NL2010013C2 - Stair lift drive. - Google Patents

Stair lift drive. Download PDF

Info

Publication number
NL2010013C2
NL2010013C2 NL2010013A NL2010013A NL2010013C2 NL 2010013 C2 NL2010013 C2 NL 2010013C2 NL 2010013 A NL2010013 A NL 2010013A NL 2010013 A NL2010013 A NL 2010013A NL 2010013 C2 NL2010013 C2 NL 2010013C2
Authority
NL
Netherlands
Prior art keywords
frame part
rail
wheels
drive system
axes
Prior art date
Application number
NL2010013A
Other languages
Dutch (nl)
Inventor
Rolf Bernard Jong
Cornelis Boxum
Gijs Jan Jacobs Mulder
Original Assignee
Thyssenkrupp Accessibility B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Accessibility B V filed Critical Thyssenkrupp Accessibility B V
Priority to NL2010013A priority Critical patent/NL2010013C2/en
Priority to PCT/NL2013/050895 priority patent/WO2014098574A1/en
Priority to JP2015549295A priority patent/JP2016505468A/en
Priority to CN201380073231.9A priority patent/CN104995118B/en
Priority to EP13818483.3A priority patent/EP2935073A1/en
Application granted granted Critical
Publication of NL2010013C2 publication Critical patent/NL2010013C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/06Kinds or types of lifts in, or associated with, buildings or other structures inclined, e.g. serving blast furnaces
    • B66B9/08Kinds or types of lifts in, or associated with, buildings or other structures inclined, e.g. serving blast furnaces associated with stairways, e.g. for transporting disabled persons
    • B66B9/0807Driving mechanisms
    • B66B9/0815Rack and pinion, friction rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures
    • B66B9/06Kinds or types of lifts in, or associated with, buildings or other structures inclined, e.g. serving blast furnaces
    • B66B9/08Kinds or types of lifts in, or associated with, buildings or other structures inclined, e.g. serving blast furnaces associated with stairways, e.g. for transporting disabled persons
    • B66B9/0838Levelling gears

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Types And Forms Of Lifts (AREA)
  • Handcart (AREA)

Abstract

The present invention relates to a stair lift drive, comprising a rail extending along a track, a first frame part, provided with at least one pair of wheels engaging the rail, a second frame part, provided with at least one pair of wheels engaging the rail, a propulsion, to drive at least one of the wheels, a mounting part for a seat of a user of the stair lift, connected to the first frame part; wherein the first frame part is freely rotatably connected to the second frame part about two axes, which are perpendicular to each other and perpendicular to the tangential direction of the track; and about an axis parallel to the tangential direction of the track.

Description

Stair lift drive
The present invention relates to a drive for a stair lift. In particular, the invention relates to a stair lift drive, which consists of two frame parts, which are freely rotatable with 5 respect to each other.
It is known in the state of the art to drive a stair lift over a rail that extends along a staircase. NL 2005398 for instance discloses a friction drive for a stair lift along a longitudinal guide, wherein multiple rollers are in frictional engagement with the rail.
10 Such drives for stair lifts are designed to propel a stair lift over a meticulous constructed rail along a staircase. However, one of the disadvantages of the above state of the art is that the stair lift disclosed is not suitable for (sharp) curves in the, which may be required to follow the outlines of a staircase naturally.
15 It is therefore the goal of the present invention to overcome these drawbacks, or at least to offer a suitable alternative.
The invention thereto proposes a stair lift drive, comprising a rail extending along a track, a first frame part, provided with at least one pair of wheels engaging the rail, a 20 second frame part, provided with at least one pair of wheels engaging the rail, a propulsion, to drive at least one of the wheels; a mounting part, for mounting a carrier for a load such as a seat for a user of the stair lift, connected to the second frame part; wherein the first frame part is freely rotatably connected to the second frame part about two axes, which are perpendicular to each other and perpendicular to the tangential 25 direction of the track, and about the tangential direction of the track or about an axis parallel to the tangential direction of the track.
It is to be noted here that the above mentioned mutual orientations are to be regarded when the stair lift drive according to the invention is on a straight part of the track.
The stair lift according to the invention provides the advantage that the two frame parts, comprising driving wheels, are freely rotatable and moveable in multiple directions with respect to each other. The frame parts serve as bogies and enable the stair lift to move 30 2 along curved and twisted rails. The bogie function is to enable movement of the drive along a curved and/or twisted track.
The mounting part for the seat of the stair lift may be connected rigidly to the second 5 frame part, wherein the first frame part serves for delivering additional driving force. Because the two frame parts can rotate freely with respect to each other, the first and second frame parts can follow each other easily around comers, twists and bends.
The mounting part can be rigidly connected to the second frame part as described 10 above, but it may also have rotational freedom in predetermined directions. The rail along which the stair lift propels itself may preferably be a smooth rail provided with one or more recesses along its length. A mounting part rigidly connected to the first frame part leads to a relatively simple construction, and also serves to create a stable platform, resembling a bogie together with the second frame part. However, this 15 construction is dividing the load depending on inclination angle, centre of gravity (cog) and/or stiffness of construction over the first and the second frame part.
Therefor, in a further embodiment of the present invention the mounting part is freely rotatably connected to the second frame part about two axes, which are perpendicular to 20 each other and perpendicular to the tangential direction of the track and the mounting part is rotatably connected to the second frame about the tangential direction of the track.
In another embodiment of the present invention the mounting part is connected to the 25 first frame part by a first bracket, wherein the connection between the mounting part and the first carries comprises a first of the rotation axes, and the connection between the first bracket and the first frame part comprises a second of the rotation axes and wherein the mounting part is connected to the second frame part by a second bracket, wherein the connection between the mounting part and the second bracket comprises a 30 first of the rotation axes, and the connection between the second bracket and the second frame part comprises a second of two rotation axes. The brackets form a well proven practical embodiment comprising the above mentioned axes of rotation, and allow a geometrically spread position of orthogonal axes of rotation being a robust construction.
3
In yet another embodiment the rotational axis of a frame part in the direction of the y-axis (see figure 1 below) cuts a vector representing the direction and position of the resulting traction force. The same may go, in further embodiments, for the rotational axis of a frame part in the direction of the z-axis.
5
In an embodiment with two dents in the rail the resulting force coincides with the axial axis (centre line) of the rail if both wheels are powered. If only one of the wheels is powered, the resulting force is parallel to but not coincident with the axis (centre line) of the rail, and the rotational axis of a frame part in the direction of the y-axis is 10 eccentric as well.
In another embodiment the actuator is powered depending on the weight applied to the seat by the user of the stair lift and/or is depending on the inclination angle of the track and/or is depending on the orientation of the first frame part to the second frame part.
15 The higher the weight of a user to be transported and/or inclination angle of the rail track and/or difference in orientation between both frame parts, the higher the required traction force by the wheels on the track. On the other hand, a higher normal force leads to a higher rolling resistance, so keeping the traction force and therefore also the normal force pressing the friction wheels at the required minimum is an aim. For example 20 driving on a horizontal track and/or applied with a relative light user weight requires a relative low traction force, visa versa for heavy users and/or high inclination angles. Also a controlled normal force depending on weight and/or inclination angle is also lowering wear and fatigue.
25 Thereto, a seat may be mounted on the mounting part, in such way that it can be impressed by the weight of a user taking place on the seat and/or is actuated by the inclination angle of the track, wherein a hydraulic cylinder is coupled between the seat and the mounting part, for providing hydraulic pressure dependent on and proportional to a weight of a user taking place on the seat and/or to the inclination angle of the track, 30 which cylinder is coupled hydraulically to the hydraulic actuators for moving the first wheel towards the second wheel of a pair of a drive.
In an embodiment of the present invention the stair lift drive comprises at least two wheels that are movable towards and from the rail, each applied to a different frame 4 part, and each frame part provided with two wheels with propulsion being either with the same rotational speed or with substantially equal torque. An equal torque will, in order to prevent minimise slip in curves and as a result have evenly distributed torque over both friction wheels, providing maximum efficiency from the applied normal 5 forces allowing maximum traction force.
In an embodiment the drive can also be provided with one motor per frame part where both drive wheels are connected by gear wheels with ratio 1:1, resulting in equal rotational speed of both wheels. This has the advantage of reducing cost. Disadvantage 10 is not having an optimum torque distribution between both friction wheels when driving through curves and twists.
In another embodiment the drive can also be provided with one motor per frame part where both driven wheels are connected by mechanical differential. This has the 15 advantage that torque is substantially evenly distributed over both friction wheels and reducing the frame part with one motor and so reducing cost.
In a further embodiment, the stair lift drive is provided with a control system, which aims to gain as much traction as possible from the friction wheels. Ideally the traction 20 forces of all wheels within one frame part are equal. Minimizing the negative effects due to slip and applying the maximal torque on all friction wheels is accomplished when the control system distributes the torque substantially equal over all driven wheels. This can be done by measuring current through the drive of each wheel and by controlling it to a speed-set point and/or voltage and/or current specific for each one of 25 the friction wheels, which may be specific for each of the wheels. The set-points may in particular be chosen such that distances in length for inner and outer radius of curves are taken into account, so that slip is minimised or even fully prevented.
Besides controlling the traction force between separate wheels of one single frame part, 30 the controller may further be configured to control two frame parts to share total needed torque as evenly as possible over all drive wheels..
In another embodiment of the invention the frame part comprises a pair of stabilising wheels or gliders, which engage the rail respectively on the top and bottom side. The 5 pair may be in front of or behind the driving wheel in a driving direction, or multiple pairs may be applied. These wheels or gliders may be movably connected to the first or second frame part by means of a sub frame that is movable with respect to the first or second frame part, to allow the wheels or gliders to follow curves in the rail. The sub 5 frames may comprise spring elements to force the wheels or gliders to the rail with a bias. In another embodiment the first and/or second sub frame part is movable with respect to respectively the first or second frame part by means of an actuator.
In a further embodiment the first and/or second frame part comprises a sensor to 10 measure an angular rotation of the frame part about an axis perpendicular to the axial direction of the rail and perpendicular to the direction from the front to the back of the rail, and to issue a sensor signal representing the angular rotation. Such sensor may be configured to scan or explore the rail when the drive is moving. The sensor signal may be used to control the drive and to correct angular movement. The first and/or second 15 frame part may thereto comprise two independently drivable wheels, which are each applied on either side of the rail, and wherein the propulsion comprises a controlling device to control the independently drivable wheels, depending on the sensor signal, such that each time, they are located on the rail exactly opposite to each other.
20 The invention will now be elucidated into more detail with reference to the following figures, wherein: - Figure 1 shows the coordinate system as generally used to indicate movements; - Figure 2 shows a z-stabilizer with sliding guiding elements; 25 - Figures 3a-d show guiding elements able to translate; - Figures 4a, b show sliding guiding elements; - Figures 5a, b shows a spring loaded roller construction of a z-axis stabilizer construction; - Figures 6a, b show a drive unit, with a set of two rail following elements; and 30 - Figure 7 shows a drive unit with two rail measuring arms.
Figure 1 shows the coordinate system as generally used to indicate movements. In order to designate the orientation of a drive with respect to a rail, a system of coordinates is used. The x-axis is the local tangent to the centerline of the rail. For the rotation around 6 the x, y and z axes the navigational and aviational terms pitch, yaw and roll are used respectively. Note that the drive moves in the direction of the x-axis, unlike vessels and planes, which move in the direction of the z-axis. In other words, the drive moves sideways.
5 In the figure, the reference numbers indicate the following: 101 Right 102 Pitch 103 Yaw 10 104 Longitudinal 105 Roll 106 Vertical 107 Lateral Left 15 Figure 2 shows a z-stabilizer with sliding guiding elements, whose translation in the direction of the y-axis is obtained by means of a hinging construction. The figure shows a rail 1 extending along a track, a first or second frame part 2, 3, provided with at least one pair of wheels (A and B) engaging the rail; a propulsion 4, 5, to drive at least one of the wheels and a pair of stabilising gliders 24, 25, which engage the rail respectively on 20 the top and bottom side. The pair of gliders may be in front of or behind the driving wheel (A and/or B) in a driving direction, or multiple pairs may be applied. These wheels or gliders may be movably connected to the first frame by means of a frame section that is movable with respect to the first or second frame part, to allow the wheels or gliders to follow curves in the rail 25
Figures 3a, b show guiding elements able to translate in the direction of the y-axis with convex rail sections (3a) and concave rail sections (3b). The pair of gliders 24, 25 may be in front of or behind the driving wheel (A and/or B) in a driving direction, or multiple pairs may be applied. These wheels or gliders may be movably connected to 30 the first or second frame part 2, 3 by means of a frame section 26 that is movable with respect to the first or second frame part, to allow the wheels or gliders to follow curves in the rail 1, as visible in figures 3c, 3d.
7
Figures 4a, b show an alternative embodiment and shows a construction with sliding guiding elements 27, mounted on hydraulic cylinders 28. These cylinders are crosswise connected to each other, so a downward translation of the left-under guiding element goes together with a downward translation of the upper right cylinder, and so on.
5
Figures 5a, b show an alternative embodiment of a z-stabilizer construction by means of a pair of stabilising wheels 29 at one side of the drive unit, which engage the rail respectively on the top and bottom side. The wheels can follow curves in the rail through spring means 30. The expectation is that the behaviour is different from the 10 previous constructions and possible have a positive effect on twisted rail sections.
Figures 6a, b show a first or second frame part 2, 3, which is equipped with a set of two rail-tangent following elements 32. These elements are connected to a rail tangent 15 following frame 33 by means of a spring element 34. The spring element presses the rail tangent following elements into the recess of the rail 1. Since the rail tangent following frame can rotate around the y-axis of the frame part, its orientation will follow the tangent to the rail’s centreline. The rail tangent following frame is connected to an angle sensor 35, whose axis is connected to the y-axis of the frame part. Thus, when the z-axis 20 of the drive unit is not perpendicular to the rail’s centreline tangent, this will result in a changed value from the angle sensor.
Figure 7 shows a frame part 2, 3, which is equipped with two rail-distance measuring arms 36, which can rotate independently from each other around a common shaft 37.
25 The rail distance measuring arms are each equipped with a rotatable sliding element 38 which is pressed against the front or back side of the rail 1, due to pre-tensioning element (not shown here) which is mounted on the rail distance measuring arms. The rotation of each measuring arm is measured with an angle sensor 39. Thus, when the z-axis of the drive unit is not perpendicular to the rail’s centreline tangent, this will result 30 in different values from the angle sensors.
All features of the present invention can be combined with the features disclosed in the same dated Dutch patent applications “Stair lift drive for a smooth dented rail” and “Stair lift drive with rotatable mounting part for seat” by the applicant which are

Claims (14)

1. Aandrijfsysteem voor een traplift, omvattende: • een zich langs een parcours uitstrekkende rail; 5. een eerste framedeel, voorzien van ten minste één paar wielen die aangrijpen op de rail; • een tweede framedeel, voorzien van ten minste één paar wielen die aangrijpen op de rail; • een aandrijving, voor het aandrijven van ten minste één van de wielen; 10. een bevestigingsdeel, voor het bevestigen van een lastdrager, zoals een zitting voor een gebruiker van de traplift, verbonden met het eerste framedeel, waarbij • het eerste framedeel vrij draaibaar om twee assen verbonden is met het tweede framedeel, waarbij de assen loodrecht zijn ten opzichte van 15 elkaar en loodrecht op de tangentiële richting van het parcours, en vrij draaibaar om een as parallel aan de tangentiële richting van het parcours.A drive system for a stairlift, comprising: • a rail extending along a course; 5. a first frame part, provided with at least one pair of wheels that engage on the rail; • a second frame part, provided with at least one pair of wheels that engage on the rail; • a drive, for driving at least one of the wheels; 10. a mounting part, for mounting a load carrier, such as a seat for a user of the stairlift, connected to the first frame part, wherein the first frame part is freely rotatably connected about two axes to the second frame part, the axes being perpendicular with respect to each other and perpendicular to the tangential direction of the trail, and freely rotatable about an axis parallel to the tangential direction of the trail. 2. Aandrijfsysteem volgens conclusie 1, waarbij • het bevestigingsdeel vrij draaibaar om twee assen verbonden is met het 20 tweede framedeel, waarbij de assen loodrecht zijn ten opzichte van elkaar en loodrecht op de tangentiële richting van het parcours; en • het bevestigingsdeel draaibaar verbonden is met het tweede frame om de tangentiële richting van het parcours.2. Drive system according to claim 1, wherein • the mounting part is freely rotatably connected about two axes to the second frame part, the axes being perpendicular to each other and perpendicular to the tangential direction of the course; and the fastening part is rotatably connected to the second frame around the tangential direction of the trail. 3. Aandrijfsysteem volgens conclusie 2, waarbij • het bevestigingsdeel verbonden is met het eerste framedeel door een eerste drager, waarbij de verbinding tussen het bevestigingsdeel en de eerste drager een eerste van de rotatie-assen omvat, en de verbinding tussen de eerste drager en het eerste framedeel een tweede van de rotatie- 30 assen omvat; en • waarbij het bevestigingsdeel is verbonden met het tweede framedeel door een tweede drager, waarbij de verbinding tussen het bevestigingsdeel en de tweede drager een eerste van de rotatie-assen omvat, en de verbinding tussen de tweede drager en het tweede framedeel een tweede van twee rotatie-assen omvat.3. Drive system as claimed in claim 2, wherein • the fixing part is connected to the first frame part by a first carrier, the connection between the fixing part and the first carrier comprising a first of the rotation axes, and the connection between the first carrier and the first frame part comprises a second of the rotation axes; and • wherein the fixing part is connected to the second frame part by a second carrier, wherein the connection between the fixing part and the second carrier comprises a first one of the rotation axes, and the connection between the second carrier and the second frame part a second of two rotational axes. 4. Aandrijfsysteem volgens één van de voorgaande conclusies, waarbij de rotatie- 5 as van het eerste framedeel in de richting van de y-as of z-as een vector snijdt die de richting en positie van de resulterende tractiekracht vertegenwoordigt.4. Drive system as claimed in any of the foregoing claims, wherein the axis of rotation of the first frame part in the direction of the y-axis or z-axis intersects a vector representing the direction and position of the resulting traction force. 5. Aandrijfsysteem volgens één van de voorgaande conclusies, voorzien van een besturing, welke is ingericht voor het meten van stroom door een aandrijving 10 van elk wiel en voor het instellen van een (in hoofdzaak) gelijke snelheidsinstelling voor alle aangedreven wielen.5. Drive system as claimed in any of the foregoing claims, provided with a control, which is adapted for measuring current through a drive of each wheel and for setting a (substantially) equal speed setting for all driven wheels. 6. Aandrijfsysteem volgens conclusie 5, waarbij de instellingen zodanig gekozen zijn dat afstanden in lengte voor de binnenste en buitenste straal van 15 krommingen meegewogen worden, zodat slip wordt geminimaliseerd of zelfs volledig wordt voorkomen.6. Drive system according to claim 5, wherein the settings are chosen such that distances in length for the inner and outer radius of curvatures are taken into account, so that slip is minimized or even completely prevented. 7. Aandrijfsysteem volgens conclusie 5 of 6, waarbij de besturing verder is ingericht voor het aansturen van twee framedelen om een gelijke kracht uit te 20 oefenen.7. Drive system according to claim 5 or 6, wherein the control is further adapted to control two frame parts to exert an equal force. 8. Aandrijfsysteem volgens één van de voorgaande conclusies, omvattende ten minste twee wielen die beweegbaar zijn naar en van de rail door middel van een actuator, waarbij de actuator wordt bekrachtigd in afhankelijkheid van de 25 vereiste tractie, afhankelijk van variabelen zoals het gewicht uitgeoefend op de zitting door de gebruiker van de traplift en/of de hellingshoek van het parcours.8. Drive system as claimed in any of the foregoing claims, comprising at least two wheels that are movable to and from the rail by means of an actuator, wherein the actuator is actuated in dependence on the required traction, depending on variables such as the weight exerted on the seat by the user of the stairlift and / or the slope of the trail. 9. Aandrijfsysteem volgens één van de voorgaande conclusies, omvattende een set wielen of glijders voor stabilisatie, welke respectievelijk aan de bovenkant en 30 onderkant aangrijpen op de rail.9. Drive system as claimed in any of the foregoing claims, comprising a set of wheels or gliders for stabilization, which engage on the rail at the top and bottom, respectively. 10. Aandrijfsysteem volgens conclusie 9, waarbij de wielen of glijders beweegbaar verbonden zijn met het eerste of tweede subframedeel ten opzichte van respectievelijk het eerste of tweede framedeel.10. Drive system as claimed in claim 9, wherein the wheels or gliders are movably connected to the first or second sub-frame part relative to the first or second frame part, respectively. 11. Aandrijfsysteem volgens conclusie 10, waarbij het eerste en/of tweede sub framedeel beweegbaar is ten opzichte van respectievelijk het eerste of tweede framedeel door middel van een actuator. 511. Drive system according to claim 10, wherein the first and / or second sub-frame part is movable relative to the first or second frame part, respectively, by means of an actuator. 5 12. Aandrijfsysteem volgens één van de voorgaande conclusies, waarbij het eerste en/of tweede framedeel een sensor omvat voor het meten van een hoekverdraaiing van het framedeel om een as loodrecht op de axiale richting van de rail en loodrecht op de richting van de voorkant naar de achterkant van de 10 rail, en voor het uitgeven van een sensor signaal dat de hoekverdraaiing vertegenwoordigt.12. Drive system as claimed in any of the foregoing claims, wherein the first and / or second frame part comprises a sensor for measuring an angular rotation of the frame part about an axis perpendicular to the axial direction of the rail and perpendicular to the direction from the front to the rear of the rail, and for issuing a sensor signal representing the angular rotation. 13. Aandrijfsysteem volgens conclusie 12, waarbij het eerste en/of tweede framedeel twee onafhankelijk aandrijfbare wielen omvat, die elk aan weerszijde 15 van de rail zijn aangebracht, en waarbij de aandrijving een stuurinrichting omvat voor het aansturen van de onafhankelijk aandrijfbare wielen, afhankelijk van het sensor signaal, zodanig dat ze elke keer exact tegenover elkaar op de rail geplaatst zijn.13. Drive system according to claim 12, wherein the first and / or second frame part comprises two independently drivable wheels, which are each arranged on either side of the rail, and wherein the drive comprises a control device for controlling the independently drivable wheels, depending on the sensor signal, such that they are placed exactly opposite each other on the rail each time. 14. Aandrijfsysteem volgens conclusie 12 of 13, waarbij de aandrijvingen voor het aandrijven van de wielen van het eerste en tweede framedeel zijn ingericht in een master-slave inrichting. 1 Aandrijfsysteem volgens conclusie 12 of 13, waarbij de aandrijvingen voor het 25 aandrijven van de wielen van het eerste en tweede framedeel zijn ingericht in een symmetrische inrichting.14. Drive system according to claim 12 or 13, wherein the drives for driving the wheels of the first and second frame part are arranged in a master-slave device. 1 Drive system according to claim 12 or 13, wherein the drives for driving the wheels of the first and second frame part are arranged in a symmetrical device.
NL2010013A 2012-12-19 2012-12-19 Stair lift drive. NL2010013C2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NL2010013A NL2010013C2 (en) 2012-12-19 2012-12-19 Stair lift drive.
PCT/NL2013/050895 WO2014098574A1 (en) 2012-12-19 2013-12-12 Stair lift drive
JP2015549295A JP2016505468A (en) 2012-12-19 2013-12-12 Stair lift drive
CN201380073231.9A CN104995118B (en) 2012-12-19 2013-12-12 Elevator machine actuating device
EP13818483.3A EP2935073A1 (en) 2012-12-19 2013-12-12 Stair lift drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2010013 2012-12-19
NL2010013A NL2010013C2 (en) 2012-12-19 2012-12-19 Stair lift drive.

Publications (1)

Publication Number Publication Date
NL2010013C2 true NL2010013C2 (en) 2014-06-23

Family

ID=47953690

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2010013A NL2010013C2 (en) 2012-12-19 2012-12-19 Stair lift drive.

Country Status (5)

Country Link
EP (1) EP2935073A1 (en)
JP (1) JP2016505468A (en)
CN (1) CN104995118B (en)
NL (1) NL2010013C2 (en)
WO (1) WO2014098574A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536909A (en) 2015-03-30 2016-10-05 Stannah Stairlifts Ltd Improvements in or relating to stairlifts
NL2014685B1 (en) 2015-04-21 2017-01-25 Thyssenkrupp Ag Chair Stair Lift.
CN106144845A (en) * 2016-04-20 2016-11-23 深圳职业技术学院 A kind of transport aids power apparatus
CN106185207B (en) * 2016-07-21 2018-06-01 江苏大学 The stair transporter and method of a kind of adjustable speed
CN106865386A (en) * 2017-04-05 2017-06-20 深圳市晓控通信科技有限公司 A kind of Intelligent escalator manipulator taken for old man based on Internet of Things

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085116A2 (en) * 2004-03-02 2005-09-15 Stannah Stairlifts Limited Improvements in or relating to stairlifts
EP2216284A1 (en) * 2009-02-06 2010-08-11 Otto Ooms B.V. Apparatus for transporting a load from a first to a second level, in particular a stairlift
WO2012093941A1 (en) * 2011-01-06 2012-07-12 Handicare Stairlifts B.V. Transport unit for climbing or descending a slope or stairs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1293909B1 (en) * 1997-05-28 1999-03-11 Calogero Provenzano STAIRCASE DEVICE, PARTICULARLY FOR DISABLED PEOPLE.
GB9901937D0 (en) * 1999-01-28 1999-03-17 Stannah Stairlifts Ltd Improvements in or relating to stsairlifts
NL1013485C2 (en) * 1999-11-04 2001-05-07 Freelift Bv Stair guide.
DE102004033754A1 (en) * 2004-07-10 2006-02-09 HIRO LIFT Hillenkötter + Ronsieck GmbH Stairlift
CN201258210Y (en) * 2008-06-06 2009-06-17 成昇实业股份有限公司 Curve type stairs elevating mechanism
NL2005398C2 (en) * 2010-09-27 2012-03-28 Handicare Stairlifts B V Friction drive lift.
GB2508764B (en) * 2010-10-21 2014-09-10 Handicare Accessibility Ltd Stairlift

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085116A2 (en) * 2004-03-02 2005-09-15 Stannah Stairlifts Limited Improvements in or relating to stairlifts
EP2216284A1 (en) * 2009-02-06 2010-08-11 Otto Ooms B.V. Apparatus for transporting a load from a first to a second level, in particular a stairlift
WO2012093941A1 (en) * 2011-01-06 2012-07-12 Handicare Stairlifts B.V. Transport unit for climbing or descending a slope or stairs

Also Published As

Publication number Publication date
WO2014098574A1 (en) 2014-06-26
EP2935073A1 (en) 2015-10-28
JP2016505468A (en) 2016-02-25
CN104995118A (en) 2015-10-21
CN104995118B (en) 2017-06-13

Similar Documents

Publication Publication Date Title
NL2010013C2 (en) Stair lift drive.
JP6626148B2 (en) Stair lift drive
US9738321B2 (en) Arrangement and method for enabling rotation movement between tandem or caterpillar axle and body of vehicle
NL2010012C2 (en) Stair lift drive system for a smooth dented rail.
US20080147281A1 (en) Travel device
CN105559984B (en) One kind nursing assisting system
RU2011137646A (en) VEHICLE FOR CARGO AND PEOPLE TRANSPORTATION BY STAIRS AND FLAT SURFACE
US8960352B2 (en) Wheelchair transportation system
CA3029176C (en) Drive unit
JP4207229B2 (en) Traveling cart
US8972111B2 (en) Articulated vehicle with a controllable wheel route
CN207759924U (en) Rub wheel drive suspended end beam
EP2452909B1 (en) Rail follower apparatus for stair lift
JP7156545B2 (en) Conveyor
JP6432060B2 (en) Two-wheeled vehicle, its control method and operation control method
JPH1134865A (en) Carrying truck device
JP2000226170A (en) Moving device disposed for guiding carrying means along at least two rails
CN115092199A (en) Rail transport equipment and braking system suitable for high-speed railway
CN110626136B (en) Active tilting control device for double-front-wheel tilting vehicle, vehicle and control method
KR20190125893A (en) Electric mobile device
JP3641617B2 (en) Bridge girder delivery method
CN103303330B (en) For the swing type bogie of rolling stock, vehicle and corresponding train