the invention such that the inaccuracy of a rail profile measurement is less than 0.1 millimeter .
The invention concerns a laser system and/or method designed to provide one or more of the following: emit by its one or more light sources one or more light beams, e.g. at least three or four or five light beams, designed to be projected as spaced or overlapping light points or lines or spots onto an object of interest; at least a number and preferably substantially all of these light beams are emitted such that during advancement of the measuring train these light beams are projected successively onto the same area of the object and/or their light lines successively cover the same area of the object; during train advancement the light beams and/or their light lines move along the object, one behind the other; the light beams are substantially simultaneously projected onto the object; a light line is provided by one or a plurality of separate light sources or light beams; the object of interest is of the railway track, in particular a rail, more preferably a rail part of a railway switch (also called turnout or switch and crossing) e.g. a frog or check rail or point blade; preferably simultaneously detect these projections by a sensor or a plurality of separate sensors; the data from these sensors is entered into a computer connected to and common to these sensors; the computer determines from this data a correction factor which is dependent from the horizontal and/or vertical oscillating movement of the measuring train and which correction factor is applied to computer calculations for a geometric feature of interest of the measured track object or an associated track object.
The e.g. three or four or five light lines are preferably applied in a pattern including one or more of the following (in the following light line also means light point or light spot): spaced in longitudinal direction of the object, e.g. rail; close spacing between two adjacent light lines at least 5 or 10 millimeter and/or not more than 50 or 80 millimeter, e.g. approximately 30 millimeter or a single sample distance; wide spacing between two adjacent light lines at least 100 or 150 or 200 or 400 millimeter and/or not more than 800 or 900 millimeter, e.g. approximately 600 millimeter; spacing between the two outermost light lines at least 600 or 800 millimeter and/or not more than 1400 or 1500 millimeter, e.g. approximately 1200 millimeter; a light line approximately centrally between two other light lines; two light lines with close spacing, separated from the other light lines by at least the wide spacing; two sets, each of two light lines with close spacing, preferably wherein these two sets are mutually separated by at least the wide spacing; a light line separated from the other light lines by at least the wide spacing; in case of at least five spaced light lines, these are present as two sets (which light lines could be named reference light lines) and one individual light line (which could be named accuracy light line).
A light line could include two or more light lines (e.g. each created by an individual light emitter, e.g. laser) which are exactly or virtually exactly mutually overlapping or precisely registered such that they are detected by the associated sensor as a single line. This is e.g. the case for the accuracy light line. In an alternative for such double light line the individual light lines could be spaced longitudinally or differ in frequency to avoid interference, e.g. as disclosed in EP2485010.
The light lines are associated with a sensor, preferably two light lines having the close spacing are associated with a single sensor, such that the sensor (e.g. an area camera) simultaneously detects both light lines, obviously wherein these light lines are projected at the light detecting part (e.g. the light sensitive matrix) of the sensor at different locations such that they are detected separately and can be discriminated by the sensor.
The width of a light line (as measured in longitudinal direction of the rail) is preferably smaller than 20 or 10 or 5 millimeter and/or is substantially constant along its length. The light line has preferably a green or red color.
The optical axis of the imaging device, including a, preferably flat, light detection element, makes a fixed angle (preferably at least 10 and/or not more than 50 degrees, e.g. approximately 30 degrees) relative to the emitting direction of the associated laser device while the imaging device and the associated laser device have mutually fixed locations.
AS PART OF TRACK GEOMETRY MEASURING SYSTEM
Prior art is e.g. disclosed in EP2485010 and EP2165915, the disclosures of which is enclosed herein by reference.
A light line could be associated with two or more sensors (e.g. each being a profile camera) , preferably this is the light line for which the wide spacing with all the other light lines applies. Preferably this accuracy light line is provided by at least two light emitters, e.g. lasers.
The accuracy light line is preferably associated with a group of two or three or four cameras such that in an embodiment the accuracy light line projected on a stock or running or different rail is simultaneously scanned by a group of at least two or three or four cameras. Thus the apparatus is provided with four cameras (two groups of two each) or even eight cameras (two groups of four each) in a preferred embodiment, to simultaneously monitor the accuracy light line projected on both opposite rails of the same track.
Preferably at least one or at least two cameras are located at both sides of the associated rail and monitor said rail obliquely from above. Preferably the location transverse to the longitudinal direction of the rail and/or the angle of inclination of the optical axis of the cameras at the same side of the associated rail mutually differs, preferably by at least 10 or 20 millimeter and 10 or 20 degrees, respectively.
Preferably the field of vision of a camera has overlapping edges with the field of vision of an adjacent camera. More preferably, the field of vision of a camera has only partly overlap, preferably not more than 20% or 50% overlap, with the field of vision of an adjacent camera at the same (one) side of the associated running or stock or different rail; (and/)or the field of vision of a camera has substantially complete overlap with the field of vision of an adjacent camera at the same (other) side of the associated running or stock or different rail.
Preferably the cameras associated with the one or other running or stock rail provide a common field of vision such that simultaneously the head of the stock or running rail and associated point blade or check rail or wing rail over its complete top and complete sides and a part of the stock or running rail and associated point blade or check rail or wing rail at least 30 or 50 millimeter below the top of the head, such as part of the foot at the bottom of the relevant rail, are scanned. For the point blade this applies preferably both in its position bearing against the stock rail and its position moved to a maximum distance from the stock rail.
The cameras are preferably connected directly to the frame grabber boards of the measurement computer. In this way images are acquired that are used to calculate the rail profile, particularly of the head and fragments of foot and web. The distance between a vision module and the relevant rail measures between 50 and 750 millimeter, particularly between 200 and 400 millimeter.
Preferably one or more of the following applies: Each emitter and receiver is dedicated to a single rail; each emitter and receiver has a fixed optical axis; each emitter and receiver is supported by or suspended from a bogy or different part of the measuring train.
Based on the measured rail profiles, one or more of the following parameters are calculated: rail head wear (vertical, horizontal, wear angle); slope of rails; track gauge; guiding rail groove width; width of the crossing nose groove; guiding width; groove width between the switch blade and the reaction rail. In the crossing of a switch there is a relationship between the frog, wing rail and checkrail, which can also be checked by the invention by measuring the gauge.
In addition, preferably one or more of the following applies: part of a system or method for measuring a rail profile by optical triangulation through optical detection systems operating by optical triangulation and moving along the rail at a movement speed, comprising respective, preferably pairs, of light emitting devices, e.g. lasers, and optical reading devices, e.g. camera's, including the steps of moving said optical detection systems along said rail at a movement speed, and lighting, preferably opposite, sides of the rail through the respective light emitting lasers, for projecting against said sides respective light spots adapted to generate respective optically detectable, preferably semi, profiles, preferably combinable, to obtain a measurement of the profile of a section of the rail, and detecting said semi-profiles through the respective optical reading devices; comprising a correcting system configured for measuring spatial variations of an optical detection system by optical triangulation with respect to the object, e.g. rail, wherein correcting the spatial position of at least one of the semi-profiles of a side through the values of the measured shifts through the correcting system; comprising cameras which operate by reading the image rows in a synchronous manner; the system comprises means configured for implementing the method; triangulation also means light sectioning.
ADDITIONAL ASPECTS
Further, preferably one or more of the following applies:
The measuring device is preferably arranged on a detecting vehicle travelling on or along the track, such as a railway vehicle, e.g. a train; the device includes essentially a light emitting device adapted to emit a light blade onto a plane which could be substantially orthogonal to the longitudinal axis of the rail; an acquisition device adapted to acquire an image containing a light row or light line generated by the intersection between the light blade and the rail; a processing module adapted to process the light line contained in the image to determine, according to the light line itself, a value correlated to the dimension of the rail; the light emitting device is arranged on the vehicle so as to be positioned over the rail and includes, e.g., a laser emitter and preferably an optical focusing assembly including a series of prisms and focusing lenses properly positioned and oriented with respect to the laser emitter to transform the focused beam into the light blade; the optical focusing assembly is capable of transforming the focused beam into the light blade having an opening angle between 20 degrees and 120 degrees so as to be able to intersect the external surface of the rail and define the light line on the external surface of the rail; the acquisition device is supported by the vehicle in a side position with respect to the emitting device so as to be arranged over the rail facing the light blade and includes a video camera or camera adapted to acquire the image of the light line projected on the rail, so as to provide in a digital format to the processing module; the processing module may include a central processing unit, e.g. a microprocessor, which is adapted to process the light line to obtain a profile measurement from part of the rail head; and a memory module for e.g. storage of data obtained from the camera or look up data, e.g. reference data; the monitoring device includes a device adapted to detect the geographic position of the detecting vehicle instant-by-instant, so as to identify, on the basis of the determined geographic position, the section of track on which the vehicle is travelling; this could include a GPS receiver (or a similar wireless operating positioning system) and/or an odometer or shaft encoder, and a memory containing, for each position, the data related to the corresponding track and to the particulars at the track; the method includes: emitting the light blade with an angular opening so as to intersect the rail head; acquiring the image containing the light line generated by the intersection of the light blade on the track; processing the image containing the light line so as to determine a feature of interest, e.g. the rail head profile and its position relative to the detecting vehicle; the method includes extrapolating the external contour of the rail head from the plurality of, preferably, at least three, four or five light lines spaced along the track and provided by a plurality, e.g. equal number of laser devices; comparing this extrapolated contour and a sample contour stored in the memory module; if there is a difference between these two contours, calculating a correction factor from this difference and correcting the extrapolated contour by the correction factor.
Also, preferably one or more of the following applies: the control module is configured for actuating the laser emitters to emit the laser radiation kept switched on by each laser emitter for a time of exposure which determines the lighting of a section of length of the object; a laser emitter-camera pair obtains an image of a semi-profile for a period of exposure; the one emitter switches off before another emitter switches on, e.g. they switch alternating, or they switch simultaneous; a digital camera; a camera which operates at a high speed (normally greater than 400 frames per second); a camera operates to read all the image rows in a synchronous manner; a camera speed of acquisition of 700 images per second, processing 500 rows per image, for example using an FCAM DMA camera; emitters adapted to produce beams at the same wavelength; semiconductor lasers; the period of exposure varies between 0.2 and 3 milliseconds; CMOS or CCD camera; laser power between 4 and 40W;
EXAMPLE
A non-limiting, preferred embodiment is shown in the drawing.
Figure 1 shows in sectional view along line I - I of fig. 3 the Track Geometry Measuring System in combination with the rails 1 - 4 of the turnout. This TGMS contains two groups of four cameras (vision modules) 11 - 14 and 15 - 18, respectively, each group being assigned to the left or right side of the turnout. Of each group, two vision modules 11, 12 and 17, 18, respectively, are located to the outer side, directed obliquely downwards and two vision modules 13, 14 and 15, 16, respectively, are located to the inner side of the associated rail 1 and 2, respectively, and are oppositely oriented and directed obliquely downwards. Laser sources are shown by 5 and 7, the other two laser sources directed to the opposite object side are not visible. In an alternative the TGMS contains two groups of two vision modules, each group being assigned to the objects
1,3 or 2,4, for each group the one vision module directed to the one and the other to the opposite side of the object 1,3 or 2,4. Camera and associated laser source preferably operate according to the principle of triangulation or light sectioning measurement.
Fig. 2 illustrates the main parts of a turnout: (switch) point blades 21, tie bar 22, toe 23, heel 24, stock rails 25, check rails 26, crossing 27, wing rails 28 and running rails
29.
Fig. 3 illustrates the location of the five laser lines, mutually spaced in longitudinal rail direction. Two pairs 31 have small mutual spacing. Each pair 31 has wide spacing with the other pair and with the single line 32. The single line 32 has wide spacing with all other lines. The single line is located centrally between the pairs 31. The two pairs are spaced by 1.20 meter, the lines of a pair are spaced by 30 millimetre, which is equal to the distance covered by the train moving at 60 km/h during the time elapse between two subsequent samples at a sampling rate of 500 samples/minute.
Fig. 4 illustrates an alternative to fig. 3: a pair 31 is located centrally between the other pair 31 and the single line 32.
Fig. 3+4 show the system suspended from a bogy of the measuring train.
Fig. 5 shows the projection of a pair of mutually closely spaced laser lines onto the rail head, created by a dedicated light blade, while a single camera 17 receives the reflection from the rail head onto its CCD matrix.
Fig. 6 shows the image provided by the camera 17, as visible on a computer display screen.
Fig. 7 shows two alternative manners how light lines can be projected onto the rail from both its sides.
Thus, the invention preferably provides a device and method for the contact less dynamic recording of the profile of a rail of a turnout to determine its condition, such as wear or deformation, comprising at least one or more of: at least one light beam from e.g. a laser device is projected onto an area of the rail facing the opposite rail and the laser device is moved along the rail and the light reflected from said area of the rail is focused onto a flat light detection element of an imaging device of which the optical axis makes a fixed angle relative to the emitting direction of the laser device while the imaging device and the laser device have mutually fixed locations such that the signal coming from the light detection element is processed in a computer processor on the basis of a triangulation procedure or light sectioning procedure to detect the distance between the imaging device and the rail, the signal from preferably at least two, three or four vision modules, which preferably form a single or virtually single projection plane directed onto the rail, is applied, means for correcting the spatial position of a measured object profile through the values of a track measuring system shift measuring means .

Claims (44)

CONCLUSIESCONCLUSIONS 1. Werkwijze voor profiel of geometrie meten van een spoorweg object, bijvoorbeeld spoorstaaf of wissel of wisselcomponent, bijvoorbeeld puntstuk, door gebruik van optische meetmiddelen die het object meten.Method for measuring profile or geometry of a railway object, for example rail or points or points, for example point piece, by using optical measuring means measuring the object. 2. Werkwijze volgens conclusie 1, uitgevoerd door triangulatie of light sectioning.Method according to claim 1, performed by triangulation or light sectioning. 3. Werkwijze volgens conclusie 1 of 2, waarbij een correctrefactor wordt toegepast die afhankelijk is van de horizontale en/of verticale oscillerende beweging van de meettrein en welke correctiefactor toegepast wordt op computerberekeningen voor een geometrische eigenschap waarnaar belangstelling bestaat van het gemeten spoorobject of een geassocieerd spoorobject.Method according to claim 1 or 2, wherein a correcting factor is applied which is dependent on the horizontal and / or vertical oscillating movement of the measuring train and which correcting factor is applied to computer calculations for a geometric property that is interested in the measured track object or an associated track object. 4. Werkwijze volgens conclusie 1, 2 of 3, met uitstralen door zijn ene of meer lichtbronnen van ten minste drie of vier of vijf lichtstralen zodat tijdens voortbewegen van de meettrein deze lichtstralen achtereenvolgens worden geprojecteerd op hetzelfde gebied van de rail van een spoorweg en de lichtstralen in hoofdzaak gelijktijdig op de rail worden geprojecteerd.4. Method as claimed in claim 1, 2 or 3, with rays of at least three or four or five light rays transmitted through its one or more light sources so that during light travel of the measuring train these light rays are successively projected on the same area of the rail of a railway and the light rays are projected onto the rail substantially simultaneously. 5. Werkwijze volgens één van conclusies 1-4, de lichtstralen verschaffen op de rail lichtlijnen in een patroon dat ruimtelijk is in longitudinale richting van de rail volgens het volgende: nauwe tussenruimte tussen twee nabije lichtlijnen ten minste 5 of 10 millimeter en/of niet meer dan 50 of 80 millimeter, bijvoorbeeld ongeveer 30 millimeter of een enkele sample afstand; wijde tussenruimte tussen twee nabije lichtlijnen ten minste 100 of 150 of 200 of 400 millimeter en/of niet meer dan 800 of 900 millimeter, bijvoorbeeld ongeveer 600 millimeter.A method according to any one of claims 1-4, providing the light rays on the rail light lines in a pattern that is spatial in the longitudinal direction of the rail according to the following: narrow spacing between two adjacent light lines at least 5 or 10 millimeters and / or not more than 50 or 80 millimeters, for example about 30 millimeters or a single sample distance; wide gap between two adjacent light lines at least 100 or 150 or 200 or 400 millimeters and / or no more than 800 or 900 millimeters, for example approximately 600 millimeters. 6. Werkwijze volgens één van conclusies 1-5, de tussenruimte tussen de twee meest naar buiten gelegen lichtlijnen is ten minste 600 of 800 millimeter en/of niet meer dan 1400 of 1500 millimeter, bijvoorbeeld ongeveer 1200 millimeter.Method according to any of claims 1-5, the gap between the two outermost light lines is at least 600 or 800 millimeters and / or no more than 1400 or 1500 millimeters, for example approximately 1200 millimeters. 7. Werkwijze volgens één van conclusies 1-6, een lichtlijn bevindt zich ongeveer centraal tussen twee andere lichtlijnen.7. Method according to one of claims 1-6, a light line is located approximately centrally between two other light lines. 8. Werkwijze volgens één van conclusies 1-7, twee lichtlijnen hebben nauwe tussenruimte, gescheiden van de andere lichtlijnen door ten minste de wijde tussenruimte.A method according to any one of claims 1-7, two light lines having narrow spacing, separated from the other light lines by at least the wide spacing. 9. Werkwijze volgens één van conclusies 1-8, er zijn twee sets, elk van twee lichtlijnen met nauwe tussenruimte, waarbij deze twee sets wederzijds zijn gescheiden door ten minste de wijde tussenruimte.The method of any one of claims 1-8, there are two sets, each of two light lines with narrow spacing, these two sets being mutually separated by at least the wide spacing. 10. Werkwijze volgens één van conclusies 1-9, een lichtlijn is gescheiden van de andere lichtlijnen door ten minste de wijde tussenruimte.The method according to any of claims 1-9, a light line is separated from the other light lines by at least the wide gap. 11. Werkwijze volgens één van conclusies 1-10, waarbij ten minste vijf lichtlijnen worden verschaft, die aanwezig zijn als twee sets (welke lichtlijnen de naam referentie lichtlijnen kunnen hebben) en één individuele lichtlijn (die de naam nauwkeurige lichtlijn kan hebben).The method of any one of claims 1-10, wherein at least five light lines are provided, which are present as two sets (which light lines may have the name reference light lines) and one individual light line (which may have the name accurate light line). 12. Werkwijze volgens één van conclusies 1-11, een lichtlijn omvat twee of meer lichtlijnen (bijvoorbeeld elk gegenereerd door een individuele lichtuitstraler, bijvoorbeeld laser) die exact of vrijwel exact wederzijds overlappen of precies zijn uitgelijnd zodat zij worden gedetecteerd door de geassocieerde sensor als een enkele lijn.A method according to any one of claims 1-11, a light line comprises two or more light lines (e.g., each generated by an individual light emitter, e.g., laser) that overlap exactly or substantially exactly mutually or are precisely aligned so that they are detected by the associated sensor as a single line. 13. Werkwijze volgens één van conclusies 1-12, twee lichtlijnen met de nauwe tussenruimte zijn geassocieerd met een enkele sensor, zodat de sensor, bijvoorbeeld een camera, gelijktijdig beide lichtlijnen detecteert, waarbij deze lichtlijnen worden geprojecteerd op het licht detecterende deel van de sensor op verschillende plaatsen zodat zij separaat worden gedetecteerd en door de sensor worden onderscheiden.Method according to any of claims 1-12, two light lines with the narrow gap are associated with a single sensor, so that the sensor, for example a camera, simultaneously detects both light lines, these light lines being projected on the light detecting part of the sensor in different places so that they are detected separately and distinguished by the sensor. 14. Werkwijze volgens één van conclusies 1-13, de breedte van een lichtlijn, gemeten in lengterichting van de rail, is kleiner dan 5 millimeter.Method according to any of claims 1-13, the width of a light line, measured in the longitudinal direction of the rail, is smaller than 5 millimeters. 15. Werkwijze volgens één van conclusies 1-14, de lichtlijn heeft een groene of rode kleur.Method according to any of claims 1-14, the light line has a green or red color. 16. Werkwijze volgens één van conclusies 1-15, de optische as van de beeldvorminrichting, welke een vlak, licht detecterend element omvat, staat onder een vaste hoek van ten minste 10 en niet meer dan 50 graden ten opzichte van de uitstraalrichting van de geassocieerde laserinrichting terwijl de beeldvorminrichting en de geassocieerde laserinrichting wederzijds gefixeerde locaties heeft.A method according to any of claims 1-15, the optical axis of the image forming apparatus, which comprises a flat light detecting element, is at a fixed angle of at least 10 and no more than 50 degrees with respect to the radiating direction of the associated laser device while the image forming device and the associated laser device have mutually fixed locations. 17. Werkwijze volgens één van conclusies 1-16, de lichtlijn voor welke de wijde tussenruimte met alle andere lichtlijnen geldt, is geassocieerd met twee of meer profielcamera's en is verschaft door ten minste twee lichtuitstralers, bijvoorbeeld lasers, zodat deze lichtlijn geprojecteerd op de rail gelijktijdig wordt afgetast door een groep van ten minste twee camera's.A method according to any one of claims 1-16, the light line to which the wide gap with all other light lines applies, is associated with two or more profile cameras and is provided by at least two light emitters, for example lasers, so that this light line is projected on the rail is scanned simultaneously by a group of at least two cameras. 18. Werkwijze volgens conclusie 17, waarbij deze op de rail geprojecteerde lichtlijn gelijktijdig wordt afgetast door een groep van ten minste vier camera's.The method of claim 17, wherein said light line projected onto the rail is scanned simultaneously by a group of at least four cameras. 19. Werkwijze volgens één van conclusies 1-18, uitgevoerd door of deel uitmakend van een detectietrein.A method according to any of claims 1-18, performed by or forming part of a detection train. 20. Werkwijze volgens één van conclusies 1-19, toegepast voor meten van de geometrie van het puntstuk van een wissel.A method according to any of claims 1-19, used for measuring the geometry of the tip of a switch. 21. Werkwijze volgens één van conclusies 1-20, waarbij de correctiefactor wordt bepaald door het toepassen van additionele optische middelen die het object meten.The method of any one of claims 1-20, wherein the correction factor is determined by applying additional optical means that measure the object. 22. Werkwijze volgens één van conclusies 1-21, waarbij de optische meetmiddelen en/of additionele optische meetmiddelen lichtstralen verschaffen die op de rail lichtlijnen maken in een patroon dat ruimtelijk is in longitudinale richting van de rail volgens het volgende: nauwe tussenruimte tussen twee nabije lichtlijnen ten minste 5 of 10 millimeter en/of niet meer dan 50 of 80 millimeter, bijvoorbeeld ongeveer 30 millimeter of een enkele sample afstand; wijde tussenruimte tussen twee nabije lichtlijnen ten minste 100 of 150 of 200 of 400 millimeter en/of niet meer dan 800 of 900 millimeter, bijvoorbeeld ongeveer 600 millimeter.A method according to any of claims 1-21, wherein the optical measuring means and / or additional optical measuring means provide light rays which create light lines on the rail in a pattern that is spatial in the longitudinal direction of the rail according to the following: narrow gap between two adjacent light lines at least 5 or 10 millimeters and / or no more than 50 or 80 millimeters, for example approximately 30 millimeters or a single sample distance; wide gap between two adjacent light lines at least 100 or 150 or 200 or 400 millimeters and / or no more than 800 or 900 millimeters, for example approximately 600 millimeters. 23. Werkwijze volgens één van conclusies 1-22, waarbij de optische meetmiddelen en/of additionele optische meetmiddelen lichtstralen verschaffen die op de rail lichtlijnen maken waarvoor één of meer van het volgende van toepassing is:A method according to any of claims 1-22, wherein the optical measuring means and / or additional optical measuring means provide light rays which produce light lines on the rail for which one or more of the following applies: - een lichtlijn bevindt zich ongeveer centraal tussen twee andere lichtlijnen;- a light line is located approximately centrally between two other light lines; - twee lichtlijnen hebben nauwe tussenruimte, gescheiden van de andere lichtlijnen door ten minste de wijde tussenruimte;- two light lines have narrow gaps, separated from the other light lines by at least the wide gap; - er zijn twee sets, elk van twee lichtlijnen met nauwe tussenruimte, waarbij deze twee sets wederzijds zijn gescheiden door ten minste de wijde tussenruimte;- there are two sets, each of two light lines with a narrow gap, these two sets being mutually separated by at least the wide gap; - een lichtlijn is gescheiden van de andere lichtlijnen door ten minste de wijde tussenruimte.- a light line is separated from the other light lines by at least the wide gap. 24. Systeem voor profiel of geometrie meten van een spoorweg object, bijvoorbeeld spoorstaaf of wissel of wisselcomponent, bijvoorbeeld puntstuk, door gebruik van optische meetmiddelen die het object meten.24. Profile or geometry system for measuring a railway object, for example a rail or switch or switch component, for example a point piece, by using optical measuring means that measure the object. 25. Systeem volgens conclusie 24, ingericht voor triangulatie of light sectioning.25. System as claimed in claim 24, arranged for triangulation or light sectioning. 26. Systeem volgens conclusie 24 of 25, waarbij een correctiefactor wordt toegepast die afhankelijk is van de horizontale en/of verticale oscillerende beweging van de meettrein en welke correctiefactor toegepast wordt op computerberekeningen voor een geometrische eigenschap waarnaar belangstelling bestaat van het gemeten spoorobject of een geassocieerd spoorobject.A system according to claim 24 or 25, wherein a correction factor is applied that is dependent on the horizontal and / or vertical oscillating movement of the measuring train and which correction factor is applied to computer calculations for a geometric property that is interested in the measured track object or an associated track object. 27. Systeem volgens conclusie 24, 25 of 26, ingericht voor uitstralen door zijn ene of meer lichtbronnen van ten minste drie of vier of vijf lichtstralen zodat tijdens voortbewegen van de meettrein deze lichtstralen achtereenvolgens worden geprojecteerd op hetzelfde gebied van de rail van een spoorweg en de lichtstralen in hoofdzaak gelijktijdig op de rail worden geprojecteerd.27. System as claimed in claim 24, 25 or 26, adapted to radiate through its one or more light sources of at least three or four or five light rays so that during light-forward movement of the measuring train these light rays are successively projected on the same area of the rail of a railroad and the light rays are projected onto the rail substantially simultaneously. 28. Systeem volgens één van de voorgaande inrichtingconclusies, de lichtstralen verschaffen op de rail lichtlijnen in een patroon dat ruimtelijk is in longitudinale richting van de rail volgens het volgende: nauwe tussenruimte tussen twee nabije lichtlijnen ten minste 5 of 10 millimeter en/of niet meer dan 50 of 80 millimeter, bijvoorbeeld ongeveer 30 millimeter of een enkele sample afstand; wijde tussenruimte tussen twee nabije lichtlijnen ten minste 100 of 150 of 200 of 400 millimeter en/of niet meer dan 800 of 900 millimeter, bijvoorbeeld ongeveer 600 millimeter.A system according to any one of the preceding device claims, providing the light rays on the rail light lines in a pattern that is spatial in longitudinal direction of the rail according to the following: narrow spacing between two adjacent light lines at least 5 or 10 millimeters and / or no more then 50 or 80 millimeters, for example about 30 millimeters or a single sample distance; wide gap between two adjacent light lines at least 100 or 150 or 200 or 400 millimeters and / or no more than 800 or 900 millimeters, for example approximately 600 millimeters. 29. Systeem volgens één van de voorgaande inrichtingconclusies, de tussenruimte tussen de twee meest naar buiten gelegen lichtlijnen is ten minste 600 of 800 millimeter en/of niet meer dan 1400 of 1500 millimeter, bijvoorbeeld ongeveer 1200 millimeter.A system according to any one of the preceding device claims, the spacing between the two outermost light lines is at least 600 or 800 millimeters and / or no more than 1400 or 1500 millimeters, for example approximately 1200 millimeters. 30. Systeem volgens één van de voorgaande inrichtingconclusies, een lichtlijn bevindt zich ongeveer centraal tussen twee andere lichtlijnen.30. System according to one of the preceding device claims, a light line is located approximately centrally between two other light lines. 31. Systeem volgens één van de voorgaande inrichtingconclusies, twee lichtlijnen hebben nauwe tussenruimte, gescheiden van de andere lichtlijnen door ten minste de wijde tussenruimte.A system according to any of the preceding device claims, two light lines having narrow spacing, separated from the other light lines by at least the wide spacing. 32. Systeem volgens één van de voorgaande inrichtingconclusies, er zijn twee sets, elk van twee lichtlijnen met nauwe tussenruimte, waarbij deze twee sets wederzijds zijn gescheiden door ten minste de wijde tussenruimte.A system according to any one of the preceding device claims, there are two sets, each of two light lines with narrow spacing, these two sets being mutually separated by at least the wide spacing. 33. Systeem volgens één van de voorgaande inrichtingconclusies, een lichtlijn is gescheiden van de andere lichtlijnen door ten minste de wijde tussenruimte.A system according to any one of the preceding device claims, a light line being separated from the other light lines by at least the wide gap. 34. Systeem volgens één van de voorgaande inrichtingconclusies, waarbij ten minste vijf lichtlijnen worden verschaft, die aanwezig zijn als twee sets (welke lichtlijnen de naam referentie lichtlijnen kunnen hebben) en één individuele lichtlijn (die de naam nauwkeurige lichtlijn kan hebben).A system according to any one of the preceding device claims, wherein at least five light lines are provided, which are present as two sets (which light lines may have the name reference light lines) and one individual light line (which may have the name accurate light line). 35. Systeem volgens één van de voorgaande inrichtingconclusies, een lichtlijn omvat twee of meer lichtlijnen (bijvoorbeeld elk gegenereerd door een individuele lichtuitstraler, bijvoorbeeld laser) die exact of vrijwel exact wederzijds overlappen of precies zijn uitgelijnd zodat zij worden gedetecteerd door de geassocieerde sensor als een enkele li jn.A system according to any of the preceding device claims, a light line includes two or more light lines (e.g., each generated by an individual light emitter, e.g., laser) that overlap exactly or nearly exactly, or are precisely aligned, so that they are detected by the associated sensor as a single line. 36. Systeem volgens één van de voorgaande inrichtingconclusies, twee lichtlijnen met de nauwe tussenruimte zijn geassocieerd met een enkele sensor, zodat de sensor, bijvoorbeeld een camera, gelijktijdig beide lichtlijnen detecteert, waarbij deze lichtlijnen worden geprojecteerd op het licht detecterende deel van de sensor op verschillende plaatsen zodat zij separaat worden gedetecteerd en door de sensor worden onderscheiden.A system according to any one of the preceding device claims, two light lines with the narrow gap being associated with a single sensor, so that the sensor, for example a camera, simultaneously detects both light lines, these light lines being projected on the light detecting part of the sensor on different locations so that they are detected separately and distinguished by the sensor. 37. Systeem volgens één van de voorgaande inrichtingconclusies, de breedte van een lichtlijn, gemeten in lengterichting van de rail, is kleiner dan 5 millimeter.37. System according to one of the preceding device claims, the width of a light line, measured in the longitudinal direction of the rail, is less than 5 millimeters. 38. Systeem volgens één van de voorgaande inrichtingconclusies, de lichtlijn heeft een groene of rode kleur.38. System according to one of the preceding device claims, the light line has a green or red color. 39. Systeem volgens één van de voorgaande inrichtingconclusies, de optische as van de beeldvorminrichting, welke een vlak, licht detecterend element omvat, staat onder een vaste hoek van ten minste 10 en niet meer dan 50 graden ten opzichte van de uitstraalrichting van de geassocieerde laserinrichting terwijl de beeldvorminrichting en de geassocieerde laserinrichting wederzijds gefixeerde locaties heeft.39. A system according to any one of the preceding device claims, the optical axis of the image-forming device, which comprises a flat light-detecting element, is at a fixed angle of at least 10 and no more than 50 degrees with respect to the irradiation direction of the associated laser device. while the image forming device and the associated laser device have mutually fixed locations. 40. Systeem volgens één van de voorgaande inrichtingconclusies, de lichtlijn voor welke de wijde tussenruimte met alle andere lichtlijnen geldt, is geassocieerd met twee of meer profielcamera' s en is verschaft door ten minste twee lichtuitstralers, bijvoorbeeld lasers, zodat deze lichtlijn geprojecteerd op de rail gelijktijdig wordt afgetast door een groep van ten minste twee camera's.40. System as claimed in any of the foregoing device claims, the light line to which the wide gap with all other light lines applies, is associated with two or more profile cameras and is provided by at least two light emitters, for example lasers, so that this light line is projected on the rail is scanned simultaneously by a group of at least two cameras. 41. Systeem volgens één van de voorgaande inrichtingconclusies, waarbij deze op de rail geprojecteerde lichtlijn gelijktijdig wordt afgetast door een groep van ten minste vier camera's.A system according to any of the preceding device claims, wherein said light line projected onto the rail is scanned simultaneously by a group of at least four cameras. Systeem volgens één van de voorgaande inricht ingconclusies, deel uitmakend van een detectietrein.System according to one of the preceding device claim claims, forming part of a detection train. 43.43. Systeem volgens één van de voorgaande inrichtingconclusies, ingericht voor meten van de geometrie van het puntstuk van een wissel.System according to one of the preceding device claims, adapted to measure the geometry of the point piece of a switch. 44. Systeem volgens één van de voorgaande inrichtingconclusies, waarbij de correctiefactor wordt bepaald door het toepassen van additionele optische middelen die het object meten.A system according to any one of the preceding device claims, wherein the correction factor is determined by applying additional optical means that measure the object. 45. Systeem volgens één van de voorgaande inrichtingconclusies, waarbij de optische meetmiddelen en/of additionele optische meetmiddelen lichtstralen verschaffen die op de rail lichtlijnen maken in een patroon dat ruimtelijk is in longitudinale richting van de rail volgens het volgende: nauwe tussenruimte tussen twee nabije lichtlijnen ten minste 5 of 10 millimeter en/of niet meer dan 50 of 80 millimeter, bijvoorbeeld ongeveer 30 millimeter of een enkele sample afstand; wijde tussenruimte tussen twee nabije lichtlijnen ten minste 100 of 150 of 200 of 400 millimeter en/of niet meer dan 800 of 900 millimeter, bijvoorbeeld ongeveer 600 millimeter.A system according to any one of the preceding device claims, wherein the optical measuring means and / or additional optical measuring means provide light rays which create light lines on the rail in a pattern that is spatial in the longitudinal direction of the rail according to the following: narrow gap between two adjacent light lines at least 5 or 10 millimeters and / or no more than 50 or 80 millimeters, for example approximately 30 millimeters or a single sample distance; wide gap between two adjacent light lines at least 100 or 150 or 200 or 400 millimeters and / or no more than 800 or 900 millimeters, for example approximately 600 millimeters. 46. Systeem volgens één van de voorgaande inrichtingconclusies, waarbij de optische meetmiddelen en/of additionele optische meetmiddelen lichtstralen verschaffen die op de rail lichtlijnen maken waarvoor één of meer van het volgende van toepassing is:46. A system according to any one of the preceding device claims, wherein the optical measuring means and / or additional optical measuring means provide light rays which produce light lines on the rail for which one or more of the following applies: - een lichtlijn bevindt zich ongeveer centraal tussen twee andere lichtlijnen;- a light line is located approximately centrally between two other light lines; - twee lichtlijnen hebben nauwe tussenruimte, gescheiden van de andere lichtlijnen door ten minste de wijde tussenruimte;- two light lines have narrow gaps, separated from the other light lines by at least the wide gap; - er zijn twee sets, elk van twee lichtlijnen met nauwe tussenruimte, waarbij deze twee sets wederzijds zijn gescheiden door ten minste de wijde tussenruimte;- there are two sets, each of two light lines with a narrow gap, these two sets being mutually separated by at least the wide gap; - een lichtlijn is gescheiden van de andere lichtlijnen door ten minste de wijde tussenruimte.- a light line is separated from the other light lines by at least the wide gap.
NL2016637A 2015-04-20 2016-04-19 Rail profile monitoring, e.g. geometry of the frogs. NL2016637B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2014681 2015-04-20

Publications (2)

Publication Number Publication Date
NL2016637A NL2016637A (en) 2016-10-24
NL2016637B1 true NL2016637B1 (en) 2018-08-24

Family

ID=57793772

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2016637A NL2016637B1 (en) 2015-04-20 2016-04-19 Rail profile monitoring, e.g. geometry of the frogs.

Country Status (2)

Country Link
EP (1) EP3141449A1 (en)
NL (1) NL2016637B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621229B (en) * 2017-10-23 2023-05-30 福州大学 Real-time railway track width measurement system and method based on area array black-and-white camera
IT201800002756A1 (en) * 2018-02-16 2019-08-16 Easy Scander Srl NON-CONTACT DETECTION SYSTEM OF RAILWAY PROFILES
CN110497930A (en) * 2019-08-06 2019-11-26 广州市奥特创通测控技术有限公司 A kind of full images railway switch Online integration detection device and method
CN113776457B (en) * 2021-08-31 2023-08-08 中国铁道科学研究院集团有限公司 Curve section steel rail contour measurement error correction method and device based on virtual-actual combination
CN114964046B (en) * 2022-06-21 2023-06-02 湖南科天健光电技术有限公司 Method, device, equipment and medium for measuring rail profile
CN115289991B (en) * 2022-09-27 2023-01-13 武汉天宝耐特科技有限公司 Subway track deformation monitoring method and device and electronic equipment
CN115593462A (en) * 2022-10-17 2023-01-13 哈尔滨市科佳通用机电股份有限公司(Cn) System and method for dynamically detecting geometric form and position parameters of subway rail

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510560A1 (en) 1995-03-23 1996-09-26 Misoph Rotraud High speed monitor for inspecting rail profile of railway track
SE515091C2 (en) 2000-03-07 2001-06-11 Laser Level Nordic Ab Device for measuring and recording standard deviations in travel edges of railway rail, uses reference system formed between first and second reciprocally movable transmitter and receiver units
ITVE20000023A1 (en) * 2000-05-12 2001-11-12 Tecnogamma S A S Di Zanin E & LASER EQUIPMENT FOR THE CONTROL OF THE RAILWAYS OF A RAILWAY LINE.
US6618155B2 (en) * 2000-08-23 2003-09-09 Lmi Technologies Inc. Method and apparatus for scanning lumber and other objects
EP1391690B1 (en) * 2002-08-14 2015-07-01 3D Scanners Ltd Optical probe for measuring features of an object and methods therefor
ITTO20070384A1 (en) 2007-06-01 2008-12-02 Mer Mec S P A APPARATUS AND METHOD FOR MONITORING A TRACK
NL2003527C2 (en) 2008-09-23 2011-05-19 Volkerrail Nederland B V Monitoring a turnout of a railway or tramway line.
DE102010019618A1 (en) 2010-05-06 2011-11-10 Alstom Transport Sa Device for determining roughness of surface area of rail for rail vehicle, has guide rail comprising measuring carriages moved along longitudinal direction of guide rail, and non-contact distance measuring units provided at carriage
EP2485010B1 (en) 2011-02-03 2014-08-06 DMA S.r.l. Method for measuring a rail profile by optical triangulation and corresponding measuring system
BR112013030118A2 (en) * 2011-05-24 2016-09-20 Univ Nebraska vision system for imaging geometric variations along a section of a railway track and a load-bearing structure and method for analyzing the geometric shape of a railway track

Also Published As

Publication number Publication date
EP3141449A1 (en) 2017-03-15
NL2016637A (en) 2016-10-24

Similar Documents

Publication Publication Date Title
NL2016637B1 (en) Rail profile monitoring, e.g. geometry of the frogs.
RU2153432C2 (en) Installation for and method of measuring railway car wheel rolling parameters (versions)
NL2003527C2 (en) Monitoring a turnout of a railway or tramway line.
US7036232B2 (en) Apparatus for monitoring the rails of a railway or tramway line
EP2485010B1 (en) Method for measuring a rail profile by optical triangulation and corresponding measuring system
US10451738B2 (en) Laser processing device and laser processing system
EP0007227A1 (en) Method and apparatus for measuring the profile of an elongate surface
WO2015045743A1 (en) Trolley wire measurement device and trolley wire measurement method
JP2008224631A (en) Railroad rail fastening bolt slackness inspection apparatus
Tsai et al. Pavement crack detection using high-resolution 3D line laser imaging technology
EP0736342B1 (en) Method and apparatus for measuring cross sectional dimensions of sectional steel
JP6317621B2 (en) Method for measuring three-dimensional shape of wheel mounted on vehicle and three-dimensional shape measuring device for wheel mounted on vehicle
KR102513815B1 (en) Method and device for detecting abnormalities in train tracks based on automation
CN108398105B (en) Track deviation measurement method, device and system
JPH08132118A (en) Method and device for measuring shape and/or flatness of moving material
KR101159912B1 (en) Apparatus for alignment measuring of rolling roll using laser
CN108072325B (en) Object position determining method and device
CN108088375B (en) Method and device for receiving object relative position detection light beam
US20190293411A1 (en) System and method for recording properties of at least one wheel of a rail vehicle
KR101528766B1 (en) Three-dimensional shape measurement device of train wheels
CN204110066U (en) For the Diagnosis Monitoring System of the wheels of guideway vehicle
Rikhotso et al. 3D rail modelling and measurement for rail profile condition assessment
CN108088374B (en) Light beam switching method and device
CN108072326B (en) Method and device for observing light beam irradiation
CN107957260B (en) Method and device for sending object relative position detection light beam

Legal Events

Date Code Title Description
PD Change of ownership

Owner name: VOLKERWESSELS INTELLECTUELE EIGENDOM B.V.; NL

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: VOLKERRAIL NEDERLAND B.V.

Effective date: 20200317