NL1040605C2 - Electromagnetically actuated hexapod for nanometric positioning. - Google Patents

Electromagnetically actuated hexapod for nanometric positioning. Download PDF

Info

Publication number
NL1040605C2
NL1040605C2 NL1040605A NL1040605A NL1040605C2 NL 1040605 C2 NL1040605 C2 NL 1040605C2 NL 1040605 A NL1040605 A NL 1040605A NL 1040605 A NL1040605 A NL 1040605A NL 1040605 C2 NL1040605 C2 NL 1040605C2
Authority
NL
Netherlands
Prior art keywords
frame
module
magnet
base
relative
Prior art date
Application number
NL1040605A
Other languages
Dutch (nl)
Inventor
Hubertus Leonardus Mathias Marie Janssen
Bartholomeus Catharina Thomas Bree
Original Assignee
Janssen Prec Engineering
Hubertus Leonardus Mathias Marie Janssen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janssen Prec Engineering, Hubertus Leonardus Mathias Marie Janssen filed Critical Janssen Prec Engineering
Priority to NL1040605A priority Critical patent/NL1040605C2/en
Application granted granted Critical
Publication of NL1040605C2 publication Critical patent/NL1040605C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0208Compliance devices
    • B25J17/0216Compliance devices comprising a stewart mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J7/00Micromanipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • B25J9/0015Flexure members, i.e. parts of manipulators having a narrowed section allowing articulation by flexion

Description

Electromagneticallv Actuated Hexapod for nanometric positioning
The invention concerns an e 1 e c t r o m a g n e t i c a 11 y actuated positioning device for positioning a sample in six degrees of freedom. Typically combined positioning in three linear axis and three rotations is done by stacking multiple positioning devices each being able to manipulate at least one degree of freedom. Due to the fact that each positioning device has its own guiding with accompanying mass a lot of mass has to be moved for manipulation of the sample. In order to overcome this issue a hexapod configuration can be used in which all manipulation actions are done in parallel. The moveable mass is supported by 6 parallel actuators and will be minimized to a single small table holding the sample.
The actuators to be used in a hexapod configuration can be based on numerous different principles like: hydraulic actuators, spindle drives, piezoelectric actuators, used as direct drive but also in combination with stroke enhancement methods like flexures or stepping, and electromagnetic principles.
For direct drive positioning with nanometer resolution and high dynamic performance over a stroke of several millimetres the electromagnetic principles are an obvious choice. On system level internal friction in the components is a crucial aspect with respect to this performance .
The invention concerns the introduction of an electromagnetic voice coil actuated hexapod positioning device with f r i c t i ο η 1 e s s , hysteresis free and play free guiding elements based on elastic deformation of flexures.
The exact nature of this invention, as well as its objectives becomes clear in the accompanying drawings wherein:
Fig.l Is a schematic drawing of the invention
Fig.2 Is a schematic drawing of a module according the invention
In figure 1, the system is depicted. On top of the rigid base 1, 3 identical modules 2, 3 and 4 are placed in a symmetric configuration. The topside of each module is coupled to the rigid table 5. Each module has the capacity to output 2 linear motions, exemplary shown for module 2 by the arrows 6 and 7. Controlling the in total 6 output motions of the modules 2, 3 and 4 via control signals through the connectors 8 and 9 allows position control of table 5 with respect to base 1 in 6 degrees of freedom.
In figure 2, a module is depicted.
The module frame is a monolithic machined block with integrated flexures to allow relative motion between the stationary frame region 20 and the upper frame region 21. Each of the controllable output motions 6 and 7 has its own force generating electromagnetic voice coil actuator 10 and position encoder 11. Each voice coil actuator is a combination of a stationary coil attached to region 20 and a moving magnet indirectly attached to region 21. Each of the moving magnets is guided by a f r i c t i ο η 1 e s s , hysteresis free and play free parallel guide. For the exemplary voice coil actuator on the right this is realised via the flexures 12 and 13, resulting in a moving magnet motion along axis 14.
The combined f r i c t i ο η 1 e s s , hysteresis free and play free flexures 15, 16, 17 and 18 allow the exemplary magnet motion 14 to be transferred with high stiffness to the top region 21 of the module while the other degrees of freedom remain unconstrained and have a relative low stiffness.
Each of the resulting output motions 6 and 7 has a spring 19 to compensate a stationary load along this axis if desired.

Claims (6)

1. De uitvinding betreft een inrichting met het kenmerk dat: Een hexapod gelijkend systeem is gerealiseerd om een tafel ten opzichte van een basis in zes vrijheidsgraden hoog dynamisch en met hoge nauwkeurigheid te positioneren over een bereik van enkele millimeters, door toepassing van drie identieke modules tussen de basis en tafel, waarbij de module in staat is om intern twee relatieve bewegingen ten opzichte van zijn stationaire deel te genereren en deze beweging aan de tafel over te dragen; iedere module een monolitisch, dat wil zeggen uit een enkel deel gefabriceerd, frame bevat, met daarin onder meer alle benodigde, op elastische vervorming gebaseerde, geleidingen om de interne beweging mogelijk te maken; iedere module voorzien is van twee, onderling in v-vorm geplaatste, elektromagnetische duikspoel actuatoren waarbij de beweegbare magneten de gewenste interne bewegingen introduceren en waarbij deze bewegingen met hoge stijfheid in aandrij frichting worden doorgegeven aan de tafel via de elastische geleidingen in het frame en waarbij de spoelen met het stationaire deel van de het frame en daarmee aan de basis zijn verbonden; de geleiding van iedere magneet ten opzichte van zijn bijbehorende spoel door middel van de elastische elementen in het frame zonder wrijving, hysterese en speling wordt gerealiseerd; de positie van iedere magneet, in de a a n d r i j f r i c h t i n g , ten opzichte van het stationaire deel van het frame van de module wordt gemeten met een positie encoder; de positie van iedere magneet in zijn a a n d r i j f r i c h t i n g afzonderlijk wordt doorgeleid naar de tafel met een staaf, zijnde een combinatie van elastische elementen in het frame, welke in aandr ijfrichting een hoge stijfheid heeft en in de andere richtingen een relatieve lage stijfheid, waardoor de positie in a a n d r i j f r i c h t i n g zonder wrijving, hysterese en speling wordt doorgeven; de belasting door de zwaartekracht in a a n d r i j f r i c h t i n g van iedere magneet afzonderlijk kunnen worden gecompenseerd door toepassing van veren geïntegreerd in de module.1. The invention relates to a device characterized in that: A hexapod-like system is realized to position a table in a high degree of dynamics and with high accuracy over a range of a few millimeters relative to a base in a range of a few millimeters, by applying three identical modules between the base and table, the module being capable of internally generating two relative movements relative to its stationary part and transmitting this movement to the table; each module comprises a monolithic, that is to say single-fabricated, frame including, among other things, all the necessary deformations based on elastic deformation to enable internal movement; each module is provided with two V-shaped electromagnetic diving coil actuators, whereby the movable magnets introduce the desired internal movements and where these movements with high rigidity in the drive direction are transmitted to the table via the elastic guides in the frame and wherein the coils are connected to the stationary part of the frame and to the base thereof; the guidance of each magnet with respect to its associated coil is realized by means of the elastic elements in the frame without friction, hysteresis and play; the position of each magnet, in the position of the magnet, relative to the stationary part of the frame of the module is measured with a position encoder; the position of each magnet in its drive direction is passed separately to the table with a rod, being a combination of elastic elements in the frame, which has a high rigidity in the drive direction and a relatively low rigidity in the other directions, so that the position in drive direction without friction, hysteresis and play is transmitted; the load due to gravity in each magnet can be compensated for individually by applying springs integrated in the module. 2. Een inrichting volgens conclusie 1, met het kenmerk dat de magneet van de duikspoel actuator aan het stationaire deel van het frame van de module is bevestigd, terwijl de spoel middels de staven aan de tafel is bevestigd.A device according to claim 1, characterized in that the magnet of the dive coil actuator is attached to the stationary part of the frame of the module, while the coil is attached to the table by means of the rods. 3. Een inrichting volgens een der voorgaande conclusies, met het kenmerk dat een of meerdere ver sne 11 i ngs sen soren en of sne 1 he i dssen soren op de tafel zijn gemonteerd die het mogelijk maken om deze signalen te gebruiken om control-technisch de tafel te isoleren van de basis waardoor het negatieve effect van basistri 11 ingen sterk kan worden onderdrukt.A device as claimed in any one of the preceding claims, characterized in that one or more fast sensors and / or fast sensors are mounted on the table which make it possible to use these signals for control purposes isolate the table from the base, so that the negative effect of basic stresses can be strongly suppressed. 4. Een inrichting volgens een der voorgaande conclusies, met het kenmerk dat de positie op een of meerdere plekken rechtstreeks wordt gemeten tussen de basis en de tafel hetgeen het mogelijk maakt om deze signalen te gebruiken om control-technisch de tafel te positioneren ten opzichte van de basis.A device according to any one of the preceding claims, characterized in that the position at one or more places is directly measured between the base and the table, which makes it possible to use these signals to control the table in relation to control the base. 5. Een inrichting volgens een der voorgaande conclusies, met het kenmerk dat de positie op een of meerdere plekken direct wordt gemeten tussen de tafel en de omgeving hetgeen het mogelijk maakt om deze signalen te gebruiken om c o n t r o 1 -1 e c h n i s c h de tafel te positioneren ten opzichte van de omgeving.A device according to any one of the preceding claims, characterized in that the position at one or more places is measured directly between the table and the environment, which makes it possible to use these signals to check the table technically in relation to the table. relative to the environment. 6. Een inrichting volgens een der voorgaande conclusies, met het kenmerk dat de belasting door de zwaartekracht op een andere manier wordt gecompenseerd. Zoals bijvoorbeeld door een duikspoel actuator met geïntegreerde negatieve stijfheid of bijvoorbeeld met permanente magneten;A device according to any one of the preceding claims, characterized in that the load due to gravity is compensated in a different way. Such as, for example, by a diving coil actuator with integrated negative stiffness or, for example, with permanent magnets;
NL1040605A 2014-01-15 2014-01-15 Electromagnetically actuated hexapod for nanometric positioning. NL1040605C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL1040605A NL1040605C2 (en) 2014-01-15 2014-01-15 Electromagnetically actuated hexapod for nanometric positioning.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1040605 2014-01-15
NL1040605A NL1040605C2 (en) 2014-01-15 2014-01-15 Electromagnetically actuated hexapod for nanometric positioning.

Publications (1)

Publication Number Publication Date
NL1040605C2 true NL1040605C2 (en) 2015-07-16

Family

ID=50440761

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1040605A NL1040605C2 (en) 2014-01-15 2014-01-15 Electromagnetically actuated hexapod for nanometric positioning.

Country Status (1)

Country Link
NL (1) NL1040605C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630602A (en) * 2019-01-18 2019-04-16 上海大学 A kind of quasi- zero stiffness vibrating isolation system of electromagnetism based on Stewart platform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026801A2 (en) * 2003-09-12 2005-03-24 Carl Zeiss Smt Ag Apparatus for manipulation of an optical element
US20070284502A1 (en) * 2006-06-13 2007-12-13 Nikon Corporation Hexapod kinematic mountings for optical elements, and optical systems comprising same
EP1962124A1 (en) * 2007-02-23 2008-08-27 Canon Kabushiki Kaisha Holding apparatus for holding object, exposure apparatus including the holding apparatus, and device manufacturing method using the exposure apparatus
US20130286490A1 (en) * 2004-06-29 2013-10-31 Carl Zeiss Smt Gmbh Positioning unit and apparatus for adjustment of an optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026801A2 (en) * 2003-09-12 2005-03-24 Carl Zeiss Smt Ag Apparatus for manipulation of an optical element
US20130286490A1 (en) * 2004-06-29 2013-10-31 Carl Zeiss Smt Gmbh Positioning unit and apparatus for adjustment of an optical element
US20070284502A1 (en) * 2006-06-13 2007-12-13 Nikon Corporation Hexapod kinematic mountings for optical elements, and optical systems comprising same
EP1962124A1 (en) * 2007-02-23 2008-08-27 Canon Kabushiki Kaisha Holding apparatus for holding object, exposure apparatus including the holding apparatus, and device manufacturing method using the exposure apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN E MCINROY ET AL: "Design and Control of Flexure Jointed Hexapods", IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, IEEE INC, NEW YORK, US, vol. 16, no. 4, 1 August 2000 (2000-08-01), XP011053514, ISSN: 1042-296X *
PREUMONT ET AL: "A six-axis single-stage active vibration isolator based on Stewart platform", JOURNAL OF SOUND & VIBRATION, LONDON, GB, vol. 300, no. 3-5, 4 January 2007 (2007-01-04), pages 644 - 661, XP005733771, ISSN: 0022-460X, DOI: 10.1016/J.JSV.2006.07.050 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630602A (en) * 2019-01-18 2019-04-16 上海大学 A kind of quasi- zero stiffness vibrating isolation system of electromagnetism based on Stewart platform

Similar Documents

Publication Publication Date Title
Lee et al. Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier
US10429587B2 (en) Multi-axis relative positioning stage
CN109909976B (en) Symmetrical space stereo micro-manipulator with three-stage motion amplifying mechanism
JP6010312B2 (en) Vertical actuator with gravity compensation
JP2014238402A5 (en)
JP2014068523A5 (en)
JP2012519078A5 (en) Laser processing system
NL1040605C2 (en) Electromagnetically actuated hexapod for nanometric positioning.
JP6207729B2 (en) Apparatus and method for lifting an object
US20160103313A1 (en) Optical module for vibrating light beam
TWI616725B (en) Position measuring apparatus, pattern transfer apparatus, and method for manufacturing a device
GB2581763A (en) Modular objective assembly with moveable laser beam
KR101340033B1 (en) 3 axes out-of-plane motion stage using flexure mechanism
JP5353767B2 (en) Endurance test equipment
NL1040702B1 (en) Cryo hexapod positioning system.
Jeong et al. Design of a six-degree-of-freedom motion fine stage driven by voice coil motors with flexural guides
JP6639794B2 (en) Slide cover
US11458581B2 (en) High-precision linear actuator
WO2015019772A1 (en) Lens unit and imaging device
NL1038896C2 (en) Inertial drive system with friction release.
NL1023781C2 (en) Table positioning device, comprises supports with displacement devices for moving table in direction parallel to table surface
Xu et al. Design and development of a flexure-based compact constant-force robotic gripper
Chi et al. An observer-based active vibration isolation system using the voice-coil actuator
NL1040793B1 (en) Thermal Expansion Insensitive XY Piezo Manipulator.
Chung et al. Development of a nano-positioning planar motion stage

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20190201