NL1042198B1 - A drive belt for a continuously variable transmission with transverse segments and a ring stack - Google Patents

A drive belt for a continuously variable transmission with transverse segments and a ring stack Download PDF

Info

Publication number
NL1042198B1
NL1042198B1 NL1042198A NL1042198A NL1042198B1 NL 1042198 B1 NL1042198 B1 NL 1042198B1 NL 1042198 A NL1042198 A NL 1042198A NL 1042198 A NL1042198 A NL 1042198A NL 1042198 B1 NL1042198 B1 NL 1042198B1
Authority
NL
Netherlands
Prior art keywords
drive belt
transverse
transverse segment
offset
transverse segments
Prior art date
Application number
NL1042198A
Other languages
Dutch (nl)
Inventor
Johannes Maria Van Der Meer Cornelis
Original Assignee
Bosch Gmbh Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Gmbh Robert filed Critical Bosch Gmbh Robert
Priority to NL1042198A priority Critical patent/NL1042198B1/en
Priority to CN201780080545.XA priority patent/CN110114591B/en
Priority to KR1020197021873A priority patent/KR20190104553A/en
Priority to JP2019555059A priority patent/JP7009502B2/en
Priority to PCT/EP2017/025371 priority patent/WO2018121884A1/en
Application granted granted Critical
Publication of NL1042198B1 publication Critical patent/NL1042198B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/22Driving-belts consisting of several parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts

Abstract

The present invention concerns a drive belt (6) for a belt-andpulley- type continuously variable transmission comprising a row of transverse segments (10) mounted on a stack (9) of several, mutually nested rings. The transverse segments (10) are provided with a projection (40) that protrudes from a front surface (11) thereof and with a corresponding hole (41) that is provided in a back surface (12) thereof. An offset is provided between the projection (40) and the hole (41) in the radial direction (R) of the drive belt (6), such that in the row of transverse segments (10) in the drive belt (6) these will be tilted forward by the forced insertion of the projection (40) into the hole (41).

Description

Figure NL1042198B1_D0001

OctrooicentrumPatent center

NederlandThe Netherlands

Θ 10421981042198

21) Aanvraagnummer: 104219821) Application number: 1042198

22) Aanvraag ingediend: 27/12/201622) Application submitted: 27/12/2016

BI OCTROOI (51) Int. CL:BI PATENT (51) Int. CL:

F16G 5/16 (2017.01)F16G 5/16 (2017.01)

(T) Aanvraag ingeschreven: (T) Application registered: (73) Octrooihouder(s): (73) Patent holder (s): 03/07/2018 03/07/2018 Robert Bosch G.m.b.H. Robert Bosch G.m.b.H. te Stuttgart, Germany, DE. at Stuttgart, Germany, DE. (43) Aanvraag gepubliceerd: (43) Application published: (72) Uitvinder(s): (72) Inventor (s): (47) Octrooi verleend: (47) Patent granted: Cornelis Johannes Maria van der Meer Cornelis Johannes Maria van der Meer 03/07/2018 03/07/2018 te Tilburg. in Tilburg. (45) Octrooischrift uitgegeven: (45) Patent issued: 05/07/2018 05/07/2018 (74) Gemachtigde: (74) Agent: ir. G.A.J.M. Plevier te Tilburg. ir. G.A.J.M. Plover in Tilburg.

(54.(54.

A DRIVE BELT FOR A CONTINUOUSLY VARIABLE TRANSMISSION WITH TRANSVERSE SEGMENTS AND A RING STACKA DRIVE BELT FOR A CONTINUOUSLY VARIABLE TRANSMISSION WITH TRANSVERSE SEGMENTS AND A RING STACK

The present invention concerns a drive belt (6) for a belt-and-pulley-type continuously variable transmission comprising a row of transverse segments (10) mounted on a stack (9) of several, mutually nested rings. The transverse segments (10) are provided with a projection (40) that protrudes from a front surface (11) thereof and with a corresponding hole (41) that is provided in a back surface (12) thereof. An offset is provided between the projection (40) and the hole (41) in the radial direction (R) of the drive belt (6), such that in the row of transverse segments (10) in the drive belt (6) these will be tilted forward by the forced insertion of the projection (40) into the hole (41).The present invention concerns a drive belt (6) for a belt-and-pulley type continuously variable transmission including a row of transverse segments (10) mounted on a stack (9) or several, mutually nested rings. The transverse segments (10) are provided with a projection (40) that protrudes from a front surface (11) and with a corresponding hole (41) that is provided in a back surface (12). An offset is provided between the projection (40) and the hole (41) in the radial direction (R) or the drive belt (6), such that in the row of transverse segments (10) in the drive belt (6) these will be tilted forward by the forced insertion of the projection (40) into the hole (41).

(57(57

Figure NL1042198B1_D0002

NL BI 1042198NL BI 1042198

Dit octrooi is verleend ongeacht het bijgevoegde resultaat van het onderzoek naar de stand van de techniek en schriftelijke opinie. Het octrooischrift komt overeen met de oorspronkelijk ingediende stukken.This patent has been granted regardless of the attached result of the research into the state of the art and written opinion. The patent corresponds to the documents originally submitted.

A DRIVE BELT FOR A CONTINUOUSLY VARIABLE TRANSMISSION WITHA DRIVE BELT FOR A CONTINUOUSLY VARIABLE TRANSMISSION WITH

TRANSVERSE SEGMENTS AND A RING STACKTRANSVERSE SEGMENTS AND A RING STACK

This disclosure relates to a drive belt for a continuously variable transmission with two pulleys and the drive belt. Such a drive belt is known from the international patent application publication WO2015/063132-A1 and comprises a row of transverse segments mounted on a stack of several, mutually nested continuous bands, i.e. flat and thin rings, each. The transverse segments define a slot for accommodating and confining a respective circumference section of the ring stack, while allowing the transverse segments to move along the circumference of the ring stacks. This particular type of drive belt is also referred to as a push-type drive belt or pushbelt.This disclosure relates to a drive belt for a continuously variable transmission with two pulleys and the drive belt. Such a drive belt is known from the international patent application publication WO2015 / 063132-A1 and comprises a row of transverse segments mounted on a stack of several, mutually nested continuous bands, i.e. flat and thin rings, each. The transverse segments define a slot for accommodating and confining a respective circumference section of the ring stack, while allowing the transverse segments to move along the circumference of the ring stacks. This particular type of drive belt is also referred to as a push-type drive belt or push belt.

In the following description the axial, radial and circumference directions are defined relative to the drive belt when placed in a circular posture. Furthermore, a thickness dimension of the transverse segments is defined in the circumference direction of the drive belt, a height dimension of the transverse segment is defined in the said radial direction and a width dimension of the transverse segment is defined in the said axial direction.In the following description the axial, radial and circumference directions are defined relative to the drive belt when placed in a circular posture. Furthermore, a thickness dimension of the transverse segment is defined in the circumference direction of the drive belt, a height dimension of the transverse segment is defined in the said radial direction and a width dimension of the transverse segment is defined in the said axial direction.

The known transverse segments each comprise a base portion, a middle portion and a top portion. The middle portion of the transverse segments extends in radial direction interconnecting the said base and top portions thereof. On either side of the middle portion the transverse segments define a slot between the base portion and the top portion thereof for accommodating a respective ring stack of the drive belt. At each slot, a radially outward facing bottom surface thereof contacts and supports the ring stack in radial outward direction. These bottom surfaces of the slots that are associated with the base portion of the transverse segments are denoted carrying surfaces hereinafter.The known transverse segments each include a base portion, a middle portion and a top portion. The middle portion of the transverse segments extends in radial direction interconnecting the said base and top portions thereof. On either side of the middle portion of the transverse segments define a slot between the base portion and the top portion for accommodating a respective ring stack or the drive belt. At each end, a radially outward facing bottom surface contacts and supports the ring stack in radial outward direction. These bottom surfaces of the slots are associated with the base portion of the transverse segments are denoted carrying surfaces hereinafter.

In the row of transverse segments of the drive belt, at least a part of a front main body surface of the transverse segment abuts against at least a part of the back main body surface of a respectively preceding transverse segment in the said row, whereas at least a part of the back main body surface of the transverse segment abuts against at least a part of the front main body surface of a respectively succeeding transverse segment. At least one of these front and back main body surfaces of the transverse segment, for example the front main body surface includes an axially extending, convexly curved surface part. This curved surface part divides the front main body surface into a radially outer and a radially inner surface parts that are oriented at an angle relative to one other. Abutting transverse segments in the drive belt are able to tilt relative to one another, while remaining in mutual contact at and through such curved surface part that is therefore denoted tilting edge hereinafter. The tilting edge allows the row of the transverse segments of the drive belt to follow a local curving of the ring stacks imposed by the transmission pulleys.In the row of transverse segments of the drive belt, at least a part of a front main body surface or the transverse segment abuts against at least a part of the back main body surface or a respectively preceding transverse segment in the said row, whereas at least a part of the back main body surface or the transverse segment abuts against at least a part of the front main body surface or a respectively succeeding transverse segment. At least one of these front and back main body surfaces or the transverse segment, for example the front main body surface includes an axially extending, convexly curved surface part. This curved surface divides the front main body surface into a radially outer and a radially inner surface that is oriented to an angle relative to one other. Abutting transverse segments in the drive belt are able to tilt relative to one another, while remaining in mutual contact and through such a curved surface part that is therefore denoted tilting edge hereher. The tilting edge allows the row of the transverse segments of the drive belt to follow a local curving of the ring stacks imposed by the transmission pulleys.

The transverse segment is further provided with a projection that protrudes from its front main body surface and with a corresponding hole that is provided in its back main body surface. In the row of transverse segments of the drive belt, the projection of the said succeeding transverse segment is at least partially located in the hole of the said preceding transverse segment, such that a mutual displacement of the abutting transverse segments in a plane perpendicular to the circumference direction of the drive belt is prevented or, at least, limited. Typically, the projection and the hole are of a similar overall shape, e.g. predominantly cylindrical or slightly conical.The transverse segment is further provided with a projection that protrudes from its front main body surface and with a corresponding hole that is provided in its back main body surface. In the row of transverse segments of the drive belt, the projection of the said succeeding transverse segment is at least partially located in the hole of the said preceding transverse segment, such a mutual displacement of the abutting transverse segments in a plane perpendicular to the circumference direction of the drive belt is prevented or, at least, limited. Typically, the projection and the hole are or a similar overall shape, e.g., predominantly cylindrical or slightly conical.

As mentioned hereinabove, in the drive belt the transverse segments can move relative to the ring stacks along the circumference thereof. This has the advantage that during operation of the drive belt the ring stack is tensioned to a relatively low level in relation to a torque transmitted by the drive belt between the pulleys, at least compared to other types of drive belt. However, on the other hand, such a sliding movement or slip between the transverse segments and the ring stack is known to bring about a small, but notional· friction loss. It is known that such sliding movement can be favourably minimised by arranging the tilting edge of the transverse segments as close to the radial inside of the ring stack as possible in the height direction. In theory, in this respect, the tilting edge is preferably arranged to coincide with the carrying surfaces of the transverse segment in question.As mentioned, readabove, in the drive belt the transverse segments can move relative to the ring stacks along the circumference. This has the advantage that during operation of the drive belt the ring stack is tensioned to a relatively low level in relation to a torque transmitted by the drive belt between the pulleys, at least compared to other types of drive belt. However, on the other hand, such a sliding movement or slip between the transverse segments and the ring stack is known to bring about a small, but notional, friction loss. It is known that such sliding movement can be favourably minimized by arranging the tilting edge of the transverse segments as close to the radial inside of the ring stack as possible in the height direction. In theory, in this respect, the tilting edge is preferably arranged to coincide with the carrying surfaces or the transverse segment in question.

According to the present disclosure, however, locating the tilting edge close to the carrying surface brings about a problem or disadvantage that may be understood as follows. The closer the tilting edge is to the carrying surface, the sharper a transition edge there between must be. In turn, a sharper transition edge results in a higher contact stress in the ring stack. In fact, it may even occur that the yield stress of the radially innermost ring of the ring package is exceeded during operation of the drive belt because of the said high contact stress, compromising the service life of that innermost ring.According to the present disclosure, however, locating the tilting edge close to the carrying surface brings about a problem or disadvantage that may be understood as follows. The closer the tilting edge is to the carrying surface, the sharper is a transition edge there must be. In turn, a sharper transition edge results in a higher contact stress in the ring stack. In fact, it may just happen that the yield stress or the radially innermost ring or the ring package is exceeded during operation or the drive belt because of the said high contact stress, compromising the service life or that innermost ring.

According to the present disclosure such disadvantage can, surprisingly, be mitigated by including an offset in vertical direction between the projection and the hole of the individual transverse segment, in particular by locating the hole somewhat lower, i.e. more towards the radial inside of the drive belt, than the projection. By this measure, even when otherwise traveling in a straight line between the pulleys, the transverse segments will be tilted forward in the row of the drive belt, because of the forced insertion of the projection into the (lower lying) hole. Hereby, in particular, a contact between the radial inside of the ring stack and the transition edge between the carrying surface and the tilting edge is favourably avoided or, at least, reduced in its intensity.According to the present disclosure such disadvantage can, surprisingly, be mitigated by including an offset in vertical direction between the projection and the hole of the individual transverse segment, in particular by locating the hole somewhat lower, ie more towards the radial inside of the drive belt, than the projection. By this measure, even when otherwise traveling in a straight line between the pulleys, the transverse segments will be tilted forward in the row of the drive belt, because of the forced insertion of the projection into the (lower lying) hole. Hereby, in particular, a contact between the radial inside of the ring stack and the transition edge between the carrying surface and the tilting edge is favourably avoided or, at least, reduced in its intensity.

In hindsight, it can be observed that in the conventional drive belt said measure will not have a considerable effect, because the said transition edge is smoothly rounded at a relatively large radius of curvature, made possible by the relatively large separation between the carrying surfaces and the tilting edge. For example, in the conventional drive belt, the tilting edge is separated from the carrying surfaces by around 1 mm, such that a radius of curvature of the transition edge can be 0.5 mm or more .In hindsight, it can be observed that in the conventional drive belt said measure will not have a considerable effect, because the said transition edge is smoothly rounded at a relatively large radius or curvature, made possible by the relatively large separation between the carrying surfaces and the tilting edge. For example, in the conventional drive belt, the tilting edge is separated from the carrying surfaces by around 1 mm, such a radius or curvature or the transition edge can be 0.5 mm or more.

In particular, the offset 0 in radial inward direction of the hole relative to the projection of the individual transverse segment in accordance with the present disclosure can be quantified geometrically as follows:In particular, the offset 0 in radial inward direction of the hole relative to the projection of the individual transverse segment in accordance with the present disclosure can be quantified geometrically as follows:

0_min = Rr_min - 'V(Rr_minz'2 - ^*DA2) (1) , with 0_min representing a minimal value for the said offset 0, with Rr_min representing a minimum radius of longitudinal curvature of the drive belt, in particular at the transmission pulleys, and with D representing the thickness of the transverse segment.0_min = Rr_min - 'V (Rr_min z ' 2 - ^ * D A 2) (1), with 0_min representing a minimum value for the said offset 0, with Rr_min representing a minimum radius or longitudinal curvature of the drive belt, in particular at the transmission pulleys, and with D representing the thickness of the transverse segment.

By the minimum offset 0_min according to equation, the transverse segments in the drive belt are tilted forward in the drive belt to such an extent that the transition edge lies to the radial inside of a virtual circle of radius Rr_min and intersecting an edge between the carrying surface and the back main body surface .By the minimum offset 0_min according to equation, the transverse segments in the drive belt are tilted forward in the drive belt to such an extent that the transition edge lies to the radial inside of a virtual circle or radius Rr_min and intersecting an edge between the carrying surface and the back main body surface.

For example, for a typical drive belt with an Rr_min value of 30 mm and a D value of 1.6 mm, a minim offset 0_min of 11 micrometre is calculated with equation (1). A practical· design value for the said offset 0 that allows for production spread and other uncertainties some is then 1.5 up to 5 times 0_min or between 15 and 75 micron. Preferably according to the present disclosure, such actually applied offset 0 and thus the said forward tilting of the transverse segment imposed thereby, is limited to five times, more preferably to three times such minimally required value 0_min. Otherwise, the alignment forces between the projection become unnecessarily high and/or the ring stack is forced to contact a back edge of the carrying surface instead.For example, for a typical drive belt with an Rr_min value of 30 mm and a D value of 1.6 mm, a minimum offset 0_min or 11 micrometre is calculated with equation (1). A practical design value for the said offset 0 that allows for production spread and other uncertainties some is then 1.5 up to 5 times 0_min or between 15 and 75 microns. Preferably according to the present disclosure, such actually applied offset 0 and thus the said forward tilting or the transverse segment required, is limited to five times, more preferably to three times such minimally required value 0_min. Otherwise, the alignment forces between the projection become unnecessarily high and / or the ring stack is forced to contact a back edge of the carrying surface instead.

The above-described novel drive belt will now be explained further with reference to the drawing, in which equal reference signs indicate equal or similar parts and in which:The above-described novel drive belt will now be explained further with reference to the drawing, in which equal reference signs indicate equal or similar parts and in which:

- figure 1 provides a schematic perspective view of a continuously variable transmission with a drive belt running over two pulleys;- figure 1 provides a schematic perspective view of a continuously variable transmission with a drive belt running over two pulleys;

- figure 2 provides a schematic cross section of the known drive belt oriented in the circumference direction thereof;- figure 2 provides a schematic cross section of the known drive belt oriented in the circumference direction;

- figure 3 provides a schematic width-wise oriented view of a transverse segment of the known drive belt;- figure 3 provides a schematic width-wise oriented view of a transverse segment of the known drive belt;

- figure 4 is an enlargement of a part of the known transverse segment depicted in figure 3;- figure 4 is an enlargement of a part of the known transverse segment depicted in figure 3;

- figure 5 is an enlargement of a part of a novel transverse segment; and- figure 5 is an enlargement or a part of a novel transverse segment; and

- figure 6 schematically illustrates a straight trajectory part of the drive belt incorporating the novel transverse segment.- figure 6 schematically illustrates a straight trajectory part of the drive belt incorporating the novel transverse segment.

Figure 1 schematically shows a continuously variable transmission, such as for utilization in a motor vehicle between the prime mover and the drive wheels thereof. The continuously variable transmission is indicated in general by the reference signFigure 1 shows schematically a continuously variable transmission, such as for utilization in a motor vehicle between the prime mover and the drive wheels. The continuously variable transmission is indicated in general by the reference sign

1. The continuously variable transmission 1 comprises two pulleys1. The continuously variable transmission 1 comprises two pulleys

2, 3 and a drive belt 6 that is provided in a closed loop around the pulleys 2, 3. The pulleys 2, 3 are each provided with a pulley shaft 4 and with two pulley sheaves 7, 8, whereof a first pulley sheave 7 is fixed to the pulley shaft 4 of the respective pulley 2, 3 and whereof a second pulley sheave 8 is axially displaceable relative to such pulley shaft 4, while being fixed thereto in rotational direction. During operation of the transmission 1, the drive belt 6 is clamped at a running radius Rr at each pulley 2, 3 by and between the respective pulley sheaves 7, 8 thereof, which running radii Rr can be varied to vary the speed ratio of the transmission by moving the pulley sheaves 7, 8 of the pulleys 2, 3 towards, respectively away from each other.2, 3 and a drive belt 6 that is provided in a closed loop around the pulleys 2, 3. The pulleys 2, 3 are each provided with a pulley shaft 4 and with two pulley sheaves 7, 8, whereof a first pulley sheave 7 is fixed to the pulley shaft 4 or the respective pulley 2, 3 and whereof a second pulley sheave 8 is axially displaceable relative to such a pulley shaft 4, while being fixed thereto in rotational direction. During operation of the transmission 1, the drive belt 6 is clamped at a running radius Rr at each pulley 2, 3 by and between the respective pulley sheaves 7, 8 after, which running radii Rr can be varied to vary the speed ratio of the transmission by moving the pulley sheaves 7, 8 of the pulleys 2, 3 towards, respectively away from each other.

The drive belt 6 comprises two sets of mutually radially stacked continuous bands or rings, denoted ring stacks 9 hereinafter. Transverse segments 10 of the drive belt 6 are arranged on the ring stacks 9 forming an essentially contiguous row along the entire circumference thereof. For the sake of simplicity, only a part of these transverse segments 10 are shown in figure 1.The drive belt 6 comprises two sets of mutually radially stacked continuous bands or rings, denoted ring stacks 9 hereinafter. Transverse segments 10 of the drive belt 6 are arranged on the ring stacks 9 forming an essentially contiguous row along the entire circumference. For the sake of simplicity, only a part of these transverse segments 10 are shown in figure 1.

The transverse segments 10 are provided movable with respect to the ring stacks 9, at least along the circumference thereof. As a result, a torque can be transmitted between the transmission pulleys 2, 3 by means of friction and by the transverse segments 10 pressing against one another and pushing each other forward along the circumference of the ring stacks 9 in a direction of rotation of the pulleys 2, 3. The transverse segments 10 and the (rings of the) ring stacks 9 of the drive belt 6 are typically made of steel. This particular type of transmission 1 and its principal operation are well-known per se.The transverse segments 10 are provided movable with respect to the ring stacks 9, at least along the circumference thereof. As a result, a torque can be transmitted between the transmission pulleys 2, 3 by means of friction and by the transverse segments 10 pressing against one another and pushing each other forward along the circumference of the ring stacks 9 in a direction of rotation of the pulleys 2, 3. The transverse segments 10 and the (rings of the) ring stacks 9 or the drive belt 6 are typically made of steel. This particular type of transmission 1 and its principal operation are well-known per se.

In figure 2, an exemplary embodiment of the drive belt 6 is shown in cross section oriented in length or circumference direction C thereof, i.e. perpendicular to the width or axial direction A and the height or radial direction R of the drive beltIn figure 2, an exemplary embodiment of the drive belt 6 is shown in the cross section oriented in length or circumference direction C, i.e. perpendicular to the width or axial direction A and the height or radial direction R of the drive belt

6. In figure 3, only the transverse segment 10 of figure 2 is shown in a side elevation in the axial direction A.6. In figure 3, only the transverse segment 10 or figure 2 is shown in a side elevation in the axial direction A.

In figure 2, the ring stacks 9 are shown in cross-section and one transverse segments 10 of the drive belt 6 is shown in a front elevation. The ring stacks 9 are in this case composed of five individual flat, thin and flexible endless rings 5 each, which endless rings 5 are mutually concentrically stacked in the radial direction R to form the respective ring stack 9. In practice, however, these ring stacks 9 often comprise more than five endless rings 5, e.g. nine or twelve or possibly even more.In figure 2, the ring stacks 9 are shown in cross-section and one transverse segments 10 or the drive belt 6 is shown in a front elevation. The ring stacks 9 are in this case composed of five individual flat, thin and flexible endless rings 5 each, which endless rings 5 are mutually concentrically stacked in the radial direction R to form the respective ring stack 9. In practice, however, these ring stacks 9 often include more than five endless rings 5, eg nine or twelve or possibly even more.

In figures 2 and 3, the transverse segment 10 are shown to successively comprise in the radial direction R a base portion 13 of predominantly trapezoidal shape, a relatively narrow middle portion 14 and a top portion 15 of predominantly triangular shape. On either side of the middle portion 14 slots 33 are defined between the base portion 13 and the top portion 15, wherein the ring stacks 9 are accommodated. At each slot 33, a radially outward facing carrying surface 42 of the base portion 13 contacts the radial inside of a respective ring stack 9 during operation.In figures 2 and 3, the transverse segment 10 are shown to successively include in the radial direction A base portion 13 or predominantly trapezoidal shape, a relatively narrow middle portion 14 and a top portion 15 or predominantly triangular shape. On either side of the middle portion 14 slots 33 are defined between the base portion 13 and the top portion 15, the ring stacks 9 are accommodated. At each slot 33, a radially outward facing carrying surface 42 or the base portion 13 contacts the radial inside or a respective ring stack 9 during operation.

A front surface of the transverse segment 10 is indicated in general by the reference sign 11, whereas a back surface of the transverse segment 10 is indicated in general by the reference sign 12. In the following, the front surface 11 and the back surface 12 are generally indicated as main body surfaces 11, 12. In the drive belt 6, at least a part of the front surface 11 of the transverse segment 10 abuts against at least a part of the back surface 12 of a succeeding transverse segment 10, whereas at least a part of the back surface 12 of the transverse segment 10 abuts against at least a part of the front surface 11 of a preceding transverse segment 10.A front surface of the transverse segment 10 is indicated in general by the reference sign 11, whereas a back surface of the transverse segment 10 is indicated in general by the reference sign 12. In the following, the front surface 11 and the back surface 12 are generally indicated as main body surfaces 11, 12. In the drive belt 6, at least a part of the front surface 11 or the transverse segment 10 abuts against at least a part of the back surface 12 or a succeeding transverse segment 10, at least a part of the back surface 12 or the transverse segment 10 abuts against at least a part of the front surface 11 or a preceding transverse segment 10.

The transverse segment 10 takes-up a clamping force exerted between the discs 7, 8 of each pulley 2, 3 via contact faces 37 thereof, one such contact face 37 being provided at each axial side of the transverse segment 10. These contact faces 37 are mutually diverging in radial outward direction such that an acute angle is defined there between that is denoted the belt angle Φ and that closely matches a pulley angle Θ defined between the pulley sheaves 7, 8 of the pulleys 2, 3.The transverse segment 10 takes-up a clamping force between the discs 7, 8 or each pulley 2, 3 via contact faces 37 Nam, one such contact face 37 Being provided at each axial side of the transverse segment 10. These contact faces 37 are mutually diverging in radial outward direction such that an acute angle is defined there between that is denoted the belt angle and that closely matches a pulley angle defined between the pulley sheaves 7, 8 of the pulleys 2, 3.

The transverse segment 10 is provided with a projection 40 that protrudes from its front surface 11 and with a corresponding hole 41 that is provided in its back surface 12. In the drive beltThe transverse segment 10 is provided with a projection 40 that is protrudes from its front surface 11 and with a corresponding hole 41 that is provided in its back surface 12. In the drive belt

3, the projection 40 of the trailing transverse segment 10 is at least partially located in the hole 41 of the leading transverse segment 10, such that mutual displacement of these adjacent transverse segments 10 in a plane perpendicular to the circumference direction C of the drive belt 3 is prevented or, at least, limited. Typically, a nominal clearance of between 10 and 50 micron is provided between an outer circumference of the projection 40 and an inner circumference of the hole 41, i.e. the projection/hole-clearance.3, the projection 40 of the trailing transverse segment 10 is at least partially located in the hole 41 of the leading transverse segment 10, such that mutual displacement of these adjacent transverse segments 10 in a plane perpendicular to the circumference direction C of the drive belt 3 is prevented or, at least, limited. Typically, a nominal clearance of between 10 and 50 microns is provided between an outer circumference of the projection 40 and an inner circumference of the hole 41, i.e., the projection / hole clearance.

At the front surface 11 in the base portion 13 of the transverse segment 10, a rocking edge 18 is defined. The rocking edge 18 is represented by a convexly curved area of the front surface 11, which area separates two sections of the said front surface 11 in the radial direction R, which two sections are oriented at an angle relative to one other. An important function of the rocking edge 18 is to provide the mutual pushing contact between the adjacent transverse segments 10 when these are in a slightly rotated, i.e. tilted position relative to one another at the pulleys 2, 3. In order to favourable realise a minimal contact stress in the said pushing contact, as well as for the stability of such contact, the rocking edge 18 preferably extends along the full local width of the transverse segments 10. The rocking edge 18 is preferably located close to the carrying surfaces 42, i.e. at minimal distance Drc radial inward thereof. However, the smaller such distance Drc is, the sharper a transition edge 50 between the front surface 11 and the carrying surfaces 42 of the transverse segment 10 will be. This latter aspect of the design of the transverse segment 10 is illustrated in figure 4 in an enlargement of the area E of figure 3 indicted by the dotted circle. On the left side of figure 4, a relatively large rocking edge-to-carrying surface distance Drc is illustrated, allowing the transition edge 50 to be provided with a relatively large radius of curvature Rte, at least in comparison with the design of the transverse segment 10 on the right side of figure 4 with a relatively small rocking edgeto-carrying surface distance Drc. In practice and as illustrated in figure 4, the radius of curvature Rte is somewhat smaller than the rocking edge-to-carrying surface distance Drc in order to reliably ensure in mass manufacture that the rocking edge 18 does not overlap with the transition edge 50.At the front surface 11 in the base portion 13 or the transverse segment 10, a rocking edge 18 is defined. The rocking edge 18 is represented by a convexly curved area of the front surface 11, which area separates two sections of the said front surface 11 in the radial direction R, which two sections are oriented at an angle relative to one other. An important function of the rocking edge 18 is to provide the mutual pushing contact between the adjacent transverse segments 10 when these are in a slightly rotated, ie tilted position relative to one another at the pulleys 2, 3. In order to favourble realize a minimal contact stress in the said pushing contact, as well as for the stability of such contact, the rocking edge 18 preferably extends along the full local width of the transverse segments 10. The rocking edge 18 is preferably located close to the carrying surfaces 42, ie at minimal distance Drc radial inward thereof. However, the smaller such distance is Drc, the sharper a transition edge 50 between the front surface 11 and the carrying surfaces 42 of the transverse segment 10 will be. This latter aspect of the design of the transverse segment 10 is illustrated in figure 4 in an enlargement of the area E or figure 3 indicted by the dotted circle. On the left side of figure 4, a relatively large rocking edge-to-carrying surface distance Drc is illustrated, allowing the transition edge 50 to be provided with a relatively large radius or curvature Rte, at least in comparison with the design of the transverse segment 10 on the right side of figure 4 with a relatively small rocking edgeto-carrying surface distance Drc. In practice and as illustrated in figure 4, the radius of curvature Rte is somewhat narrower than the rocking edge-to-carrying surface distance Drc in order to ensure reliably in mass manufacture that the rocking edge 18 does not overlap with the transition edge 50.

In figure 4, the transition edge 50 is depicted as a circular arc of radius Rte. In practice, however, the transition edge 50 may not be so uniformly shaped, in which case its contour is approximated by a (closest fit of a) circular arc of radius Rte, at least within the context of the present disclosure. As such, the transition edge radius Rte between the carrying surfaces 42 and the front surface 11 might seem unimportant. However, this transition edge 50 does in practice arrive in contact with the radial inside of a respective ring stack 9 raising the overall· stress level· thereof. More in particular in this latter respect, a substantial stress raising effect was found to occur when the radius Rte of the transition edge 50 becomes less than 0.5 mm, in particular less than 0.3 mm.In Figure 4, the transition edge 50 is depicted as a circular arc or radius Rte. In practice, however, the transition edge 50 may not be uniformly shaped, in which case its contour is approximated by a (closest fit of a) circular arc or radius Rte, at least within the context of the present disclosure. As such, the transition edge radius Rte between the carrying surfaces 42 and the front surface 11 might seem unimportant. However, this transition edge 50 does in practice arrive in contact with the radial inside or a respective ring stack 9 raising the overall stress level. More in particular in this latter respect, a substantial stress raising effect was found to occur when the radius Rte or the transition edge 50 becomes less than 0.5 mm, in particular less than 0.3 mm.

According to the present disclosure such contact between the transition edge 50 and the ring stack 9 can favourably be avoided, or at least reduced in intensity by providing an offset 0 between the radial position of the projection 40 and the radial position of the hole 41 of the transverse segment 10. By thus lowering the overall stress level of the ring stack 9, the load carrying capacity and/or the longevity of the drive belt 3 can be increased.According to the present disclosure such contact between the transition edge 50 and the ring stack 9 can favourably be avoided, or at least reduced in intensity by providing an offset 0 between the radial position of the projection 40 and the radial position of the hole 41 or the transverse segment 10. By thus lowering the overall stress level of the ring stack 9, the load carrying capacity and / or the longevity of the drive belt 3 can be increased.

This novel design of the transverse segment 10 is schematically illustrated in figure 5 in an enlargement of a part thereof, which part corresponds to area F indicated in figure 3 by the dotted oval in relation to the transverse segment 10. In figure 5 the central axis of the cylindrical projection 40 is indicated by the solid line CA40 and the central axis of the hole 41 is indicated by the dashed line CA41. The said offset O thus corresponds to the separation between the central axis CA40 of the cylindrical projection 40 and the central axis CA41 of the hole 41. According to the present disclosure such offset O amounts between 15 and 75 micrometre or so for the typical thickness of the transverse segment 10 of between 1.4 and 1.8 mm. So even on the scale of figure 5, the offset 0 has been exaggerated therein.This novel design of the transverse segment 10 is schematically illustrated in figure 5 in an enlargement of a part thereof, which part corresponds to area F indicated in figure 3 by the dotted oval in relation to the transverse segment 10. In figure 5 the central axis whether the cylindrical projection 40 is indicated by the solid line CA40 and the central axis of the hole 41 is indicated by the dashed line CA41. The said offset O thus agreed to the separation between the central axis CA40 or the cylindrical projection 40 and the central axis CA41 or the hole 41. According to the present disclosure such offset O amounts between 15 and 75 micrometres or so for the typical thickness of the transverse segment 10 or between 1.4 and 1.8 mm. So even on the scale of figure 5, the offset 0 has been exaggerated therein.

If the said offset 0 incorporated in the novel transverse segment 10 exceeds the nominal projection/hole-clearance, then the transverse segments 10 are forced to tilt forward relative to the ring stacks 9 by the forced insertion of the projection 40 of a first transverse segment 10 into the (lower lying) hole 41 of an adjacent transverse segment 10 as these are pressed together in the row of the drive belt 3. Hereby, the contact between the radial inside of the respective ring stack 9 and the transition edge 50 of the transverse segments 10 can be favourably avoided in a straight section of the drive belt 3 crossing between the transmission pulleys 2, 3, as is schematically illustrated in figure 6. Furthermore, the transverse segments 10 also enter between the two pulley sheaves 7, 8 in such tilted position relative to the ring stacks 9, whereby a radial position of the transition edge 50 of a respective transverse segment 10, clamped between pulley sheaves 7, 8, is somewhat smaller than a radial positon of an opposite edge of the carrying surfaces 42 on the side of the back surface 12 of the transverse segment 10. Hereby, the contact between the radial inside of the respective ring stack 9 and the transition edge 50 between the carrying surface and the tilting edge is at least favourably reduced in its intensity.If the said offset 0 incorporated in the novel transverse segment 10 exceeds the nominal projection / hole clearance, then the transverse segments 10 are forced to tilt forward relative to the ring stacks 9 by the forced insertion of the projection 40 of a first transverse segment 10 into the (lower lying) hole 41 of an adjacent transverse segment 10 as these are pressed together in the row of the drive belt 3. Hereby, the contact between the radial inside of the respective ring stack 9 and the transition edge 50 of the transverse segments 10 can be favourably avoided in a straight section of the drive belt 3 crossing between the transmission pulleys 2, 3, as is schematically illustrated in figure 6. Furthermore, the transverse segments 10 also enter between the two pulley sheaves 7, 8 in such tilted position relative to the ring stacks 9, a radial position of the transition edge 50 or a respective transverse segment 10, clamped between pulley sheaves 7, 8, is somewhat narrower th an a radial positon or an opposite edge of the carrying surface 42 on the side of the back surface 12 of the transverse segment 10. Hereby, the contact between the radial inside of the respective ring stack 9 and the transition edge 50 between the carrying surface and the tilting edge is at least favourably reduced in its intensity.

The present disclosure, in addition to the entirety of the preceding description and all details of the accompanying figures, also concerns and includes all the features of the appended set of claims. Bracketed references in the claims do not limit the scope thereof, but are merely provided as non-binding examples of the respective features. The claimed features can be applied separately in a given product or a given process, as the case may be, but it is also possible to apply any combination of two or more of such features therein.The present disclosure, in addition to the whole of the preceding description and all details of the accompanying figures, also concerns and includes all the features of the appended set of claims. Bracketed references in the claims do not limit the scope, but are merely provided as non-binding examples or the respective features. The claimed features can be applied separately in a given product or process, as the case may be, but it is also possible to apply any combination of two or more or such features therein.

The invention(s) represented by the present disclosure is (are) not limited to the embodiments and/or the examples that are explicitly mentioned herein, but also encompasses amendments, modifications and practical applications thereof, in particular those that lie within reach of the person skilled in the relevant art.The invention (s) represented by the present disclosure is (are) not limited to the following and / or the examples that are explicitly mentioned, but also encompasses amendments, modifications and practical applications, in particular those that are within reach of the person skilled in the relevant art.

Claims (2)

CONCLUSIESCONCLUSIONS 1/21/2 FIG. 2 FIG. 3FIG. 2 FIG. 3 1. Een dwarssegment (10) voor een drijfriem (6) met een ringpakket (9) en met aantal, elkaar opvolgende en beweegbaar op het ringpakket (9) geplaatste dwarssegmenten (10), welke dwarssegment (10) is voorzien van een opening (33) voor het opnemen van het ringpakket (9) van de drijfriem (6), welke opening (33) aan een onderzijde daarvan wordt begrensd door een draagvlak (42) aan een bovenzijde van een basisgedeelte (13) van het dwarssegment (10) , welk basisgedeelte (13) tevens is voorzien van een kantelrand (18), in de vorm van een in de breedte van het basisgedeelte (13) aangebracht en in de hoogte convex gekromd deel van een voorvlak (11) van het dwarssegment (10), en van een eveneens convex gekromde overgangsrand (50) tussen het draagvlak (42) en het voorvlak (11) van het dwarssegment (10), dat verder is voorzien van een uitstulping (40) op het voorvlak (11) daarvan en van een uitsparing (41) in een tegenovergelegen achtervlak (12) daarvan, met het kenmerk, dat de uitstulping (40) hoger op het voorvlak (11) is gepositioneerd dan dat de uitsparing (41) in het achtervlak (11) is gepositioneerd.A transverse segment (10) for a drive belt (6) with a ring package (9) and with a number of transverse segments (10) following one another and movably placed on the ring package (9), which transverse segment (10) is provided with an opening ( 33) for receiving the ring package (9) from the drive belt (6), which opening (33) is bounded on its underside by a bearing surface (42) on an upper side of a base portion (13) of the transverse segment (10) , which base portion (13) is also provided with a tilting edge (18), in the form of a part of a front surface (11) of the transverse segment (10) arranged in the width of the base portion (13) and curved in height , and of a transition edge (50) also convexly curved between the bearing surface (42) and the front surface (11) of the transverse segment (10), which is furthermore provided with a protrusion (40) on the front surface (11) thereof and with a recess (41) in an opposite rear surface (12) thereof, characterized in that the protrusion (40) ho is positioned on the front surface (11) rather than the recess (41) being positioned in the rear surface (11). 2. Het dwarssegment (10) volgens de conclusie 1, met het kenmerk, dat een door de overgangsrand (50) gedefinieerde kromtestraal (Rte) kleiner is dan 0,5 mm, in het bijzonder kleiner is dan 0,3 mm.The transverse segment (10) according to claim 1, characterized in that a radius of curvature (Rte) defined by the transition edge (50) is less than 0.5 mm, in particular less than 0.3 mm. 3. Het dwarssegment (10) volgens de conclusie 1 of 2, met het kenmerk, dat de kantelrand (18) op minder dan 0,9 mm onder het draagvlak (42) is gelegen, in het bijzonder op minder 0,7 mm daaronder, meer in het bijzonder op minder dan 0,6 mm daaronder.The transverse segment (10) according to claim 1 or 2, characterized in that the tilting edge (18) is less than 0.9 mm below the bearing surface (42), in particular less than 0.7 mm below , more particularly at less than 0.6 mm below. 4. Het dwarssegment (10) volgens de conclusie 1, 2 of 3, met het kenmerk, dat de uitstulping (40) en de uitsparing (41) in hoofzaak cilindrisch of althans conisch gevormd zijn en dat tussen een centrale as (CA40) van de uitstulping (40) en een centrale as (CA41) van de uitsparing (41) een offset (O) is voorzien.The transverse segment (10) according to claim 1, 2 or 3, characterized in that the protuberance (40) and the recess (41) are substantially cylindrical or at least conical and that between a central axis (CA40) of the protrusion (40) and a central axis (CA41) of the recess (41) are provided with an offset (O). 5. Het dwarssegment (10) volgens de conclusie 4, met het kenmerk, dat de offset (O) tussen de 15 en de 75 micrometer bedraagt.The cross section (10) according to claim 4, characterized in that the offset (O) is between 15 and 75 micrometers. 6. Het dwarssegment (10) volgens de conclusie 5, met het kenmerk, dat tussen een buitenomtrek van de uitstulping (40) en een binnenomtrek van de uitsparing (41) een speling is gedefinieerd tussen de 10 en de 50 micrometer.The transverse segment (10) according to claim 5, characterized in that a clearance is defined between 10 and 50 micrometers between an outer circumference of the protrusion (40) and an inner circumference of the recess (41). 7. Het dwarssegment (10) volgens de conclusie 4, met het kenmerk, dat de offset (O) groter is dan de halve waarde van een verschil tussen de diameter van een buitenomtrek van de uitstulping (40) en een diameter van een binnenomtrek van de uitsparing (41).The transverse segment (10) according to claim 4, characterized in that the offset (O) is greater than half the value of a difference between the diameter of an outer circumference of the protrusion (40) and a diameter of an inner circumference of the recess (41). 8. Een drijfriem (6) voorzien van dwarssegmenten (10) volgens een van de conclusies 4-7, met het kenmerk, dat de in dwarssegmenten (10) toegepaste offset (O) groter is dan een minimale waarde (0_min) daarvoor volgens de vergelijking:A drive belt (6) provided with transverse segments (10) according to one of claims 4-7, characterized in that the offset (O) used in transverse segments (10) is greater than a minimum value (0_min) therefor according to the comparison: 0_min > Rr_min - ^(Rr_minA2 - M»DA2) waarin Rr_min een minimale buigradius van de drijfriem (6) betreft en waarin D een dikte van de dwarssegmenten (10)0_min> Rr_min - ^ (Rr_min A 2 - M »D A 2) in which Rr_min is a minimum bending radius of the drive belt (6) and where D is a thickness of the transverse segments (10) 20 betreft gemeten tussen het voorvlak (11) en het achtervlak (12) daarvan.20 is measured between the front surface (11) and the rear surface (12) thereof. 9. De drijfriem (6) volgens de conclusie 8, met het kenmerk, dat de in dwarssegmenten (10) toegepaste offset (O) kleiner is 5 keer,The drive belt (6) according to claim 8, characterized in that the offset (O) used in cross sections (10) is less than 5 times, 25 bij voorkeur kleiner is dan 3 keer de genoemde minimale waarde (0_min) daarvoor.Is preferably less than 3 times the said minimum value (0_min) therefor. 2/22/2
NL1042198A 2016-12-27 2016-12-27 A drive belt for a continuously variable transmission with transverse segments and a ring stack NL1042198B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NL1042198A NL1042198B1 (en) 2016-12-27 2016-12-27 A drive belt for a continuously variable transmission with transverse segments and a ring stack
CN201780080545.XA CN110114591B (en) 2016-12-27 2017-12-27 Drive belt for a continuously variable transmission with a transverse component and a ring set
KR1020197021873A KR20190104553A (en) 2016-12-27 2017-12-27 Drive belt for continuously variable transmission with transverse segments and ring stack
JP2019555059A JP7009502B2 (en) 2016-12-27 2017-12-27 Drive belt used in continuously variable transmissions with cross section members and ring stacks
PCT/EP2017/025371 WO2018121884A1 (en) 2016-12-27 2017-12-27 A drive belt for a continuously variable transmission with transverse segments and a ring stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL1042198A NL1042198B1 (en) 2016-12-27 2016-12-27 A drive belt for a continuously variable transmission with transverse segments and a ring stack

Publications (1)

Publication Number Publication Date
NL1042198B1 true NL1042198B1 (en) 2018-07-03

Family

ID=58314483

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1042198A NL1042198B1 (en) 2016-12-27 2016-12-27 A drive belt for a continuously variable transmission with transverse segments and a ring stack

Country Status (5)

Country Link
JP (1) JP7009502B2 (en)
KR (1) KR20190104553A (en)
CN (1) CN110114591B (en)
NL (1) NL1042198B1 (en)
WO (1) WO2018121884A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1043501B1 (en) * 2019-12-10 2021-08-31 Bosch Gmbh Robert A transverse segment for a drive belt and a drive belt for a continuously variable transmission including the transverse segment and a ring stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179626A (en) * 1998-12-11 2000-06-27 Nissan Motor Co Ltd V-belt for continuously variable transmission
WO2014102225A1 (en) * 2012-12-24 2014-07-03 Robert Bosch Gmbh Drive belt with a carrier ring and transverse segments
WO2015063132A1 (en) * 2013-11-01 2015-05-07 Robert Bosch Gmbh Method for manufacturing a transverse segment for a pushbelt for a continuously variable transmission and a transverse segment thus obtained

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562645B2 (en) * 2002-02-26 2004-09-08 日産自動車株式会社 Belt element for continuously variable transmission and method of manufacturing the same
CN102906452B (en) * 2011-05-27 2015-05-20 丰田自动车株式会社 Drive belt and assembly method for drive belt
US9299136B2 (en) * 2012-12-27 2016-03-29 Honda Motor Co., Ltd. Metal element deformation state detection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000179626A (en) * 1998-12-11 2000-06-27 Nissan Motor Co Ltd V-belt for continuously variable transmission
WO2014102225A1 (en) * 2012-12-24 2014-07-03 Robert Bosch Gmbh Drive belt with a carrier ring and transverse segments
WO2015063132A1 (en) * 2013-11-01 2015-05-07 Robert Bosch Gmbh Method for manufacturing a transverse segment for a pushbelt for a continuously variable transmission and a transverse segment thus obtained

Also Published As

Publication number Publication date
CN110114591B (en) 2021-11-26
JP2020503484A (en) 2020-01-30
KR20190104553A (en) 2019-09-10
JP7009502B2 (en) 2022-01-25
CN110114591A (en) 2019-08-09
WO2018121884A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
CN110637174B (en) Transverse section for a drive belt for a continuously variable transmission, and drive belt and continuously variable transmission provided therewith
NL1040811B1 (en) Drive belt for a continuously variable transmission with generally V-shaped transverse members.
CN107110294B (en) Push belt for continuously variable transmission and transmission provided with same
NL1040573C2 (en) A continuously variable transmission with pulleys and a drive belt.
NL1042198B1 (en) A drive belt for a continuously variable transmission with transverse segments and a ring stack
WO2018122398A1 (en) A transverse segment for a drive belt for a continuously variable transmission
NL1038910C2 (en) Drive belt comprising different types of transverse members for a continuously variable transmission.
JP2020070809A (en) Transmission belt
US9416846B2 (en) Drive belt comprising different types of transverse members for a continuously variable transmission
EP3835618A1 (en) A transverse segment for a drive belt and a drive belt for a continuously variable transmission including the transverse segment and a ring stack
NL1039981C2 (en) Transverse segment for a drive belt with a carrier ring and multiple transverse segments.
JP2009185945A (en) Element of belt for continuously variable transmission
NL1040585C2 (en) Basic material for a transverse segment for a drive belt for a continuously variable transmission and blanking method using it.
WO2017114543A1 (en) Transverse member for a drive belt for a continuously variable transmission
NL1039980C2 (en) Transverse segment for a drive belt with a carrier ring and multiple transverse segments.
NL1043486B1 (en) A transverse segment for a drive belt and a continuously variable transmission with a drive belt including the transverse segment
JP5818807B2 (en) Drive belt for transmission with convex pulley sheave
EP3559503B1 (en) Drive belt comprising different types of transverse segments for a continuously variable transmission
CN209943426U (en) Transverse section of a drive belt for a continuously variable transmission
CN108223692B (en) Drive belt with transverse component and ring set for a continuously variable transmission and method for producing the same
JP2016008680A (en) Chain-type continuous variable transmission
NL1038480C2 (en) A transverse element for a drive belt and the drive belt.
NL1039972C2 (en) Transverse segment for a pushbelt for a continuously variable transmission and method for blanking it.
EP3187750A1 (en) Drive belt for a continuously variable transmission comprising two types of transverse members of mutually different widths
WO2006065116A1 (en) Method for forming a transverse element for a push belt for a continuously variable transmission