NL2011290C2 - A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method. - Google Patents

A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method. Download PDF

Info

Publication number
NL2011290C2
NL2011290C2 NL2011290A NL2011290A NL2011290C2 NL 2011290 C2 NL2011290 C2 NL 2011290C2 NL 2011290 A NL2011290 A NL 2011290A NL 2011290 A NL2011290 A NL 2011290A NL 2011290 C2 NL2011290 C2 NL 2011290C2
Authority
NL
Netherlands
Prior art keywords
laser
write
unit
light pulses
substrate
Prior art date
Application number
NL2011290A
Other languages
Dutch (nl)
Inventor
Jacobus Lambertus Merksteijn
Original Assignee
Climate Invest B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Climate Invest B V filed Critical Climate Invest B V
Priority to NL2011290A priority Critical patent/NL2011290C2/en
Priority to PCT/EP2014/067267 priority patent/WO2015022333A2/en
Application granted granted Critical
Publication of NL2011290C2 publication Critical patent/NL2011290C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)

Abstract

The present invention is related to a system and method for writing a pattern onto a substrate using laser micromachining. The system comprises a seed laser system (11) for outputting a plurality of laser beams (a, b, c), each laser beam comprising a plurality of subsequent light pulses; a laser crystal (12) for amplifying light pulses; a pumping unit (13) for providing pumping power to the laser crystal; a first selector unit (16) configured for individually switching the laser beams outputted by the seed laser system between an active and inactive state, wherein, the first selector unit is configured to select, for each laser beam in the active state, a light pulse among the plurality of light pulses, to be passed towards the laser crystal for amplification; a light directing unit (14) for directing incident light pulses towards the substrate; a second selector unit (17) configured for selecting, for each laser beam outputted by the laser crystal, an amplified light pulse among the plurality of amplified light pulses, to be directed to the light directing unit for writing said pattern; a control unit (18) for controlling the pumping unit, the light directing unit and the first and second selector units. The method comprises the steps of: outputting a plurality of laser beams, each laser beam comprising a plurality of subsequent light pulses; providing a laser crystal for amplifying light pulses; providing pumping power to the laser crystal; individually switching the laser beams outputted by the seed laser system between an active and inactive state, wherein, for each laser beam in the active state, a light pulse among the plurality of light pulses is selected using a first selector unit to be passed towards the laser crystal for amplification; using a second selector unit for selecting, for each laser beam outputted by the laser crystal, an amplified light pulse among the plurality of amplified light pulses; directing the selected amplified light pulses towards the substrate for writing said pattern. According to the invention, individually controllable multiple laser beams are used with a single laser crystal in such a manner that multiple pulses can be applied to the substrate.

Description

A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method
The present invention is related to a laser micromachining system for writing a pattern onto a substrate using laser micromachining. It is further related to a laser micromachining method.
Laser micromachining is a technique by which objects or the surface thereof, can be modified or shaped using laser light. For instance, applying light of sufficient energy allows material to be ablated. Due to its inherent moderate spot size, laser light can be used to fabricate objects having very small features.
Figure 1 illustrates a known setup for a laser micromachining device. This device comprises a seed laser 1 capable of generating a plurality of light pulses having an intensity, pulse width and pulse repetition rate. Typically the seed laser emits pulses using a steady repetition rate, i.e. at constant frequency in the order of 30-50MHz, although for some seed lasers this rate can be adjusted during operation. The intensity of the pulse corresponds to the amount of photons per unit time whereas the pulse width corresponds to the duration of the pulse in time. The energy of each photon is well defined due to the narrow bandwidth of the laser light. Consequently, the energy imparted to the substrate is substantially proportional to the product of pulse width and pulse intensity. This energy determines to a large extent the speed at which material is ablated from the surface . A laser crystal 2 is optically coupled to seed laser 1 and is configured to amplify the light pulse. Several materials can be used as laser crystal for instance yttrium aluminium garnet (YAG) material doped with rare-earth ions such as neodymium, ytterbium, or erbium.
Laser crystal 2 can be used to amplify incoming light pulses by means of stimulated emission. In this process an atomic electron (or an excited molecular state), which interacts with an electromagnetic wave of a certain frequency, may drop to a lower energy level, transferring its energy to that field. A photon created in this manner has the same phase, frequency, polarization, and direction of travel as photons of an incident wave.
For this process to result in a net gain of the crystal, a population inversion is required. This can be achieved by supplying energy to the crystal such that the relevant electrons move to higher states. In figure 1, a pumping unit 3 is illustrated for pumping laser crystal 2 with a pumping power. This energy can be in the form of infrared light having a different frequency than the light to be amplified.
The light output of laser crystal 2 is fed to a directing unit 4 for directing the amplified light pulse onto substrate 5. This unit 4 normally comprises a plurality of mirrors and/or lenses.
In a typical mode of operation, a single pulse is applied at a single position on the substrate. The next pulse is then applied at a further position. Directing unit 4 comprises mechanical components with a non-zero mass. Consequently, inertia of directing unit 4 limits the pulse repetition rate of the incoming light pulses which directing unit 4 can handle in such a manner that each pulse is directed to its target position on substrate 5. Typically, the maximum repetition rate of prior art systems is in the order of 100-200kHz.
Because the maximum repetition rate of directing unit 4 and seed laser 1 differ considerably, light pulse selector units 6, 7 are used. Selector unit 6, arranged in between laser crystal 2 and seed laser 1, selects one or more pulses among the plurality of pulses making up the laser beam such that the repetition rate is effectively lowered. For instance, by selecting 1 out of every 200 pulses of a 40MHz laser beam, a repetition rate of 200kHz is obtained. Pulses that are not selected are directed away from laser crystal 2 .
Selector unit 7 is normally used for selecting which amplified pulse should be applied to the substrate. Pulses that are not used for writing the pattern are directed away from substrate 5.
To maintain stable operation, laser crystal 2 is fed with a constant or substantially constant amount of light pulses. Consequently, on average, a constant amount of power is outputted by laser crystal 2. A suitable quantity of pumping power is supplied by pumping unit 3 to maintain this balance. In case less light pulses are provided to laser crystal 2 per unit time, albeit using the same pumping power, the intensity per pulse will increase. Similarly, providing more pulses will result in a decrease in intensity. In most applications, the energy per pulse should be kept as constant as possible. It is therefore common practice, if a pulse need not be applied to the substrate, to discard the pulse after amplification instead of discarding the pulse before amplification. A control unit 8 is used for controlling the directing unit, the pumping unit, and the selector units 6, 7. If at the write position a relatively large depression in the substrate is required, light can be applied using a single high intensity pulse, using a series of pulses having a lower intensity, or using a pulse with a lower intensity albeit for a longer period of time, i.e. having a larger pulse width. If required, control unit 8 may therefore also control seed laser 1 to adjust pulse width, pulse intensity and/or repetition rate. A continuing trend in the art is to provide systems with increasing processing speeds. However, all known solutions are hampered by the fact that the speed of the directing unit is limited.
It is therefore an object of the present invention to provide a system that allows faster processing speeds.
According to the present invention, this object is achieved with a system in accordance with claim 1.
The system according to the invention comprises a seed laser system for outputting a plurality of laser beams, each laser beam comprising a plurality of subsequent light pulses. It further comprises a laser crystal for amplifying light pulses and a pumping unit for providing pumping power to the laser crystal. A first selector unit is provided that is configured for individually switching the laser beams outputted by the seed laser system between an active and inactive state, wherein, the first selector unit is configured to select, for each laser beam in the active state, a light pulse among the plurality of light pulses, to be passed towards the laser crystal for amplification. The system also comprises a light directing unit for directing incident light pulses towards the substrate. A second selector unit is provided that is configured for selecting, for each laser beam outputted by the laser crystal, an amplified light pulse among the plurality of amplified light pulses, to be directed to the light directing unit for writing the pattern. The system also comprises a control unit for controlling the pumping unit, the light directing unit and the first and second selector units.
In prior art systems, a pattern is written using a single laser spot. By combining several spots in a single write event, using the same directing element, a considerable improvement in speed can be obtained. By allowing the laser beams to be individually switchable between active and inactive states, suitable flexibility can be obtained.
The system may comprise a memory coupled to the control unit, the memory storing a write sequence for writing the pattern, the write sequence comprising a sequence of write frames, each write frame having a plurality of write fields corresponding to the plurality of laser beams, the write fields indicating whether a pulse of the relevant laser beam should be applied at a position on the substrate associated with the write frame. The control unit can be configured to control at least one of the pumping unit, the light directing unit and the first and second selector units in accordance with the write sequence. The memory may be at the same location as the control unit hardware. It may also be on a remote location but being accessible by the control unit or it may be an integral component of the control unit. A write frame comprises information whether pulses of the plurality of laser beams should be applied at a particular position.
The present invention particularly relates to embodiments wherein light pulses are applied at discrete positions. Embodiments in which the directing unit moves during application of the pulse, thereby scanning the substrate, are however not excluded. A write frame is typically also associated with a time during which the pulses are to be applied to the substrate.
During this time, the directing unit preferably directs the pulses to the same position. The directing unit can be configured to move to the next position when the pulse has been applied, i.e. after a period corresponding to the pulse width has expired. A suitable delay can be implemented.
It should be noted that typical pulse widths are in the order of 10 picoseconds, which is considerably smaller than the period of the light pulses, typically being in the order of microseconds. It may therefore also be possible to select consecutive light pulses from the seed laser to construct a small burst of light pulses. This simulates the situation in which a single pulse with a higher intensity is applied.
This burst of pulses is applied to the same position.
The memory may further store state information indicating the active or inactive state for each of the plurality of laser beams. This state information can be stored for each write frame. It allows the discrimination between a write field indicating that a pulse should be discarded by the second selector unit (active laser beam, pulse need not be applied) or that a pulse should be discarded by the first selector unit (inactive laser beam). The control unit can use this information to control the selector units accordingly.
Each write frame can be associated with a power and/or energy input/output of the amplified pulses incident on or emerging from the laser crystal, respectively. The write sequence can be divided into write groups, wherein write frames in a single write group correspond to substantially the same power and/or energy input/output. The power and/or energy level can be used by the control unit to control the pumping unit to provide a suitable amount of pumping power. In some embodiments, the power and/or energy information is used to maintain a substantially constant amount of energy contained within a single pulse, regardless the amount of active laser beams. It should be noted that various other physical parameters may be used for the same purpose, such as intensity and/or luminance values.
The write sequence can be ordered based on the power and/or energy input/output. The control unit can be configured to control the pumping unit, the directing unit and the selector units, all or individually, in accordance with the order of the write sequence. For instance, the write sequence may start with write frames having a high associated power and/or energy level and end with write frames having a low associated power and/or energy level.
The control unit can be configured to adjust the pumping power in dependence of the power and/or energy input/output corresponding to a write group. During the course of writing the pattern, the control unit may in the above case lower the pumping power to maintain substantially constant pulse energy .
The control unit may be configured to implement a waiting period in between write groups before controlling the second selector unit to allow light pulses to be directed towards the substrate to allow the intensity of the amplified light pulses to stabilize. The energy and/or power level between write groups may differ considerably. This particularly applies to write groups in which the same energy per pulse is used, but which differ in the amount of active laser beams. In such case it is required to adjust the pumping power. Such adjusting requires time, far exceeding the pulse widths involved. By using a suitable waiting period the situation can be avoided wherein a light pulse having an undefined or unsuitable energy level is applied to the substrate.
In prior art systems, pulses are normally applied in a continuous left to right or vice versa manner. According to the invention however, because multiple laser beams are used, it may be advantageous to first process write frames having the same amount of active laser beams and/or the same power/energy levels even if the positions on the substrate corresponding to those write frames are far apart. In this manner, unnecessary waiting periods due to the changing of energy/power levels can be avoided.
Write frames belonging to different groups may have different power and/or energy levels and typically relate to a different amount of active laser beams. However, it is possible for two write frames to have the same energy/power level although with a different amount of active laser beams. For instance, a write frame may relate to three active beams each carrying 50W, or to two active beams each carrying 75W. These write frames may be attributed to different write groups. Furthermore, suitable waiting periods as defined before may be implemented when switching between different amounts of active laser beams even though the energy/power levels remain substantially the same.
The first and/or second selector unit can also be configured for attenuating incident light pulses. The level of attenuation can be controlled by the control unit. This allows an even further control over the energy that is imparted to the substrate. It may even be possible to implement detectors near the selector units which measure the pulses that are to be discarded. Information on the energy/power levels of these pulses can be used to control the level of attenuation of the pulses that are to be applied to the substrate or to control the pumping power.
The directing unit may comprise a refractive or reflective directing element for refracting or reflecting the light pulse(s) from the laser crystal onto the substrate. The directing element may be rotatable in at least one direction for changing a position on the substrate onto which the light pulses from the laser crystal should be applied. Such directing element can comprise a mirror which is individually rotatable about two axes.
The laser beams preferably falls onto and emerges from the laser crystal in a linear spaced apart manner. For instance, the output and/or input of the laser crystal may comprise a plurality of laser spots evenly distributed on a row. Light pulses may, apart from or alternatively to being separated in space, also be separated in polarization. It may also be possible to alternatively or additionally separate the pulses in time. This is made possible because the pulse widths are very small compared to the period of the light pulse train. In this way, pulse can still occupy the same space and/or share the same optics, albeit not simultaneously. Of course, and not only for such embodiment, it is advantageous to ensure proper synchronization between the sources of the laser beams in the seed laser system.
In other embodiments, the laser beams are combined to occupy substantially the same space prior to entering the laser crystal. While in the crystal, the laser beams can then be amplified as a whole, while after emerging the laser crystal, the individual light pulses are spatially separated again .
According to a second aspect, the present invention provides a method for writing a pattern onto a substrate using laser micromachining in accordance with claim 15.
Next, the invention will be described in more detail using the appended figures, in which:
Figure 1 illustrates a prior art laser micromachining system;
Figure 2 shows an embodiment of a laser micromachining system according to the invention;
Figures 3A-3C shows an example of a structure on a substrate to be fabricated using the system of figure 2;
Figures 4A-4B show two examples of write sequences that can be used for fabricating the structure in figures 3A-3C; and
Figure 5 illustrates a further structure that can be fabricated using the system in figure 2.
Figure 2 shows an embodiment of a laser micromachining system according to the invention. Here, seed laser system 11 comprising three seed lasers 11' emits individual laser beams a, b, c, that are characterized by an intensity, a pulse width, and a pulse repetition rate. Laser beams a, b, c fall onto a laser crystal 12. Laser crystal 12 can be embodied as a crystal slab, covered on either side with heatsinks. The faces of the crystal can be made reflective thereby allowing light pulses to cross the crystal back and forth to gain intensity. Slab crystals are known in the art.
Pumping unit 13 provides pumping power to crystal slab 12 in the form of infrared light. This light can be supplied to crystal slab 12 in a manner similar to light beams a, b, c. More in particular, when the frequencies of laser beams a, b, c and the infrared light are sufficiently far removed, interference will not be an issue allowing laser beams a, b, c and the infrared light to spatially overlap. Other kinds of energy could be used to cause population inversion in crystal slab 12.
Amplified light pulses contained in laser beams A, B, C emerging from crystal slab 12 fall onto a mirror surface 14' of directing unit 14 which can be rotated along two axes. This allows a pattern to be written on substrate 5. It is also be possible to use two separate mirror surfaces which are each individually controllable, albeit each along one axis only.
Control unit 18 controls motors (not illustrated) by which the rotation of mirror surface 14' can be realized. It may further control seed laser system 11 such that at least one of the intensity, pulse width and pulse repetition rate can be adjusted. In addition, it controls pumping unit 13 to control the amount of pumping power that is supplied to crystal slab 12, and selector units 16, 17 as will described in more detail below.
Figures 3A-3C show an example of a structure in substrate 5 that can be written using the system of figure 2. Starting from the blank surface of substrate 5 illustrated in figure 3A, a recess 20 is first created as indicated in figure 3B. A further recess 21 is subsequently created. This latter recess, which is roughly twice as deep as recess 20, can be realized in different ways as will be described next.
Figure 4A illustrates a write sequence 30 that can be used to fabricate the structure of figure 3C. Write sequence 30 comprises two write groups 31, 32. Each write group comprises write frames 33. Each write frame is associated with a position 34 on the substrate. This position information may be part of the write frame. Each write frame 33 comprises three different write fields 35 that are associated with laser beams a, b, c, respectively. In figure 4A, a "1" and a "0" indicate that a pulse should or should not be applied, respectively, at the associated position 34. Furthermore, an "A" and "i", indicate whether a laser beam is active or inactive, respectively.
In figure 4A only the x-coordinate is indicated and is related to the orientation as depicted by arrow 22 in figure 3C.
Figure 4A further illustrates the pumping power that is to be supplied when processing the various write frames. Moreover, the write frames are processed in time corresponding to the order in which they are presented in figure 4A, starting from the left.
First, laser beams a, b, c are all active and are allowed to fall onto substrate 5. In other words, first selector unit 16 selects pulses among the plurality of pulses outputted by the various seed lasers 11' of seed laser system 11. For instance, selector unit 16' selects 1 out of every 200 pulses to obtain a pulse repetition rate of 200kHz starting with a pulse repetition rate of 40Mhz of the laser light outputted by seed laser 11'. Furthermore, the selector units 17' of selector unit 17 all allow the light pulses of laser beams A, B, C to fall onto substrate 5.
Due to the energy imparted to substrate 5, material will be ablated. By repeating this process at three adjacent positions xl, x2, x3, a groove is obtained.
In figure 4A, the first three write frames belong to a single write group 31. The next group 32 comprises different write frames 33. In this write group B, the pumping power has been lowered, for illustrational purposes to 33%, to allow the single active laser beam to have substantially the same energy per pulse as the pulses of write group 31.
Because recess 21 is roughly three times as deep as recess 20, more power and/or time is needed. In write sequence 30 of figure 4A, this is achieved by using the same pulse energy three times at the same position.
Figure 4B shows a different approach of obtaining recess 21. Instead of lowering the pumping power, substantially the same pumping power is maintained when patterning recess 21. Therefore, the energy contained in a single pulse is higher than in write group 31. Write frames 33 in write group 40 also indicate that only laser beam B is active, but only a single write frame 33 is needed to achieve the required depth due to the increased energy levels of the pulses.
Figure 4C shows an even different approach of obtaining recess 21. Compared to figure 4A, the distinction between write groups 31 and 32 has gone as every write frame indicates that all laser beams are active. However, during the last nine write frames, selector unit 17 is operated to discard the amplified pulses belonging to laser beams A and C. Hence, in this embodiment, the laser crystal 12 is not affected in any manner by the processing of substrate 5 as the incident and emerging light pulses are identical during the entire process of patterning substrate 5.
Figure 5 illustrates a different structure that can be written with the system of figure 2. It comprises two rectangular recesses 50 that are connected by a connecting recess 51. It is assumed that recesses 50 are twice as deep as recess 51 and that the width of recess 51 corresponds to the size of a laser spot of a single laser beam. In traditional systems, such structure would be written using a single laser. Recess 50 would be written for instance by applying two consecutive pulses at the same location to allow for the required depth to be achieved. Recess 51 could be written using a single pulse per location.
According to the invention, recess 51 can be written using four active laser beams although only one is used for writing recess 51. Recess 50 can be written using two active laser beams albeit with twice the energy per pulse. The writing of recesses 50 and 51 will substantially require the same amount of pumping power. Hence, relatively long stabilization times associated with changing pumping power can be avoided. This flexibility allows structures to be written more efficiently and faster than what is achievable using prior art systems.
It should be apparent to the skilled person that other embodiments are possible of this invention, the scope of which is defined by the appended claims.

Claims (26)

1. Systeem voor het schrijven van een patroon op een substraat gebruikmakende van micromachining, het systeem omvattende: een voeding laser systeem voor het uitvoeren van een veelvoud aan laserstralen, waarbij elk laserstraal een veelvoud aan opeenvolgende lichtpulsen omvat; een laser kristal voor het versterken van lichtpulsen; een pompeenheid voor het verschaffen van pompvermogen aan het laser kristal; een eerste selecteereenheid ingericht voor het individueel schakelen van de laserstralen welke zijn uitgevoerd door het voeding laser systeem tussen een actieve en inactieve toestand, waarbij de eerste selecteereenheid is ingericht om voor elke laserstraal in de actieve toestand een lichtpuls uit het veelvoud aan lichtpulsen te selecteren om doorgelaten te worden naar het laser kristal voor versterking; een licht richteenheid voor het richten van invallende lichtpulsen naar het substraat; een tweede selecteereenheid voor het voor elke door het laser kristal uitgevoerde laserstraal selecteren van een versterkte lichtpuls uit het veelvoud aan versterkte lichtpulsen, om gericht te worden naar de licht richteenheid voor het schrijven van het genoemde patroon; een besturingseenheid voor het besturen van de pompeenheid, de licht richteenheid en de eerste en tweede selecteereenheden.A system for writing a pattern on a substrate using micromachining, the system comprising: a power supply laser system for performing a plurality of laser beams, each laser beam comprising a plurality of successive light pulses; a laser crystal for amplifying light pulses; a pump unit for providing pump power to the laser crystal; a first selection unit adapted to individually switch the laser beams executed by the feed laser system between an active and inactive state, the first selection unit being adapted to select a light pulse from the plurality of light pulses for each laser beam in the active state to being passed to the laser crystal for amplification; a light directing unit for directing incident light pulses to the substrate; a second selection unit for selecting, for each laser beam executed by the laser crystal, an amplified light pulse from the plurality of amplified light pulses, to be directed to the light alignment unit for writing said pattern; a control unit for controlling the pump unit, the light directing unit and the first and second selection units. 2. Systeem volgens conclusie 1, verder omvattende een geheugen welke is gekoppeld aan de genoemde besturingseenheid, waarbij het genoemde geheugen een schrijfsequentie opslaat voor het schrijven van het genoemde patroon, waarbij de schrijfsequentie een sequentie aan schrijfframes omvat, waarbij elke schrijfframe een veelvoud aan schrijfvelden omvat welke overeenkomen met het veelvoud aan laserstralen, waarbij de schrijfvelden aangeven of een puls van de relevante laserstraal zou moeten worden toegepast op een positie op het substraat welke geassocieerd is met het schrijfframe; waarbij de besturingseenheid is ingericht ten minste één van de pompeenheid, de licht richteenheid en de eerste en tweede selecteereenheden te besturen in overeenstemming met de schrijfsequentie.The system of claim 1, further comprising a memory coupled to said control unit, said memory storing a write sequence for writing said pattern, the write sequence comprising a sequence of write frames, each write frame having a plurality of write fields includes those corresponding to the plurality of laser beams, the write fields indicating whether a pulse of the relevant laser beam should be applied to a position on the substrate associated with the writing frame; wherein the control unit is arranged to control at least one of the pump unit, the light directing unit and the first and second selection units in accordance with the writing sequence. 3. Systeem volgens conclusie 2, waarbij het genoemde geheugen verder toestandsinformatie opslaat welke de actieve of inactieve toestand aangeeft voor elk van het veelvoud aan laserstralen.The system of claim 2, wherein said memory further stores state information indicating the active or inactive state for each of the plurality of laser beams. 4. Systeem volgens conclusie 3, waarbij de toestandsinformatie wordt opgeslagen voor elk schrijfframe.The system of claim 3, wherein the state information is stored for each write frame. 5. Systeem volgens een van de conclusies 2-4, waarbij de toestandsinformatie wordt gebruikt door de besturingseenheid voor het besturen van de eerste selecteereenheid en waarbij, indien een schrijfveld aangeeft dat een versterkte puls zou moeten worden toegepast op het substraat met de laserstraal in de actieve toestand, de besturingseenheid de tweede selecteereenheid dienovereenkomstig bestuurt.The system of any one of claims 2-4, wherein the state information is used by the control unit for controlling the first selection unit and wherein, if a write field indicates that an amplified pulse should be applied to the substrate with the laser beam in the active state, the control unit controls the second selection unit accordingly. 6. Systeem volgens een van de conclusies 2-5, waarbij elk schrijfframe is geassocieerd met een vermogen en/of energie invoer/uitvoer van de versterkte pulsen welke respectievelijk op het kristal vallen of hieruit komen, en waarbij de schrijfsequentie is verdeeld in schrijfgroepen, waarbij de schrijfframes in een enkele schrijfgroep overeenkomen met in hoofdzaak dezelfde vermogen en/of energie invoer/uitvoer.A system according to any of claims 2-5, wherein each write frame is associated with a power and / or energy input / output of the amplified pulses that fall or come out of the crystal, respectively, and wherein the write sequence is divided into write groups, wherein the write frames in a single write group correspond to substantially the same power and / or energy input / output. 7. Systeem volgens conclusie 6, waarbij de schrijfsequentie geordend is gebaseerd op de vermogen en/of energie invoer/uitvoer.The system of claim 6, wherein the write sequence is ordered based on the power and / or energy input / output. 8. Systeem volgens conclusie 7, waarbij de besturingseenheid is ingericht voor het aanpassen van het pompvermogen in afhankelijkheid van de vermogen en/of energie invoer/uitvoer welke overeenkomen met een schrijfgroep.A system according to claim 7, wherein the control unit is adapted to adjust the pump power in dependence on the power and / or energy input / output corresponding to a write group. 9. Systeem volgens conclusie 8, waarbij de besturingseenheid is ingericht voor het implementeren van een wachttijd tussen schrijfgroepen voorafgaand aan het besturen van de tweede selecteereenheid voor het toestaan dat lichtpulsen worden gericht naar het substraat om toe te staan dat de intensiteit van de versterkte lichtpulsen stabiliseert.The system of claim 8, wherein the control unit is adapted to implement a wait time between write groups prior to controlling the second select unit to allow light pulses to be directed to the substrate to allow the intensity of the amplified light pulses to stabilize . 10. Systeem volgens een van de conclusies 2-9, waarbij de schrijfsequentie schrijfframes omvat welke zijn geassocieerd met dezelfde energie en/of vermogen uitvoer, maar met verschillende hoeveelheden aan actieve laserstralen.The system of any one of claims 2 to 9, wherein the write sequence comprises write frames associated with the same energy and / or power output, but with different amounts of active laser beams. 11. Systeem volgens een van de voorgaande conclusies, waarbij de eerste en/of tweede selecteereenheid tevens is ingericht voor het verzwakken van invallende lichtpulsen.11. System as claimed in any of the foregoing claims, wherein the first and / or second selection unit is also adapted to weaken incident light pulses. 12. Systeem volgens een van de voorgaande conclusies, waarbij de richteenheid een brekend of reflectief richtelement omvat voor het breken of reflecteren van de lichtpuls(en) van het laser kristal op het substraat, waarbij het genoemde richtelement draaibaar is in ten minste één richting voor het veranderen van een positie op het substraat op welke de lichtpulsen van het laser kristal moeten worden aangebracht.A system according to any of the preceding claims, wherein the aiming unit comprises a refractive or reflective aiming element for breaking or reflecting the light pulse (s) of the laser crystal on the substrate, said aiming element being rotatable in at least one direction for changing a position on the substrate to which the light pulses of the laser crystal are to be applied. 13. Systeem volgens conclusie 12, waarbij het genoemde richtelement een spiegel omvat welke individueel draaibaar is rond twee assen.The system of claim 12, wherein said aiming element comprises a mirror which is individually rotatable about two axes. 14. Systeem volgens een van de voorgaande conclusies, waarbij de laserstralen op het laser kristal vallen en hieruit komen op een lineair en op afstand geplaatste wijze.A system according to any one of the preceding claims, wherein the laser beams fall on and come out of the laser crystal in a linear and spaced manner. 15. Werkwijze voor het schrijven van een patroon op een substraat gebruikmakende van micromachining, waarbij de genoemde werkwijze de stappen omvat van: het uitvoeren van een veelvoud aan laserstralen, waarbij elke laserstraal een veelvoud aan opeenvolgende lichtpulsen omvat; het verschaffen van een laser kristal voor het versterken van lichtpulsen; het verschaffen van pompvermogen aan het laser kristal; het individueel schakelen van de laserstralen welke zijn uitgevoerd door het voeding laser systeem tussen een actieve en inactieve toestand, waarbij voor elke laserstraal in de actieve toestand een lichtpuls uit het veelvoud aan lichtpulsen wordt geselecteerd gebruikmakende van een eerste selecteereenheid om doorgelaten te worden naar het laser kristal voor versterking; het gebruiken van een tweede selecteereenheid voor het voor elke door het laser kristal uitgevoerde laserstraal selecteren van een versterkte lichtpuls uit het veelvoud aan versterkte lichtpulsen; het richten van de geselecteerde versterkte lichtpulsen naar het substraat voor het schrijven van het genoemde patroon.A method for writing a pattern on a substrate using micromachining, said method comprising the steps of: performing a plurality of laser beams, each laser beam comprising a plurality of consecutive light pulses; providing a laser crystal for amplifying light pulses; providing pump power to the laser crystal; individually switching the laser beams output from the feed laser system between an active and inactive state, wherein for each laser beam in the active state a light pulse from the plurality of light pulses is selected using a first selection unit to be transmitted to the laser crystal for reinforcement; using a second selection unit to select an amplified light pulse from the plurality of amplified light pulses for each laser beam executed by the laser crystal; directing the selected amplified light pulses to the substrate for writing said pattern. 16. Werkwijze volgens conclusie 15, verder omvattende het opslaan van een schrijfsequentie voor het schrijven van het genoemde patroon, waarbij de schrijfsequentie een sequentie aan schrijfframes omvat, waarbij elk schrijfframe een veelvoud aan schrijfvelden omvat welke overeenkomen met het veelvoud aan laserstralen, waarbij de schrijfvelden aangeven of een puls van de relevante laserstraal toegepast zou moeten worden op een positie op het substraat welke geassocieerd is met het schrijfframe; waarbij de werkwijze verder omvat het besturen van ten minste één van de pompeenheid, de licht richteenheid en de eerste en tweede selecteereenheden in overeenstemming met de schrijfsequentie.The method of claim 15, further comprising storing a write sequence for writing said pattern, the write sequence comprising a sequence of write frames, wherein each write frame comprises a plurality of write fields corresponding to the plurality of laser beams, the write fields indicating whether a pulse of the relevant laser beam should be applied at a position on the substrate associated with the writing frame; wherein the method further comprises controlling at least one of the pumping unit, the light directing unit and the first and second selection units in accordance with the writing sequence. 17. Werkwijze volgens conclusie 16, verder omvattende het opslaan van toestandsinformatie welke de actieve of inactieve toestand aangeeft voor elk van het veelvoud aan laserstralen.The method of claim 16, further comprising storing state information indicating the active or inactive state for each of the plurality of laser beams. 18. Werkwijze volgens conclusie 17, waarbij de toestandsinformatie wordt opgeslagen voor elk schrijfframe.The method of claim 17, wherein the state information is stored for each write frame. 19. Werkwijze volgens een van de conclusies 16-18, omvattende het besturen van de eerste selecteereenheid gebruikmakende van de toestandsinformatie en, indien een schrijfveld aangeeft dat een versterkte puls zou moeten worden toegepast op het substraat met de laserstraal in de actieve toestand, het dienovereenkomstig besturen van de tweede selecteereenheid.A method according to any of claims 16-18, comprising controlling the first select unit using the state information and, if a write field indicates that an amplified pulse should be applied to the substrate with the laser beam in the active state, it accordingly controlling the second selection unit. 20. Werkwijze volgens een van de conclusies 16-19, waarbij elk schrijfframe is geassocieerd met een vermogen en/of energie invoer/uitvoer van de versterkte pulsen welke respectievelijk op het kristal vallen of hieruit komen, en waarbij de schrijfsequentie is verdeeld in schrijfgroepen, waarbij de schrijfframes in een enkele schrijfgroep overeenkomen met in hoofdzaak dezelfde vermogen en/of energie invoer/uitvoer.A method according to any of claims 16-19, wherein each writing frame is associated with a power and / or energy input / output of the amplified pulses falling or coming out of the crystal, respectively, and wherein the write sequence is divided into write groups, wherein the write frames in a single write group correspond to substantially the same power and / or energy input / output. 21. Werkwijze volgens conclusie 20, waarbij de schrijfsequentie geordend is gebaseerd op de vermogen en/of energie invoer/uitvoer.The method of claim 20, wherein the write sequence is ordered based on the power and / or energy input / output. 22. Werkwijze volgens conclusie 21, omvattende het aanpassen van het pompvermogen in afhankelijkheid van de vermogen en/of energie invoer/uitvoer welke overeenkomen met een schrijfgroep.The method of claim 21, comprising adjusting the pump power in dependence on the power and / or energy input / output corresponding to a write group. 23. Werkwijze volgens conclusie 22, omvattende het implementeren van een wachttijd tussen schrijfgroepen voorafgaand aan het besturen van de tweede selecteereenheid voor het toestaan dat lichtpulsen worden gericht naar het substraat om toe te staan dat de intensiteit van de versterkte lichtpulsen stabiliseert.The method of claim 22, comprising implementing a wait time between write groups prior to controlling the second select unit to allow light pulses to be directed to the substrate to allow the intensity of the amplified light pulses to stabilize. 24. Werkwijze volgens een van de conclusie 16-23, waarbij de schrijfsequentie schrijfframes omvat welke zijn geassocieerd met dezelfde energie en/of vermogen uitvoer, maar met verschillende hoeveelheden aan actieve laserstralen.The method of any one of claims 16 to 23, wherein the write sequence comprises write frames associated with the same energy and / or power output, but with different amounts of active laser beams. 25. Werkwijze volgens een van de conclusie 15-24, verder omvattende het verzwakken van invallende lichtpulsen gebruikmakende van de eerste en/of tweede selecteereenheid.The method of any of claims 15-24, further comprising attenuating incident light pulses using the first and / or second select unit. 26. Werkwijze volgens een van de conclusies 15-25, waarbij de laserstralen op het laser kristal vallen en hieruit komen op een lineair en op afstand geplaatste wijze.A method according to any of claims 15-25, wherein the laser beams fall on and come out of the laser crystal in a linear and spaced manner.
NL2011290A 2013-08-12 2013-08-12 A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method. NL2011290C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2011290A NL2011290C2 (en) 2013-08-12 2013-08-12 A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method.
PCT/EP2014/067267 WO2015022333A2 (en) 2013-08-12 2014-08-12 A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2011290 2013-08-12
NL2011290A NL2011290C2 (en) 2013-08-12 2013-08-12 A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method.

Publications (1)

Publication Number Publication Date
NL2011290C2 true NL2011290C2 (en) 2015-02-16

Family

ID=49553775

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2011290A NL2011290C2 (en) 2013-08-12 2013-08-12 A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method.

Country Status (2)

Country Link
NL (1) NL2011290C2 (en)
WO (1) WO2015022333A2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030021307A1 (en) * 2001-07-30 2003-01-30 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
US20050041702A1 (en) * 1997-03-21 2005-02-24 Imra America, Inc. High energy optical fiber amplifier for picosecond-nanosecond pulses for advanced material processing applications
WO2008016287A1 (en) * 2006-08-03 2008-02-07 Uab 'ekspla' Stable picosecond laser at high repetition rate
DE102006062502A1 (en) * 2006-12-28 2008-07-03 Sms Elotherm Gmbh Device for treating the surfaces of metallic workpieces comprises a laser beam source and illuminating units each assigned to surfaces being treated to deflect the laser beam onto the surfaces
US20130029444A1 (en) * 2011-07-27 2013-01-31 Toshiba Kikai Kabushiki Kaisha Laser dicing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050041702A1 (en) * 1997-03-21 2005-02-24 Imra America, Inc. High energy optical fiber amplifier for picosecond-nanosecond pulses for advanced material processing applications
US20030021307A1 (en) * 2001-07-30 2003-01-30 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus and method of manufacturing semiconductor device
WO2008016287A1 (en) * 2006-08-03 2008-02-07 Uab 'ekspla' Stable picosecond laser at high repetition rate
DE102006062502A1 (en) * 2006-12-28 2008-07-03 Sms Elotherm Gmbh Device for treating the surfaces of metallic workpieces comprises a laser beam source and illuminating units each assigned to surfaces being treated to deflect the laser beam onto the surfaces
US20130029444A1 (en) * 2011-07-27 2013-01-31 Toshiba Kikai Kabushiki Kaisha Laser dicing method

Also Published As

Publication number Publication date
WO2015022333A2 (en) 2015-02-19
WO2015022333A3 (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US10135219B2 (en) Gain control for arbitrary triggering of short pulse lasers
US8367968B2 (en) System and method for multi-pulse laser processing
JP4175544B2 (en) Q-switch method for pulse train generation
US9859675B2 (en) Laser light-source apparatus and laser pulse light generating method
CN108346969A (en) Use the process of the random triggering feature of ultrashort pulse laser
US20100303105A1 (en) Generating pulse trains in q-switched lasers
US9680285B2 (en) Laser light-source apparatus and laser pulse light generating method
JP5879747B2 (en) Optical amplification apparatus and laser processing apparatus
WO2003088437A1 (en) Regenerative amplifier with frequency synthesizer
NL2011290C2 (en) A laser micromachining system for writing a pattern onto a substrate using laser micromachining and method.
Eslami et al. All-optical tunable delay-line memory based on a semiconductor cavity-soliton laser
US20070237190A1 (en) High-power Er: YAG laser
WO2017060793A1 (en) A laser apparatus having an excitation source which comprises an array of controllable light emitters, and an associated method
EP3309912B1 (en) Laser light-source apparatus and laser pulse light generating method
EP3309910A2 (en) Laser light-source apparatus and laser pulse light generating method
WO2017092789A1 (en) Radiation field generating unit
KR101787483B1 (en) Laser pulse controlling apparatus and method for controlling laser pulses
Petkovšek et al. Pulses on Demand in Fibre and Hybrid Lasers.
US6141368A (en) Method of controlling lasing wavelength(s)
EP2544317B1 (en) A method and an apparatus for controlling the time interval between consecutive pulses of a pulsed laser beam, a respective laser processing method and a system
US20150380891A1 (en) Optical rotating device for injecting a laser beam and method for positioning a laser beam
CN116722435A (en) Multi-beam Brillouin amplification device and laser amplification method

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20160901