NL1040249C2 - ALTERNATIVE ENERGY-DRIVEN HYDROGEN GAS ENERGY CENTRAL. - Google Patents
ALTERNATIVE ENERGY-DRIVEN HYDROGEN GAS ENERGY CENTRAL. Download PDFInfo
- Publication number
- NL1040249C2 NL1040249C2 NL1040249A NL1040249A NL1040249C2 NL 1040249 C2 NL1040249 C2 NL 1040249C2 NL 1040249 A NL1040249 A NL 1040249A NL 1040249 A NL1040249 A NL 1040249A NL 1040249 C2 NL1040249 C2 NL 1040249C2
- Authority
- NL
- Netherlands
- Prior art keywords
- hydrogen gas
- seawater
- gas
- electrolysis
- hydrogen
- Prior art date
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 56
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 32
- 239000013535 sea water Substances 0.000 claims description 27
- 239000005708 Sodium hypochlorite Substances 0.000 claims description 24
- 238000005868 electrolysis reaction Methods 0.000 claims description 24
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 17
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 13
- 229910001882 dioxygen Inorganic materials 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 10
- 239000006227 byproduct Substances 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 230000003115 biocidal effect Effects 0.000 claims description 4
- 239000003139 biocide Substances 0.000 claims description 4
- 239000002803 fossil fuel Substances 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000011161 development Methods 0.000 claims description 3
- 239000005431 greenhouse gas Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000005791 algae growth Effects 0.000 claims description 2
- 238000004821 distillation Methods 0.000 claims description 2
- 239000003651 drinking water Substances 0.000 claims description 2
- 235000020188 drinking water Nutrition 0.000 claims description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims 2
- 229910000019 calcium carbonate Inorganic materials 0.000 claims 1
- 230000018109 developmental process Effects 0.000 claims 1
- 239000013505 freshwater Substances 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 claims 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims 1
- 239000000347 magnesium hydroxide Substances 0.000 claims 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims 1
- 239000000395 magnesium oxide Substances 0.000 claims 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 1
- 230000008929 regeneration Effects 0.000 claims 1
- 238000011069 regeneration method Methods 0.000 claims 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 10
- 238000009434 installation Methods 0.000 description 9
- 230000005611 electricity Effects 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
- C02F1/4674—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/50—Processes
- C25B1/55—Photoelectrolysis
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/05—Pressure cells
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4676—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
- C02F1/4678—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction of metals
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/009—Apparatus with independent power supply, e.g. solar cells, windpower or fuel cells
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46155—Heating or cooling
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4616—Power supply
- C02F2201/46165—Special power supply, e.g. solar energy or batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/208—Off-grid powered water treatment
- Y02A20/212—Solar-powered wastewater sewage treatment, e.g. spray evaporation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
DOOR ALTERNATIEVE ENERGIE GEDREVEN WATERSTOFGAS-ENERGIE CENTRALEALTERNATIVE ENERGY-DRIVEN HYDROGEN GAS ENERGY CENTRAL
INLEIDING:PREFACE:
Dit document bevat het unieke proces van een door alternatieve energie gedreven waterstofenergie centrale, welke naast elektrische energieproductie ook andere bijproducten genereert. Deze uitvinding is gedeeltelijk uitgetest en bevat andere delen die reeds al in werking zijn. De aldus opgewekte elektrische energie wordt primair geleverd aan het lokale elektriciteitsnet, doch in het proces worden echter ook andere bijproducten gemaakt, zijnde namelijk natriumhypochloriet, zuurstofgas, natrium metaal, bijtende soda (natriumhydroxide) en zuiver water. Dit gebeurt op een veilige, schone, goedkope, efficiënte en groene manier. De aldus opgewekte elektrische energie is niet afhankelijk van de beschikbaarheid van fossiele brandstoffen. In tegendeel dit proces maakt hun gebruik niet noodzakelijk en reduceert de productie van broeikasgassen (CO2). De bijproduct, waterstof gas, is ook te gebruiken als brandstof voor alle type motoren die op dit moment met fossiele brandstoffen worden gedreven. Dit proces is een combinatie van reeds bestaande c.q. aanwezige technologieën, processen, systemen en apparaten die allereerst deels technologisch zijn aangepast c.q. zijn verfijnd, en vervolgens middels een uniek/innovatief bedacht systeem zijn gerangschikt c.q. zijn gecombineerd op dusdanige wijze dat een flexibele constante energieproductie wordt gegarandeerd. Dit is niet eerder zo bedacht.This document contains the unique process of an alternative energy-driven hydrogen power plant, which generates other by-products in addition to electrical energy production. This invention has been partially tested and contains other parts that are already in operation. The electrical energy thus generated is primarily supplied to the local electricity grid, but other by-products are also made in the process, namely sodium hypochlorite, oxygen gas, sodium metal, caustic soda (sodium hydroxide) and pure water. This is done in a safe, clean, cheap, efficient and green way. The electrical energy thus generated is not dependent on the availability of fossil fuels. On the contrary, this process makes their use unnecessary and reduces the production of greenhouse gases (CO2). The by-product, hydrogen gas, can also be used as fuel for all types of engines that are currently powered by fossil fuels. This process is a combination of already existing and / or existing technologies, processes, systems and devices that are firstly partly technologically adapted or refined, and subsequently arranged or combined by means of a unique / innovative devised system in such a way that a flexible constant energy production is achieved. guaranteed. This is not the case before.
PROCESBESCHRIJVING:PROCESS DESCRIPTION:
Het proces is als volgt en wij refereren naar de aangehechte tekening. Zeewater A-1 wordt opgepompt via pompen E-1 en E-2. De zeewater wordt eerst verpompt naar een accumulatievat T-1 die ervoor zorgt dat de aanvoer van zeewater constant blijft. De opvoerpompen E-3 en E-4 zorgen dat de zeewater uit accumulatie vat T-1 op een druk van minstens 4 bar(g) wordt verpompt naar de elektrolysevat E-19. In deze elektrolysevat E-19 wordt, door middel van gelijkstroom welke wordt toegevoerd aan speciale met Titanium (Ti) bekleedde platina elektrodes, het zeewater opgesplitst in waterstofgas, zuurstofgas en natriumhypochloriet. De zeewater temperatuur in de elektrolysedrukvat wordt verhoogd tot ongeveer 80 graden Celsius om de geleidbaarheid te vergroten van het zeewater. Afhankelijk van de behoefte kan eventueel naar zuurstof productie worden omgeschakeld. De benodigde gelijkstroom voor het elektrolyse proces wordt verkregen door een of een combinatie van de volgende alternatieve energie bronnen (zie tekening). Wind (ES-1), Zon (ES-2), Getijden/Vloed, Golf (ES-3) of andere alternatieve energiebronnen (ES-4) die thans nog in ontwikkeling zijn. Zie figuur ES-1 in de diagram. De gelijkstroom regulator 1-1 zorgt dat de benodigde hoeveelheid gelijkstroom DC-1 steeds wordt aangepast. Hierdoor kunnen en zullen alleen de voor het proces benodigde hoeveelheden energie worden onttrokken uit de alternatieve energiebronnen. Dit geregeld-systeem zorgt ervoor dat er een optimale benutting plaatsvindt van alle beschikbare alternatieve energiebronnen wat ook nieuw, uniek en innovatief is. Door middel van dit geregeld-systeem zal bijvoorbeeld bij de aanwezigheid van zonnepanelen en windturbines altijd in eerste instantie de goedkoopste energiebron gebruikt worden, waarna de meest dure energiebron indien nodig, pas later aan bod komt. Het systeem brengt bovendien met zich dat indien er behoefte bestaat aan meerdere energie dan hetgeen door een bron zelve geleverd kan worden, zulks via een kunstmatige intelligentie-programma dusdanig wordt geregeld dat er waterstof uit de opslag tanks wordt onttrokken voor de elektriciteit productie en op die manier minder een beroep wordt gedaan op de natuurlijke alternatieve energiebronnen zelve. Bij een kleine vraag naar elektriciteit van uit het bestaande elektriciteitsnet, zal het systeem meer waterstof produceren en die vervolgens opslaan in opslag tanks en op die manier de voorraad waterstof te allen tijde op peil houden.The process is as follows and we refer to the attached drawing. Seawater A-1 is pumped up via pumps E-1 and E-2. The seawater is first pumped to an accumulation tank T-1 that ensures that the supply of seawater remains constant. The lifting pumps E-3 and E-4 ensure that the seawater from accumulation tank T-1 is pumped to a pressure of at least 4 bar (g) to the electrolysis tank E-19. In this electrolysis vessel E-19, by means of direct current which is supplied to special Titanium (Ti) coated platinum electrodes, the seawater is split into hydrogen gas, oxygen gas and sodium hypochlorite. The seawater temperature in the electrolysis pressure vessel is raised to approximately 80 degrees Celsius to increase the conductivity of the seawater. Depending on the requirement, it is possible to switch to oxygen production. The direct current required for the electrolysis process is obtained by one or a combination of the following alternative energy sources (see drawing). Wind (ES-1), Sun (ES-2), Tidal / Flood, Wave (ES-3) or other alternative energy sources (ES-4) that are currently still under development. See figure ES-1 in the diagram. The direct current regulator 1-1 ensures that the required amount of direct current DC-1 is always adjusted. As a result, only the amounts of energy required for the process can and will be extracted from the alternative energy sources. This regulated system ensures that optimum use is made of all available alternative energy sources, which is also new, unique and innovative. By means of this regulated system, for example, in the presence of solar panels and wind turbines the cheapest energy source will always be used in the first instance, after which the most expensive energy source will only be discussed later if necessary. The system also implies that if there is a need for more energy than what can be supplied by a source itself, this is regulated via an artificial intelligence program in such a way that hydrogen is extracted from the storage tanks for electricity production and on those less recourse is made to the natural alternative energy sources themselves. If there is a small demand for electricity from the existing electricity grid, the system will produce more hydrogen and then store it in storage tanks and thus keep the supply of hydrogen up to date.
De aparte inverter EA-1 maakt wisselspanning afkomstig van alternatieve energiebronnen voor eigen gebruik binnen de fabriek- installatie zelf mogelijk. Deze inverteer machine kan ook worden uitgeschakeld als er geen behoefte bestaat. In een dergelijk geval wordt de wisselspanning geleverd door de Gasturbines GT-1 en GT-X.The separate inverter EA-1 enables alternating voltage from alternative energy sources for own use within the factory installation itself. This inverting machine can also be switched off if there is no need. In such a case, the alternating voltage is supplied by the Gas Turbines GT-1 and GT-X.
Geheel uniek en innovatief in het beschreven proces is dat een zijstroom van natriumhypochloriet wordt afgetapt van de elektrolysevat E-19 via de pijpleiding P-66. Deze zijstroom spuit natriumhypochloriet als biocide in de zeewaterinlaat en in de zuigleidingen van de pompen E-1 en E-2. Deze zijstroom is minstens 10% gewicht van de totale geproduceerde hoeveelheid van de elektrolysevat E-19. De voordelen van het injecteren van deze zijstroom van natriumhypochloriet zijn ais volgt: Minder algengroei en groei van andere zeeorganismen welke de zeewaterleidingen op den duur kunnen verstoppen. Hierdoor is er minder onderhoud nodig en zal de installatie langer kunnen opereren zonder zulks te moeten stoppen voor schoonmaak van de zeewater inlaatleidingen. Voor zover bekend zijn geen andere processen die een zijstroom van de elektrolysevat als biocide voor de zeewater inlaat gebruiken.Completely unique and innovative in the process described is that a side stream of sodium hypochlorite is drained from the E-19 electrolysis vessel via the P-66 pipeline. This side stream injects sodium hypochlorite as a biocide into the seawater inlet and into the suction lines of pumps E-1 and E-2. This sidestream is at least 10% by weight of the total produced amount of the electrolysis vessel E-19. The advantages of injecting this side stream of sodium hypochlorite are as follows: Less algae growth and growth of other marine organisms that can eventually clog the seawater pipes. As a result, less maintenance is required and the installation will be able to operate longer without having to stop for cleaning the seawater inlet pipes. As far as is known, there are no other processes that use a side stream of the electrolysis vessel as a biocide for the seawater inlet.
Uit de elektrolysevat E-19 wordt waterstofgas geproduceerd met een zuiverheidsgehalte van meer dan 99%. Dit waterstofgas wordt opgezogen door een centrifugale compressor E-20, die het gas comprimeert tot een druk van minimaal 80 bar (g). Dit waterstofgas kan dan, via pijpleiding P-18, worden opgeslagen in speciaal daarvoor ontworpen opslagtanks T-2 welke zijn verstrekt met koolstofvezels. Ook kan het waterstofgas afkomstig uit compressor E-20 direct worden verpompt naar de gasdroger E-25, die aanwezige vocht voor 95% verwijdert uit het waterstofgas. Het waterstofgas kan ook direct via pijpleiding P-18 naar de gasdroger E-25 worden verpompt.Hydrogen gas is produced from the electrolysis vessel E-19 with a purity level of more than 99%. This hydrogen gas is sucked up by a centrifugal compressor E-20, which compresses the gas to a pressure of at least 80 bar (g). This hydrogen gas can then, via pipeline P-18, be stored in specially designed storage tanks T-2 which are provided with carbon fibers. The hydrogen gas from compressor E-20 can also be pumped directly to the gas dryer E-25, which removes 95% of the moisture from the hydrogen gas. The hydrogen gas can also be pumped directly via pipeline P-18 to gas dryer E-25.
Uit de gasdroger E-25 wordt de droge waterstof gas direct verpompt naar de gecombineerde cyclus gasturbines GT-1 temt GT-X die door verbranding van waterstof gas met lucht thermische energie omzet in elektrische energie welke via de één 66 Kilovolt trafostation wordt geleverd aan het elektriciteitsnet. Opgemerkt wordt dat bij de verbranding van het waterstofgas in de gasturbines, waterdamp als stoom wordt geproduceerd. Deze stoom bevat enorm veel kracht en energie en wordt gebruikt om andere stoomturbines aan te drijven, welke op hun beurt weer elektriciteit produceren die aan het elektradistributienet wordt geleverd. Vandaar dat gesproken wordt over gecombineerde cyclus gasturbines. Het zijn gasturbines welke gecombineerd worden met stoomturbines. Dit is overigens bestaande technologie.The dry hydrogen gas is pumped directly from the gas dryer E-25 to the combined cycle of gas turbines GT-1 to GT-X which, by burning hydrogen gas with air, converts thermal energy into electrical energy which is supplied to the 66-kilovolt transformer station. power grid. It is noted that with the combustion of the hydrogen gas in the gas turbines, water vapor is produced as steam. This steam contains an enormous amount of power and energy and is used to drive other steam turbines, which in turn produce electricity that is supplied to the electricity distribution network. That is why we talk about combined cycle gas turbines. They are gas turbines that are combined with steam turbines. This is incidentally existing technology.
De verbranding van waterstof en lucht levert waterdamp op die via speciale koelers E-31 wordt omgezet in zuiver water die bijvoorbeeld gebruikt kan worden als drinkwater en of als industrieelwater. Dit is een nieuwe en innovatieve toepassing van dit proces. Op deze manier hoeft geen water via een destillatieproces te worden aangemaakt hetgeen enorme kosten en energie bespaart. Het gevolg is dat zowel de waterproductie als de energieproductie goedkoper zal worden en niet meer gekoppeld zal zijn aan de prijs van de ruwe olie, hetgeen de nationale economie in alle opzichten ten goede komt.The combustion of hydrogen and air produces water vapor that is converted via special coolers E-31 into pure water that can be used, for example, as drinking water and or as industrial water. This is a new and innovative application of this process. In this way no water has to be produced via a distillation process, which saves enormous costs and energy. The result is that both water production and energy production will become cheaper and will no longer be linked to the price of crude oil, which will benefit the national economy in all respects.
Het unieke en innovatieve van dit proces is dat er altijd extra waterstofopslag zal zijn voor perioden dat om een of andere reden geen alternatieve energiebronnen beschikbaar zijn. De opslagperiode kan zodanig worden gepland dat minimaal 30 dagen lang energie kan worden opgewekt uit de beschikbare waterstofgas-opslag.The unique and innovative aspect of this process is that there will always be extra hydrogen storage for periods when, for some reason, no alternative energy sources are available. The storage period can be planned in such a way that energy can be generated from the available hydrogen gas storage for at least 30 days.
Er is geen enkel ander proces bekend welke een ingebouwde opslagfaciliteit T-2 c.q. reservecapaciteit heeft als onderdeel van het totale produktieproces.No other process is known which has a built-in storage facility T-2 or spare capacity as part of the total production process.
Vanuit de beschikbare opslagtanks kan tevens waterstofgas worden geleverd om gasflessen te vullen bij gasvul installatie WG-1 of om een laadtruck LT-1 met waterstof gas te vullen.Hydrogen gas can also be supplied from the available storage tanks to fill gas bottles at gas filling installation WG-1 or to fill a LT-1 loading truck with hydrogen gas.
Natriumhypochloriet afkomstig uit de elektrolysevat E-19 wordt via de leiding P-22 verstuurd naar een reduceervat E-21, waardoor het middels gelijkstroom wordt omgezet in natrium metaal (Na). Dit is een innovatieve manier om meer waterstofgas te produceren uit natriumhypochloriet. Immers, deze natrium metaal wordt, onder bescherming van een olie laag, getransporteerd via een bandsysteem B-1 naar de reactor E-22. Hierin treedt samen met de toevoeging van zuiver water een chemische reactie plaats, waarbij het natriummetaal wordt omgezet in waterstofgas en natriumhydroxide. De chemische reactie is als volgt: 2Na+2H20->2NaOH+H2. De uit de reactor E-22 afkomstige waterstof gas wordt opgezogen naar de gas compressor E-20. De uit de reactor E-22 geproduceerde natriumhydroxide wordt verpompt naar opslagtank T-5. Van hieruit naar de droger en vulinstallatie WG-2. Ook kan van uit de opslag tank T-5 de natriumhydroxide direct naar de laadtruckinstallatie LT-2 worden verpompt.Sodium hypochlorite from the electrolysis vessel E-19 is sent via the line P-22 to a reducing vessel E-21, whereby it is converted into sodium metal (Na) by direct current. This is an innovative way to produce more hydrogen gas from sodium hypochlorite. After all, this sodium metal, under the protection of an oil layer, is transported via a belt system B-1 to the reactor E-22. A chemical reaction takes place together with the addition of pure water, whereby the sodium metal is converted into hydrogen gas and sodium hydroxide. The chemical reaction is as follows: 2Na + 2H 2 O-> 2NaOH + H 2. The hydrogen gas from the reactor E-22 is sucked up to the gas compressor E-20. The sodium hydroxide produced from the E-22 reactor is pumped to the T-5 storage tank. From here to the dryer and filling installation WG-2. The sodium hydroxide can also be pumped directly from the storage tank T-5 to the LT-2 loading truck installation.
Het uit de eiektroiysevat E-19 geproduceerde zuurstofgas wordt via pijpleiding P-10 verstuurd naar gas compressor E-18. Hier wordt de zuurstofgas gecomprimeerd tot een druk van minimaal 25 bar (g). Van hieruit wordt de zuurstofgas verstuurd naar de opslagtank T-4. Van uit deze opslagtank kan zuurstofgas verder gecomprimeerd worden bij de gasflesvulinstallatie WG-4 tot een druk van 200 bar(g) en verder gevuld worden in zuurstofflessen. Ook kan het zuurstofgas uit de gas compressor E-18 worden verpompt naar de laadtruck installatie LT-4.The oxygen gas produced from the egg vessel E-19 is sent via pipeline P-10 to gas compressor E-18. Here the oxygen gas is compressed to a pressure of at least 25 bar (g). From here the oxygen gas is sent to the T-4 storage tank. From this storage tank, oxygen gas can be further compressed at the gas bottle filling installation WG-4 to a pressure of 200 bar (g) and further filled in oxygen bottles. The oxygen gas from the gas compressor E-18 can also be pumped to the LT-4 loading truck installation.
Een gedeelte van de uit de eiektroiysevat E-19 geproduceerde natriumhypochloriet wordt verpompt via pijpleiding P-15 naar de pompen E-5 en E-6 en vervolgens naar de opslagtank T-3. Van hieruit wordt de natriumhypochloriet via de vulinstallatie WG-3 in containers gevuld. Ook kan de vloeibare natriumhypochloriet worden verscheept in de laad track installatie LT-3. Deze natriumhypochloriet is bedoeld voor afzet op de lokale markt als ontsmettingsmiddel voor ziekenhuizen, olie raffinage, hotels, zwembaden en voor lokale huishoudens. Het gevolg is dat ook dit product niet meer zal dienen te worden geïmporteerd hetgeen deviezenbesparing met zich zal brengen en logischerwijs de nationale economie in alle opzichten ten goede komt.A portion of the sodium hypochlorite produced from the E-19 epoxy vessel is pumped via pipeline P-15 to pumps E-5 and E-6 and then to the T-3 storage tank. From here the sodium hypochlorite is filled in containers via the WG-3 filling plant. The liquid sodium hypochlorite can also be shipped in the loading track installation LT-3. This sodium hypochlorite is intended for sale on the local market as a disinfectant for hospitals, oil refining, hotels, swimming pools and for local households. The result is that this product will no longer have to be imported, which will save on currency and logically benefit the national economy in every way.
DE VERSCHILLENDE NIEUWE EN INOVATIEVE PROCESPARAMETERS DIE TEN GRONDSLAG LIGGEN AAN DIT PROCES ZIJN ALS VOLGT: 1. Temperatuurbereik van zeewater van 23 °C tot 80 °C.THE DIFFERENT NEW AND INOVATIVE PROCESS PARAMETERS BASED ON THIS PROCESS ARE AS FOLLOWS: 1. Temperature range of seawater from 23 ° C to 80 ° C.
2. Gelijkspanning van de Electrolyzer groter dan 2.1 Volt DC.2. DC voltage of the Electrolyzer greater than 2.1 Volt DC.
3. Stroomsterktedichtheid van de Electrolyzer tussen 25 en 130mA/cm2 DC.3. Current density of the Electrolyzer between 25 and 130 mA / cm 2 DC.
4. Sterkte van natriumhypochloriet geproduceerd in mg/liter.4. Strength of sodium hypochlorite produced in mg / liter.
5. Waterstofgas met meer dan 99% chemische zuiverheid, geproduceerd in het elektrolyse drukvat met een gegeven gelijkspanning en gelijkstroomsterkte.5. Hydrogen gas with more than 99% chemical purity, produced in the electrolysis pressure vessel with a given direct current and direct current.
6. Zuurstofgas met meer dan 99% chemisch zuiverheid geproduceerd in het elektrolyse drukvat met een gegeven gelijkspanning en gelijkstroomsterkte en speciale elektrodes.6. Oxygen gas with more than 99% chemical purity produced in the electrolysis pressure vessel with a given direct current and direct current and special electrodes.
7. Terug voeding van een percentage minimaal 10% gewicht van natriumhypochloriet als biocide, via een zijstroom uit elektrolysevat in de inlaat van de zeewaterpompen via pijpleiding P-66.7. Feed back a percentage of a minimum of 10% by weight of sodium hypochlorite as a biocide, via a side stream from electrolysis vessel in the inlet of the seawater pumps via pipeline P-66.
8. Omzetting van natriumhypochloriet in natrium metaal welke vervolgens wordt geconverteerd in waterstofgas8. Conversion of sodium hypochlorite into sodium metal which is subsequently converted into hydrogen gas
Verschillende kwaliteitssensoren meten continu de kwaliteit en kwantiteit van de diverse gegenereerde hoofd- en bijproducten en voorts regelen zij de massa instroom van het zeewater, de druk, de elektrische spanning en elektrische stroomsterkte met behulp van een eigen ontworpen terugkoppelings-instrumentatiesysteem in combinatie met verschillende “ Programmable Logic Controllers (PLC)” welke met speciale instructies zijn geprogrammeerd.Different quality sensors continuously measure the quality and quantity of the various generated main and by-products and furthermore they regulate the mass inflow of the seawater, the pressure, the electrical voltage and the electrical current with the help of their own designed feedback instrumentation system in combination with different " Programmable Logic Controllers (PLC) ”which are programmed with special instructions.
Voor personeelsveiligheid en ter bescherming van de technische installaties, wordt de aanwezigheid van waterstofgas voortdurend op kritieke locaties met speciale detectoren gemeten, om te voorkomen dat explosiegrenzen worden bereikt. Deze kritieke locaties zijn: de uitwendige behuizing van de Elektrolyse drukvat, de afvoerleidingen en connecties, de flenzen van alle drukvaten en alle pijpleidingen met waterstofgas. Vooral de uitwendige behuizing van de Elektrolyse drukvat, de afvoerleidingen en connecties daarvan zijn onderhevig aan zeer stringente veiligheidscontrole en worden continu- metingen gepleegd om vroegtijdig lekkages op te sporen en mogelijke onveilige waterstofgasaccumulatie op vitale plaatsen te ontdekken en te elimineren, waardoor ontploffingsgevaar wordt voorkomen. Dit is een toepassing van bestaande technologieën en apparatuur, maar de specifieke locaties van de detectoren en hun types is innovatief en uniek in dit systeem.For personnel safety and to protect technical installations, the presence of hydrogen gas is constantly measured at critical locations with special detectors, to prevent explosion limits being reached. These critical locations are: the external housing of the electrolysis pressure vessel, the discharge pipes and connections, the flanges of all pressure vessels and all pipelines with hydrogen gas. In particular, the external housing of the electrolysis pressure vessel, the discharge pipes and their connections are subject to very strict safety checks and continuous measurements are made to detect leaks early on and to detect and eliminate possible unsafe hydrogen gas accumulation at vital locations, thus avoiding the risk of explosion. This is an application of existing technologies and equipment, but the specific locations of the detectors and their types are innovative and unique in this system.
Een systeem om geaccumuleerd waterstofgas te verwijderen, met behulp van stikstofgas, is speciaal bedacht en ontworpen om eventueel geaccumuleerd waterstofgas in en/of rondom de Elektrolyse drukvat en/of de leidingensystemen te verwijderen. Dit is vooral noodzakelijk wanneer gepland onderhoud dient te worden uitgevoerd aan de aanwezige apparatuur en de bestaande toe- c.q. afvoerleidingen.A system for removing accumulated hydrogen gas, with the aid of nitrogen gas, has been specially devised and designed to remove any accumulated hydrogen gas in and / or around the electrolysis pressure vessel and / or the pipe systems. This is especially necessary when planned maintenance has to be carried out on the existing equipment and the existing supply and / or discharge pipes.
Het oorspronkelijke primaire doel van het productieproces zoals hiervoor beschreven is het gebruik van het waterstofgas als brandstof voor gasturbines die door een gecontroleerde verbranding van het waterstofgas met lucht, op hun beurt elektriciteit produceren. De elektriciteit wordt vervolgens gevoed c.q. geleverd aan een hoogspanningswisselstroom elektradistributienet X-1 voor lokale consumptie.The original primary purpose of the production process as described above is to use the hydrogen gas as fuel for gas turbines that in turn produce electricity through controlled combustion of the hydrogen gas with air. The electricity is then fed or supplied to a high-voltage alternating current electrical distribution network X-1 for local consumption.
De producten waterstofgas, zuurstofgas, natriumhypochloriet, natrium metaal, bijtende soda (natriumhydroxide) en zuiver water welke in dit productieproces geproduceerd worden, kunnen op de lokale of internationale markt worden verkocht. Zowel natriumhypochloriet, natrium metaal en bijtende soda (natriumhydroxide) zijn producten die import vervangend zijn waardoor deviezen worden bespaard.The hydrogen gas, oxygen gas, sodium hypochlorite, sodium metal, caustic soda (sodium hydroxide) and pure water produced in this production process can be sold on the local or international market. Sodium hypochlorite, sodium metal and caustic soda (sodium hydroxide) are products that replace imports, saving on foreign exchange.
SPECIALE METALLURGIE:SPECIAL METALLURGY:
Vanwege de agressieve aard van het zeewater & atmosferische omstandigheden bij de kust waar de industriefaciliteit gevestigd is en mede door waterstofgas geïnduceerde scheuring c.q. afbrokkelingsverschijnselen van staal, wordt bij de keuze van het ontwerp, de inrichting en apparatuur van de waterstofindustriefaciliteit, speciale metalen en niet- metallische materialen toegepast, zoals bij de navolgende componenten van de faciliteit: 1. Zeewater inlaat- & boosterpompen en natriumhypochloriet pompen; 2. Elektrolyse drukvat behuizing, elektrolyse elektroden (met Titanium bekleedde Platina elektrodes), inlaat- en uitlaatsproeiers; 3. Gas detectoren, massastroommeters, stroomzenders, manometers regelinstrumenten, drukzenders; 4. Veiligheidskleppen, regelafsluiters, blokkleppen, kleppennaalden, afvoer kleppen; 5. Waterstofgasleidingen, zuurstofgasleidingen, natriumhypochloriet leidingen; 6. Waterstof opslagtanks van versterkte koolstofglasvezels; natrium metaal reduceervaten met inwendige bekleding, natriumhydroxide drukvaten met inwendige Nikkel-koperlegering bekleding, leidingen en opslagtanks; 7. Windturbinewieken, windturbinehuisvesting, windturbines ondersteunende stalen structuren en constructies; Zonnepanelen, getijde energie generatoren, golfslag energie generatoren of andere in ontwikkeling zijnde alternatieve energie bronnen.Due to the aggressive nature of the sea water & atmospheric conditions at the coast where the industrial facility is located and partly hydrogen gas-induced cracking or crumbling phenomena of steel, the choice of the design, equipment and equipment of the hydrogen industrial facility involves special metals and non- applied metallic materials, such as the following components of the facility: 1. Seawater inlet & booster pumps and sodium hypochlorite pumps; 2. Electrolysis pressure vessel housing, electrolysis electrodes (Titanium coated Platinum electrodes), inlet and outlet nozzles; 3. Gas detectors, mass flow meters, flow transmitters, pressure gauges, control instruments, pressure transmitters; 4. Safety valves, control valves, block valves, valve needles, discharge valves; 5. Hydrogen gas lines, oxygen gas lines, sodium hypochlorite lines; 6. Hydrogen storage tanks of reinforced carbon glass fibers; sodium metal pressure reducing vessels with internal lining, sodium hydroxide pressure vessels with internal Nickel-copper alloy lining, pipes and storage tanks; 7. Wind turbine blades, wind turbine housing, wind turbines supporting steel structures and structures; Solar panels, tidal energy generators, wave energy generators or other alternative energy sources under development.
8. Elektrische schakelsystemen en transmissiesystemen;8. Electric switching systems and transmission systems;
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1040249A NL1040249C2 (en) | 2013-06-12 | 2013-06-12 | ALTERNATIVE ENERGY-DRIVEN HYDROGEN GAS ENERGY CENTRAL. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1040249A NL1040249C2 (en) | 2013-06-12 | 2013-06-12 | ALTERNATIVE ENERGY-DRIVEN HYDROGEN GAS ENERGY CENTRAL. |
NL1040249 | 2013-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
NL1040249C2 true NL1040249C2 (en) | 2014-12-15 |
Family
ID=49304266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NL1040249A NL1040249C2 (en) | 2013-06-12 | 2013-06-12 | ALTERNATIVE ENERGY-DRIVEN HYDROGEN GAS ENERGY CENTRAL. |
Country Status (1)
Country | Link |
---|---|
NL (1) | NL1040249C2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4080271A (en) * | 1977-06-06 | 1978-03-21 | Brown Howard D | Solar powered gas generation |
US4180445A (en) * | 1978-03-27 | 1979-12-25 | Diamond Shamrock Corporation | Oxygen selective anode |
US20100252445A1 (en) * | 2007-07-07 | 2010-10-07 | Donald James Highgate | Electrolysis of Salt Water |
US20110061376A1 (en) * | 2009-02-17 | 2011-03-17 | Mcalister Technologies, Llc | Energy conversion assemblies and associated methods of use and manufacture |
US20110135565A1 (en) * | 2009-12-07 | 2011-06-09 | Battelle Energy Alliance, Llc | Method and system for producing hydrogen using sodium ion separation membranes |
-
2013
- 2013-06-12 NL NL1040249A patent/NL1040249C2/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4080271A (en) * | 1977-06-06 | 1978-03-21 | Brown Howard D | Solar powered gas generation |
US4180445A (en) * | 1978-03-27 | 1979-12-25 | Diamond Shamrock Corporation | Oxygen selective anode |
US20100252445A1 (en) * | 2007-07-07 | 2010-10-07 | Donald James Highgate | Electrolysis of Salt Water |
US20110061376A1 (en) * | 2009-02-17 | 2011-03-17 | Mcalister Technologies, Llc | Energy conversion assemblies and associated methods of use and manufacture |
US20110135565A1 (en) * | 2009-12-07 | 2011-06-09 | Battelle Energy Alliance, Llc | Method and system for producing hydrogen using sodium ion separation membranes |
Non-Patent Citations (6)
Title |
---|
ABDEL-AAL H K ET AL: "Parametric study for saline water electrolysis: Part I-hydrogen production", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 18, no. 6, June 1993 (1993-06-01), pages 485 - 489, XP025640316, ISSN: 0360-3199, [retrieved on 19930601], DOI: 10.1016/0360-3199(93)90005-U * |
ABDEL-AAL H K ET AL: "Parametric study for saline water electrolysis: Part II-Chlorine evolution, selectivity and determination", 1 July 1993, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, PAGE(S) 545 - 551, ISSN: 0360-3199, XP025683897 * |
ABDEL-AAL H K ET AL: "Parametric study for saline water electrolysis: Part III-Precipitate formation and recovery of magnesium salts", 1 July 1993, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, PAGE(S) 553 - 556, ISSN: 0360-3199, XP025683898 * |
FUJIMURA K ET AL: "The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis", ELECTROCHIMICA ACTA, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 45, no. 14, March 2000 (2000-03-01), pages 2297 - 2303, XP004202245, ISSN: 0013-4686, DOI: 10.1016/S0013-4686(00)00316-9 * |
SABAH A ABDUL-WAHAB ET AL: "Brine Management: Substituting Chlorine with On-Site Produced Sodium Hypochlorite for Environmentally Improved Desalination Processes", WATER RESOURCES MANAGEMENT ; AN INTERNATIONAL JOURNAL - PUBLISHED FOR THE EUROPEAN WATER RESOURCES ASSOCIATION (EWRA), KLUWER ACADEMIC PUBLISHERS, DO, vol. 23, no. 12, 9 January 2009 (2009-01-09), pages 2437 - 2454, XP019734512, ISSN: 1573-1650, DOI: 10.1007/S11269-008-9389-7 * |
TEMEEV A A ET AL: "An integrated system of the floating wave energy converter and electrolytic hydrogen producer", RENEWABLE ENERGY, PERGAMON PRESS, OXFORD, GB, vol. 31, no. 2, February 2006 (2006-02-01), pages 225 - 239, XP027965105, ISSN: 0960-1481, [retrieved on 20060201] * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghandehariun et al. | Life cycle assessment of wind-based hydrogen production in Western Canada | |
Crivellari et al. | Offshore renewable energy exploitation strategies in remote areas by power-to-gas and power-to-liquid conversion | |
NO20130381A1 (en) | PROCEDURE FOR CARBON Dioxide GAS FIXING AND DEVICE FOR CARBON Dioxide GAS FIXING | |
CN101424396B (en) | Steam generation device and use method thereof | |
WO2008143078A1 (en) | Supercritical water biomass combustion boiler | |
EA015957B1 (en) | A method and an apparatus for producing liquid flow in a pipeline | |
CN202082608U (en) | Vaporizer system and control system of LNG (Liquefied Natural Gas) | |
US20190024002A1 (en) | A combined system for producing fuel and thermal energy and a method for poduction of fuel and thermal energy | |
NL1040249C2 (en) | ALTERNATIVE ENERGY-DRIVEN HYDROGEN GAS ENERGY CENTRAL. | |
CN107777660B (en) | Aluminum water reaction continuous hydrogen production device and method | |
Nikolaidis et al. | Power-to-hydrogen concepts for 100% renewable and sustainable energy systems | |
Alirahmi et al. | Renewable-integrated flexible production of energy and methane via re-using existing offshore oil and gas infrastructure | |
Kächele et al. | An assessment of the viability of alternatives to biodiesel transport fuels | |
WO2012143018A3 (en) | Sea pressure machine using pressure of water and gas expansion to generate electricity | |
KR101206019B1 (en) | Heated water generating system | |
AU2014100635A4 (en) | Exporting renewable hydrogen via floating ammonia production vessels | |
KR20210084366A (en) | Bunkering ship | |
Huang et al. | CO 2 Utilization | |
CN101648125B (en) | Method and apparatus for CO2 and H2 reaction | |
CN201678450U (en) | Box-type exhaust pipe carburetor for phosphorus trichloride production | |
JP5061265B1 (en) | Method and apparatus for controlling the amount of component adjustment gas injected into a city gas conduit in a biogas utilization system | |
Lăzăroiu et al. | An analysis of the economic production and use of green hydrogen | |
Rahman et al. | Energy Reports | |
CN203976475U (en) | The full wine with dregs anaerobic high temperature of cassava alcohol waste water fermentor tank water distribution system | |
RU2596761C1 (en) | Apparatus for purifying liquid waste of oil and gas platforms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM | Lapsed because of non-payment of the annual fee |
Effective date: 20160701 |