NL2015888B1 - Pyrolysis carbon black powder. - Google Patents

Pyrolysis carbon black powder. Download PDF

Info

Publication number
NL2015888B1
NL2015888B1 NL2015888A NL2015888A NL2015888B1 NL 2015888 B1 NL2015888 B1 NL 2015888B1 NL 2015888 A NL2015888 A NL 2015888A NL 2015888 A NL2015888 A NL 2015888A NL 2015888 B1 NL2015888 B1 NL 2015888B1
Authority
NL
Netherlands
Prior art keywords
rubber
range
rubber formulation
astm
mixture
Prior art date
Application number
NL2015888A
Other languages
Dutch (nl)
Inventor
Elie Lopes Cardozo Martijn
Anne Jonkman Jan
Cornelis Tobias Ter Kuile Pieter
Michael Twigg Christopher
Henricus Adrianus Verberne Arnoldus
Raimond Joost
Original Assignee
Black Bear Carbon B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Black Bear Carbon B V filed Critical Black Bear Carbon B V
Priority to NL2015888A priority Critical patent/NL2015888B1/en
Application granted granted Critical
Publication of NL2015888B1 publication Critical patent/NL2015888B1/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a pyrolysis carbon black powder and a rubber formulation comprising such a pyrolysis carbon black powder. In addition the present invention also relates to a rubber formulation comprising a mixture of different types of carbon black powders. Furthermore, the present invention relates to use of such a rubber formulation in the manufacture of tyres. The present invention relates to a tyre comprising the present rubber formulation as well.

Description

Title: Pyrolysis carbon black powder
The present invention relates to pyrolysis carbon black powder and a rubber formulation comprising such a pyrolysis carbon black powder. In addition the present invention also relates to a rubber formulation comprising a mixture of different types of carbon black powders. Furthermore, the present invention relates to use of such a rubber formulation in the manufacture of tyres. The present invention relates to a tyre comprising the present rubber formulation.
Rubber compositions typically contain particulate filler reinforcement to promote enhancement of physical properties of the rubber composition. Conventional filler reinforcement used for rubber compositions is typically at least one of rubber reinforcing carbon black and silica such as, for example, precipitated silica, including combinations of rubber reinforcing carbon black and the silica.
Rubber being one of the most outstanding materials is widely used in many engineering applications such as automotive, civil and electrical. It has been well established that rubber without filler materials have very low physical strength and of no practical use. Fillers are compounding ingredients added to a rubber compound for the purpose of either reinforcing or cheapening the compound. Despite that, fillers can also be used to modify the physical properties of both unvulcanized and vulcanized rubbers. Typical filler materials include carbon black, calcium silicate, calcium carbonate, silicon dioxide (silica) and clay. Fillers can be classified as black or white (non-black) fillers. Black fillers are more widely used in the rubber industry than white fillers. It is used in tyres, hoses and cable industries. Meanwhile, white fillers are used in the footwear, general rubber goods and automotive industries. In tyres both black fillers, such as carbon black, and white (non-black) fillers, such as silica, are used.
Carbon black is the most popular filler added into the rubber compound due to its ability to enhance the strength properties of rubber vulcanizate as compared to gum vulcanizate; where no filler added. Generally, there are various types of carbon black grades used in the rubber industry such as N-220 ISAF (Intermediate Super Abrasion Furnace), N-330 HAF (High Abrasion Furnace), N-550 FEF (Fast Extruding Furnace) and N-660 GPF (General Purpose Furnace) series. However, the choice of carbon black grades for any given rubber formulation must take into account the desired physical properties of the end products, processing methods and costs.
European patent application EP 2 457 945 relates to two rubber compositions, namely a silica-rich rubber compound and a carbon black-rich rubber compound without silica coupler and without sulphur curatives. The silica-rich rubber compound contains all of the silica reinforcement for the final rubber composition.
The carbon black-rich rubber compound contains all of the rubber reinforcing carbon black for the final rubber composition, wherein the two individual rubber compounds would not be silica coupler-containing reactive rubber compounds. Each of the rubber compounds are prepared by mixing the respective rubber compounds in an internal rubber mixer or on an open cylindrical mill after which the two rubber compounds are mixed together in desirable ratios.
International application WO2013095145 in the name of the present applicant relates a method for recycling a scrap rubber, in particular tyres, which method comprises the following steps: i) pyrolyzing a scrap rubber to obtain a char material; ii) milling the char material obtained in step i) to obtain a carbon black powder wherein the pyrolysis in step i) comprises at least a two-stage pyrolysis process: a) a first pyrolysis stage to obtain an intermediate char material and b) a second pyrolysis stage to obtain a char material, wherein at least one of the stages a) or b) is carried out in a rotary kiln. International application WO2013095145 also relates to the use of a scrap rubber derived carbon black powder as a filler or reinforcing agent in a rubber composition, an ink, a paint, a bitumen, a thermoplastic composition or a thermoplastic elastomer. A tyre is a ring-shaped covering that fits around a wheel's rim to protect it and enable better vehicle performance. Most tires, such as those for automobiles and bicycles, provide traction between the vehicle and the road while providing a flexible cushion that absorbs shock. The materials of modern pneumatic tires are synthetic rubber, natural rubber, fabric and wire, along with carbon black and other chemical compounds. They consist of a tread and a body. The tread provides traction while the body provides containment for a quantity of compressed air.
The performance characteristics of tyres are important, such as rolling resistance, i.e. the resistance to rolling caused by deformation of the tire in contact with the road surface, abrasion and wet traction, i.e. the tire's traction, or grip, under wet conditions.
An aspect of the present invention is to provide a pyrolysis carbon black powder having specific properties.
Another aspect of the present invention is to provide a rubber formulation comprising a pyrolysis carbon black powder, said rubber formulation showing a high level of mechanical properties.
Another aspect of the present invention is to provide a rubber formulation comprising a mixture of standard of carbon black powder and a pyrolysis carbon black powder, said rubber formulation being suitable as a component for the manufacture of tyres.
The present invention relates thus to a pyrolysis carbon black powder having a BET (ASTM D6556) in a range of 72-92 m2/g, a STSA (ASTM D6556) in a range of 57-75 m2/g, a OAN (ASTM D2414) in a range of 82-102 cm3/100g, a total inorganic content (DIN 51719) in a range of 9-38%, and a Si02 content in ash (DIN EN 15309) in a range of 0-30%.
The term “pyrolysis” means here that the carbon black powder has been manufactured according to a pyrolysis process. Carbon black powder produced by the incomplete combustion of heavy petroleum products does not fall within the definition of the present term “pyrolysis carbon black powder”.
According to a preferred embodiment the present pyrolysis carbon black powder has a BET (ASTM D6556) in a range of 82-92 m2/g, a STSA (ASTM D6556) in a range of 65-75 m2/g, a OAN (ASTM D2414) in a range of 92-102 cm3/100g, a total inorganic content (DIN 51719) in a range of 9-19%, and a Si02 content in ash (DIN EN 15309) in a range of 0-10%.
According to another preferred embodiment the present pyrolysis carbon black powder has a BET (ASTM D6556) in a range of 72-82 m2/g, a STSA (ASTM D6556) in a range of 57-67 m2/g, a OAN (ASTM D2414) in a range of 82-92 cm3/100g, a total inorganic content (DIN 51719) in a range of 28-38%, and a Si02 content in ash (DIN EN 15309) in a range of 10-30%.
In addition, the present invention relates to a rubber formulation comprising a mixture of any of the present pyrolysis carbon black powder as mentioned before and at least a carbon black, classified according to ASTM D1765-13, chosen from the group of N110, N115, N121, N134, N220, N234, N299, N326, N330, N339, N343, N347, N375, N539, N550, N650, N660 and N762.
In a preferred embodiment the present invention relates to a rubber formulation comprising any of the present pyrolysis carbon black powders as mentioned above.
The present inventors found that by applying any of the present pyrolysis carbon black powders or a mixture of any of the present pyrolysis carbon black powder as mentioned before and at least a carbon black chosen from the group mentioned before in a rubber formulation results in high performance rubber formulation.
The term pyrolysis carbon black powder as mentioned before refers to a specific type of carbon black especially manufactured according to the two-stage pyrolysis process as disclosed in International application WO2013095145 in the name of the present applicant. The Technical Data Sheet of two different grades of pyrolysis carbon black powder according to the present invention can be found in Table 1 below.
The rubber formulation according to the present invention preferably comprises a rubber chosen from the group of natural rubber (NR), synthetic polyisoprene rubber (IR), solution type styrene butadiene rubber (S-SBR), emulsion type styrene butadiene rubber (E-SBR) and polybutadiene rubber (BR), or a combination thereof.
According to a preferred embodiment the present rubber formulation comprises a mixture of any one of the present pyrolysis carbon black powders and at least a carbon black from the group mentioned before wherein the amount of any one of the present pyrolysis carbon black powders is in the range of 10-90 wt. % and the amount of said at least a carbon black is in the range of 90-10 wt. %, based on the total weight of said mixture.
According to another embodiment the present rubber formulation comprises a mixture of any one of the present pyrolysis carbon black powders and at least a carbon black from the group mentioned before wherein the amount of any one of the present pyrolysis carbon black powders is in the range of 20-80 wt. % and the amount of said at least a carbon black is in the range of 80-20 wt. %, based on the total weight of said mixture.
According to another embodiment the present rubber formulation comprises a mixture of any one of the present pyrolysis carbon black powders and at least a carbon black from the group mentioned before wherein the amount of any one of the present pyrolysis carbon black powders is in the range of 40-60 wt. % and the amount of the at least a carbon black is in the range of 60-40 wt. %, based on the total weight of said mixture.
The present rubber formulation further comprises one or more usual additives, such as zinc oxide, stearic acid, antioxidant, sulphur, accelerator, antiozonant, processing aid naphthenic and aromatic oil. These additives are commonly used in rubber formulations. A preferred rubber formulation according to the present invention comprises a mixture of different types of carbon black powders, the mixture comprising 20-80 wt. % of any one of the present pyrolysis carbon black powders and 80-20 of N330 wt. %, based on the total weight of said mixture of carbon blacks, wherein the rubber preferably comprises natural rubber (NR).
The amount of the mixture of different types of carbon black powders, that is a mixture of any one of the present pyrolysis carbon black powders and at least a carbon black, classified according to ASTM D1765-13, chosen from the group of N110, N115, N121, N134, N220, N234, N299, N326, N330, N339, N343, N347, N375, N539, N550, N650, N660 and N762, in the final rubber formulation is in a range of 5-50 wt. %, based on the total weight of said rubber formulation.
The Hardness Shore A, measured according to ISO 7619-1, of the rubber formulation is at least 55, preferably at least 57, more preferably at least 60.
The abrasion loss, measured according to ISO 4649:2010, of the rubber formulation is less than 150 mm3, preferably less than 130 mm3, more preferably less than 120 mm3.
Furthermore, the present invention relates to the use of a rubber formulation according to the present invention in the manufacture of tyres.
In addition, the present invention relates to a tyre comprising the present rubber formulation as discussed above.
The invention will be described by way of examples and these examples are used as exemplary embodiments of the present invention.
Figure 1 shows a comparison between a pyrolysis carbon black powder according to the present invention vs. a standard carbon black N330, classified according to ASTM D1765-13.
Figure 2 shows a comparison between an 80:20 wt. % mixture of a pyrolysis carbon black powder according to the present invention and a standard carbon black N330, classified according to ASTM D1765-13 vs. a standard carbon black N347, classified according to ASTM D1765-13.
Figure 1 and Figure 2 are so-called spider graphs which mean that some values have been inverted. Spider graphs provide the reader a direct impression of the results. In other words, for all values means a high value is a good result. Thus a point “outside” the inner circle, which inner circle refers to a reference value, can be identified as “good” orbetter”.
For Figure 1 the inverted values relate to Tan delta at 0 °C (ISO 4664-1), Tan delta at 60 °C (ISO 4664-1), Payne effect A(G'1-G'20), Payne effect A(G'1-G'90) and hysteresis.
For Figure 2 the inverted values relate to abrasion loss (ISO 4649 Method A), compression set (24h @ 70°C, ISO 815), Tan delta at 0 °C (ISO 4664-1), Tan delta at 60 °C (ISO 4664-1), Payne effect A(G'1-G'20) and Payne effect A(G'1-G'90).
Table 1: Properties of two grades of pyrolysis carbon black powder according to the present invention.
Example 1 A rubber recipe was prepared on basis of carbon black powder BBC t30, i.e. a pyrolysis carbon black powder according to the present invention. Another rubber recipe was prepared on basis standard carbon black N330, classified according to ASTM D1765-13. These recipes tested in ASTM D3192 standard rubber recipe.
The performance results of the present rubber formulation, i.e. a formulation comprising carbon black powder BBC t30, were compared to the performance results of standard carbon black N330, classified according to ASTM D1765-13.
The results have been shown in figure 1.
Figure 1 clearly shows that BBC t30 outperforms standard carbon black N330, especially for properties such as Tear nick-crescent (ISO 34-1 Method C), rebound resilience (ISO 4662), Tan delta at 0 °C (ISO 4664-1), Tan delta at 60 °C (ISO 4664-1), Payne effect A(G'1-G'20), Payne effect A(G'1-G'90) and hysteresis. Please note that there is no international standard for determining Payne effect. The method used (ERT403) is an internal method developed by Elastomer
Research Testing (ERT) laboratory, Deventer, Netherlands.
Example 2 A carbon black mixture was prepared on basis of a mixture of 20 wt.% carbon black powder BBC t30, i.e. a pyrolysis carbon black powder according to the present invention, and 80 wt.% N330, a standard carbon black N330, classified according to ASTM D1765-13. On basis of this mixture a rubber composition according to the present invention was prepared.
Another rubber composition was prepared on basis of a standard carbon black N347, classified according to ASTM D1765-13.
Both recipes were tested in ASTM D3192 standard rubber recipe.
The performance results of the present rubber formulation, i.e. a formulation comprising a mixture of carbon black powder BBC t30 and N330, were compared to the performance results of standard carbon black N347, classified according to ASTM D1765-13.
The results have been shown in figure 2.
Figure 2 clearly shows that present rubber formulation, i.e. a formulation comprising a mixture of carbon black powder BBC t30 and N330, outperforms standard carbon black N347, especially for properties such as abrasion loss (ISO 4649 Method A), compression set (24h @ 70°C, ISO 815), Rebound resilience (ISO 4662), DeMattia flex fatigue (ASTM D-430 Method B), Tear nick-crescent (ISO 34-1 Method C), Tan delta at 0 °C (ISO 4664-1), Tan delta at 60 °C (ISO 4664-1), Payne effect A(G'1-G'20) and Payne effect A(G'1-G'90). Please note that there is no international standard for determining Payne effect.

Claims (16)

1. Pyrolyse koolstofpoeder voorzien van een BET (ASTM D6556) in een gebied van 72-92 m2/g, een STSA (ASTM D6556) in een gebied van 57-75 m2/g, een OAN (ASTM D2414) in een gebied van 82-102 cm3/100g, een totaal anorganisch gehalte (DIN 51719) in een gebied van 9-38% en een Si02-gehaite in as (DIN EN 15309) in een gebied van 0-30%.A pyrolysis carbon powder comprising a BET (ASTM D6556) in an area of 72-92 m2 / g, an STSA (ASTM D6556) in an area of 57-75 m2 / g, an OAN (ASTM D2414) in an area of 82-102 cm3 / 100g, a total inorganic content (DIN 51719) in a range of 9-38% and an SiO2 content in ash (DIN EN 15309) in a range of 0-30%. 2. Pyrolyse koolstofpoeder volgens conclusie 1 met een BET (ASTM D6556) in een gebied van 82-92 m2/g, een STSA (ASTM D6556) in een gebied van 65-75 m2/g, een OAN (ASTM D2414) in een gebied van 92-102 cm3/100g, een totaal anorganisch gehalte (DIN 51719) in een gebied van 9-19% en een Si02-gehaite in as (DIN EN 15309) in een gebied van 0-10%.Pyrolysis carbon powder according to claim 1 with a BET (ASTM D6556) in an area of 82-92 m2 / g, an STSA (ASTM D6556) in an area of 65-75 m2 / g, an OAN (ASTM D2414) in an 92-102 cm3 / 100g, a total inorganic content (DIN 51719) in a range of 9-19% and an SiO2 content in ash (DIN EN 15309) in a range of 0-10%. 3. Pyrolyse koolstofpoeder volgens conclusie 1 met een BET (ASTM D6556) in een gebied van 72-82 m2/g, een STSA (ASTM D6556) in een gebied van 57-67 m2/g, een OAN (ASTM D2414) in een gebied van 82-92 cm3/100g, een totaal anorganisch gehalte (DIN 51719) in een gebied van 28-38% en een Si02-gehalte in as (DIN EN 15309) in een gebied van 10-30%.Pyrolysis carbon powder according to claim 1 with a BET (ASTM D6556) in a range of 72-82 m2 / g, an STSA (ASTM D6556) in a range of 57-67 m2 / g, an OAN (ASTM D2414) in a 82-92 cm3 / 100g, a total inorganic content (DIN 51719) in a range of 28-38% and an SiO2 content in ash (DIN EN 15309) in a range of 10-30%. 4. Rubberformulering, omvattende een mengsel van één of meer van de pyrolyse koolstofpoeders volgens conclusies 1-3 en ten minste één koolstof, geclassificeerd volgens ASTM D1765-13, gekozen uit de groep van N110, N115, N121, N134, N220, N234, N299, N326, N330, N339, N343, N347, N375, N539, N550, N650, N660 en N762.A rubber formulation comprising a mixture of one or more of the pyrolysis carbon powders according to claims 1-3 and at least one carbon, classified according to ASTM D1765-13, selected from the group of N110, N115, N121, N134, N220, N234, N299, N326, N330, N339, N343, N347, N375, N539, N550, N650, N660 and N762. 5. Rubberformulering volgens conclusie 4, waarbij de rubberformulering een rubber omvat, gekozen uit de groep van natuurlijke rubber (NR), synthetische polyisopreen rubber (IR), oplossingstype styreenbutadieen rubber (S-SBR), emulsietype styreenbutadieen rubber (E-SBR) en polybutadieen rubber (BR), of een combinatie hiervan.The rubber formulation according to claim 4, wherein the rubber formulation comprises a rubber selected from the group of natural rubber (NR), synthetic polyisoprene rubber (IR), solution type styrene butadiene rubber (S-SBR), emulsion type styrene butadiene rubber (E-SBR) and polybutadiene rubber (BR), or a combination thereof. 6. Rubberformulering volgens een of meer van conclusies 4-5, waarbij in voornoemd mengsel van pyrolyse koolstofpoeder en ten minste een koolstof als genoemd in conclusie 4 de hoeveelheid pyrolyse koolstofpoeder zich bevindt in het gebied van 10-90 gew.% en waarbij de hoeveelheid van voornoemd ten minste een koolstof zich bevindt in het gebied van 90-10 gew.%, op basis van het totale gewicht van voornoemd mengsel.Rubber formulation according to one or more of claims 4-5, wherein in said mixture of pyrolysis carbon powder and at least one carbon as mentioned in claim 4, the amount of pyrolysis carbon powder is in the range of 10-90% by weight and wherein the amount of said at least one carbon is in the range of 90-10% by weight, based on the total weight of said mixture. 7. Rubberformulering volgens conclusie 6, waarbij in voornoemd mengsel van pyrolyse koolstofpoeder en ten minste een koolstof zoals vermeld in conclusie 4 de hoeveelheid BBC500 zich bevindt in het gebied van 20-80 gew.% en waarbij de hoeveelheid van voornoemd ten minste een koolstof zich bevindt in het gebied van 80-20 gew.%, op basis van het totale gewicht van voornoemd mengsel.A rubber formulation according to claim 6, wherein in said pyrolysis mixture of carbon powder and at least one carbon as stated in claim 4, the amount of BBC500 is in the range of 20-80% by weight and wherein the amount of said at least one carbon is is in the range of 80-20% by weight, based on the total weight of said mixture. 8. Rubberformulering volgens conclusie 7, waarbij in voornoemd mengsel van pyrolyse koolstofpoeder en ten minste een koolstof zoals vermeld in conclusie 4 de hoeveelheid voornoemd pyrolyse koolstofpoeder zich bevindt in het gebied van 40-60 gew.% en waarbij de hoeveelheid van voornoemd ten minste een koolstof zich bevindt in het gebied van 60-40 gew.%, op basis van het totale gewicht van voornoemd mengsel.A rubber formulation according to claim 7, wherein in said mixture of pyrolysis carbon powder and at least one carbon as mentioned in claim 4, the amount of said pyrolysis carbon powder is in the range of 40-60% by weight and wherein the amount of said at least one carbon is in the range of 60-40% by weight based on the total weight of said mixture. 9. Rubberformulering volgens een of meer van de voorafgaande conclusies, waarbij voornoemd mengsel van pyrolyse koolstofpoeder en ten minste een koolstof zoals vermeld in conclusie 4 omvat 20-80 gew.% pyrolyse koolstofpoeder en 80-20 N330 gew.%, op basis van het totale gewicht van voornoemd mengsel.A rubber formulation according to any one of the preceding claims, wherein said mixture of pyrolysis carbon powder and at least one carbon as mentioned in claim 4 comprises 20-80% by weight of pyrolysis carbon powder and 80-20 N330% by weight, based on the total weight of the aforementioned mixture. 10. Rubberformulering volgens een of meer van de voorafgaande conclusies, waarbij voornoemd mengsel van pyrolyse koolstofpoeder en ten minste een koolstof zoals vermeld in conclusie 4 aanwezig is in voornoemde rubberformulering in een gebied van 5-50 gew.%, op basis van het totale gewicht van voornoemde rubberformulering.A rubber formulation according to any one of the preceding claims, wherein said mixture of pyrolysis carbon powder and at least one carbon as mentioned in claim 4 is present in said rubber formulation in a range of 5-50% by weight, based on the total weight of the aforementioned rubber formulation. 11. Rubberformulering, omvattende een of meer van de pyrolyse koolstofpoeders volgens conclusies 1-3.A rubber formulation comprising one or more of the pyrolysis carbon powders according to claims 1-3. 12. Rubberformulering volgens één of meer van de voorafgaande conclusies, waarbij de Hardness Shore A, gemeten volgens ISO 7619-1, van voornoemde rubberformulering ten minste 55, bij voorkeur ten minste 57, met name bij voorkeur ten minste 60 bedraagt.A rubber formulation according to any one of the preceding claims, wherein the Hardness Shore A, measured according to ISO 7619-1, of said rubber formulation is at least 55, preferably at least 57, in particular preferably at least 60. 13. Rubberformulering volgens een of meer van de voorafgaande conclusies, waarbij het slijtageverlies (“abrasion loss”), gemeten volgens ISO 4649:2010 Method A, van voornoemde rubberformulering minder dan 150 mm3, bij voorkeur minder dan 130 mm3, met name bij voorkeur minder dan 120 mm3, bedraagt.Rubber formulation according to one or more of the preceding claims, in which the abrasion loss, measured according to ISO 4649: 2010 Method A, of said rubber formulation is less than 150 mm 3, preferably less than 130 mm 3, particularly preferably less than 120 mm3. 14. Rubberformulering volgens een of meer van de voorafgaande conclusies, verder omvattende een of meer van de voor een rubberformulering gebruikelijke toevoermiddelen, gekozen uit de groep van zinkoxide, stearinezuur, antioxidant, zwavel, versnellingsmiddel, anti-ozonant, verwerkingshulpmiddel, nafteen-achtige en aromatische olie.A rubber formulation according to any one of the preceding claims, further comprising one or more of the feed additives usual for a rubber formulation selected from the group consisting of zinc oxide, stearic acid, antioxidant, sulfur, accelerator, anti-ozonant, processing aid, naphthenic and aromatic oil. 15. Toepassing van een rubberformulering volgens een of meer van de voorafgaande conclusies voor het vervaardigen van banden.Use of a rubber formulation according to one or more of the preceding claims for the manufacture of tires. 16. Band, omvattende een rubberformulering volgens een of meer van de conclusies 1-14.A tire comprising a rubber formulation as claimed in one or more of claims 1-14.
NL2015888A 2015-12-01 2015-12-01 Pyrolysis carbon black powder. NL2015888B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2015888A NL2015888B1 (en) 2015-12-01 2015-12-01 Pyrolysis carbon black powder.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2015888A NL2015888B1 (en) 2015-12-01 2015-12-01 Pyrolysis carbon black powder.

Publications (1)

Publication Number Publication Date
NL2015888B1 true NL2015888B1 (en) 2017-06-14

Family

ID=59254052

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2015888A NL2015888B1 (en) 2015-12-01 2015-12-01 Pyrolysis carbon black powder.

Country Status (1)

Country Link
NL (1) NL2015888B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878148A (en) * 2019-11-19 2020-03-13 珠海格力绿色再生资源有限公司 Method for modifying pyrolysis carbon black

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878148A (en) * 2019-11-19 2020-03-13 珠海格力绿色再生资源有限公司 Method for modifying pyrolysis carbon black
CN110878148B (en) * 2019-11-19 2021-06-15 珠海格力绿色再生资源有限公司 Method for modifying pyrolysis carbon black

Similar Documents

Publication Publication Date Title
US7884156B2 (en) Elastomer compositions with carbon black
US10087313B2 (en) Rubber composition for tire treads
US12012497B2 (en) Recovered carbon black and composite material comprising said recovered carbon black
US9260600B2 (en) Rubber composition for use in tires
KR101626543B1 (en) Rubber composition for tire
JP6392748B2 (en) Pneumatic radial tire for passenger cars
CN112280124A (en) Rubber composition and tire comprising tread
JP6023579B2 (en) Rubber composition production method, rubber composition and tire
EP3737566A1 (en) Rubber compositions with disaggregated carbon nanotubes
NL2015888B1 (en) Pyrolysis carbon black powder.
EP2823972A1 (en) Rubber composition for tire, and pneumatic tire
WO2011123406A1 (en) Low hysteresis tire
WO2015093316A1 (en) Rubber composition for tires
JPH04274901A (en) Radial tire
CA2674067C (en) Tire bead insulation
US10752055B2 (en) Rubber composition for tire
JP6657754B2 (en) Rubber composition for tire belt cushion
JP4938992B2 (en) Rubber composition for inner liner
JPH0345401A (en) Pneumatic tire
CN116472313A (en) Tyre for vehicle wheels
JP2023051843A (en) Rubber composition and tire
JP2022164149A (en) Rubber composition and method for producing the same
JP2018177872A (en) Rubber composition and pneumatic tire
JP2012158659A (en) Rubber composition for tire tread

Legal Events

Date Code Title Description
RC Pledge established

Free format text: DETAILS LICENCE OR PLEDGE: RIGHT OF PLEDGE, ESTABLISHED

Name of requester: CAPRICORN SUSTAINABLE CHEMISTRY FUND NV

Effective date: 20231017