NL1036417C2 - THERMODYNAMIC HEAT TRANSFORMER. - Google Patents

THERMODYNAMIC HEAT TRANSFORMER. Download PDF

Info

Publication number
NL1036417C2
NL1036417C2 NL1036417A NL1036417A NL1036417C2 NL 1036417 C2 NL1036417 C2 NL 1036417C2 NL 1036417 A NL1036417 A NL 1036417A NL 1036417 A NL1036417 A NL 1036417A NL 1036417 C2 NL1036417 C2 NL 1036417C2
Authority
NL
Netherlands
Prior art keywords
energy
heat
gas
circuit
extracted
Prior art date
Application number
NL1036417A
Other languages
Dutch (nl)
Other versions
NL1036417A (en
Inventor
Marco Henry Groenenberg
Original Assignee
Marco Henry Groenenberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marco Henry Groenenberg filed Critical Marco Henry Groenenberg
Priority to NL1036417A priority Critical patent/NL1036417C2/en
Publication of NL1036417A publication Critical patent/NL1036417A/en
Application granted granted Critical
Publication of NL1036417C2 publication Critical patent/NL1036417C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Thermodvnamische warmte transformator.Thermodvnamic heat transformer.

De uitvinding betreft een thermodynamische warmte transformator waarbij aanwezige laag energetische warmte wordt omgezet in hoogenergetische warmte welke omgezet 5 kan worden in bruikbare energie i.e. mechanische energie.The invention relates to a thermodynamic heat transformer in which present low-energy heat is converted into high-energy heat which can be converted into usable energy, i.e. mechanical energy.

De installatie lijkt in basis wel wat op een gasturbinemotor waarbij in plaats van energieopwekking d.m.v. verbranding van brandstof, energie wordt opgewekt door laag energetische warmte uit een externe warmtebron aan het proces toe te voegen.The installation is basically a bit like a gas turbine engine where instead of power generation by means of combustion of fuel, energy is generated by adding low energy heat from an external heat source to the process.

10 Om dat mogelijk te maken dient de temperatuur van het gas in het circuit ver beneden temperatuur van de beschikbare, externe warmtebron te worden gebracht.To make that possible, the temperature of the gas in the circuit must be brought far below the temperature of the available external heat source.

Dit kan worden gerealiseerd door een circuit waarin een gas circuleert wat door een compressor gaat waardoor de temperatuur van het gas door het comprimeren (sterk) 15 toeneemt. Nu wordt zoveel mogelijk van de in het gas aanwezige hoog energetische energie (warmte) via warmtewisselaars aan het circuit onttrokken om later, verderop weer terug in het circuit te worden gebracht.This can be realized by a circuit in which a gas circulates, which passes through a compressor, whereby the temperature of the gas increases (strongly) through compression. Now as much as possible of the high energy energy (heat) present in the gas is withdrawn from the circuit via heat exchangers in order to be brought back into the circuit later, later on.

Vervolgens laat men het gas in een turbine expanderen waarbij de temperatuur zeer ver 20 zal dalen. Het gas in het circuit kan hier zeer lage temperaturen bereiken. Daardoor kan er nu via warmtewisselaars warmte uit een externe warmtebron, als omgevingswater, aan het circuit worden toegevoegd. De temperatuur van het gas in het circuit zal nu sterk zijn toegenomen. Desgewenst kunnen er meerdere turbine secties worden geplaatst om zoveel mogclijk energie uit het gas te onttrekken en in verschillende 25 stappen weer warmte uit een externe warmtebron toe te voegen.The gas is then allowed to expand in a turbine, whereby the temperature will drop very far. The gas in the circuit can reach very low temperatures here. As a result, heat from an external heat source, such as ambient water, can now be added to the circuit via heat exchangers. The temperature of the gas in the circuit will now have increased significantly. If desired, several turbine sections can be placed to extract as much energy as possible from the gas and to add heat from an external heat source again in various steps.

Nadat er zoveel mogelijk warmte uit een externe bron is toegevoegd, wordt de eerder aan het circuit onttrokken warmte door warmtewisselaars weer aan het circuit toegevoegd. Het gas in het circuit zal hierdoor weer veel warmer worden en willen 30 uitzetten. Deze energie kan door een turbine aan het proces worden onttrokken.After as much heat as possible has been added from an external source, the heat previously extracted from the circuit is added back to the circuit by heat exchangers. The gas in the circuit will therefore become much warmer again and want to expand. This energy can be extracted from the process by a turbine.

Bij 100% rendement zal de volledige warmte welke uit de externe warmtebron is onttrokken benutbaar zijn voor bijvoorbeeld mechanische energie. In de praktijk zal echter een deel van deze energie nodig zijn om verliezen van de compressor en turbine 35 te compenseren en zal maar een beperkt deel van deze energie te benutten zijn.At 100% efficiency, the entire heat extracted from the external heat source will be usable for mechanical energy, for example. In practice, however, a part of this energy will be needed to compensate for losses of the compressor and turbine and only a limited part of this energy can be used.

Verder is er een variant denkbaar waar enkel een deel van de energie, welke na het comprimeren aan het circuit is onttrokken, weer terug wordt gevoerd teneinde verliezen te compenseren en de resterende warmte direct wordt aangewent voor 40 energieopwekking / benutting.Furthermore, a variant is conceivable in which only a part of the energy that has been withdrawn from the circuit after compression is returned to compensate for losses and that the remaining heat is immediately used for energy generation / utilization.

10364171036417

Claims (2)

1. Thermodynamische warmte transformator waarbij laag energetische energie Wordt getransformeerd in hoogenergetische energie. Dit wordt bereikt door gas in 5 een circuit te verwarmen in een compressor, vervolgens via warmtewisselaars zoveel mogelijk warmte aan hel gas te onttrekken. Dan laat men het gas in een turbine te expanderen waardoor het zeer koud wordt zodat er warmte uit een beschikbare externe warmtebron als omgevingswater via bijvoorbeeld warmtewisselaars kan worden toegevoegd en vervolgens de eerder aan het proces 10 onttrokken warmte weer aan het proces toe te voegen. De laag energetische warmte van de externe warmtebron is omgezet in benutbare / hoogenergetische energie.1. Thermodynamic heat transformer in which low energy energy is transformed into high energy energy. This is achieved by heating gas in a circuit in a compressor, then extracting as much heat as possible from the gas via heat exchangers. The gas is then allowed to expand in a turbine, so that it becomes very cold, so that heat can be added from an available external heat source as ambient water via, for example, heat exchangers and subsequently add the heat previously extracted from the process to the process. The low energy heat of the external heat source has been converted into usable / high energy energy. 2. proces als het in conclusie 1 omschreven proces met het kenmerk dat slechts dat deel van de energie, welke na de compressiefase is onttrokken, aan het circuit teruggevoerd om de opgetreden rendementsverliezen te compenseren. De overige 15 energie i.e. warmte wordt direct aangewend voor energieopwekking. 20 1 0 3 6 4 1 72. process as the process defined in claim 1, characterized in that only that part of the energy extracted after the compression phase is fed back to the circuit to compensate for the efficiency losses that have occurred. The remaining energy, i.e., heat, is directly used for energy generation. 20 1 0 3 6 4 1 7
NL1036417A 2009-01-13 2009-01-13 THERMODYNAMIC HEAT TRANSFORMER. NL1036417C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL1036417A NL1036417C2 (en) 2009-01-13 2009-01-13 THERMODYNAMIC HEAT TRANSFORMER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1036417A NL1036417C2 (en) 2009-01-13 2009-01-13 THERMODYNAMIC HEAT TRANSFORMER.
NL1036417 2009-01-13

Publications (2)

Publication Number Publication Date
NL1036417A NL1036417A (en) 2010-07-22
NL1036417C2 true NL1036417C2 (en) 2010-08-25

Family

ID=42126487

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1036417A NL1036417C2 (en) 2009-01-13 2009-01-13 THERMODYNAMIC HEAT TRANSFORMER.

Country Status (1)

Country Link
NL (1) NL1036417C2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107682A (en) * 1986-12-11 1992-04-28 Cosby Thomas L Maximum ambient cycle
DE4404844A1 (en) * 1994-02-16 1995-08-17 Ekrut Horst Dieter Dr Compression refrigerator of low refrigeration capacity
DE19802613A1 (en) * 1998-01-23 1999-07-29 Fkw Hannover Forschungszentrum Road or rail vehicle air-conditioning unit refrigeration circuit operating method
DE10013191C1 (en) * 2000-03-17 2002-01-17 Zexel Valeo Compressor Europe Air conditioning system, in particular for motor vehicles and method for operating an air conditioning system, in particular for motor vehicles
US6418747B1 (en) * 2000-08-15 2002-07-16 Visteon Global Technologies, Inc. Climate control system having electromagnetic compressor
US6962056B2 (en) * 2002-11-13 2005-11-08 Carrier Corporation Combined rankine and vapor compression cycles

Also Published As

Publication number Publication date
NL1036417A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
Peris et al. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery
Heberle et al. Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation
Wang et al. Payback period estimation and parameter optimization of subcritical organic Rankine cycle system for waste heat recovery
Anvari et al. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation
CA3023380C (en) Method and apparatus for increasing the efficiency of the cogeneration power plant by the heat pump principle utilization for increasing the coolant inlet temperature
Maraver et al. Efficiency enhancement in existing biomass organic Rankine cycle plants by means of thermoelectric systems integration
Altayib et al. Analysis and assessment of using an integrated solar energy based system in crude oil refinery
JP2005291112A (en) Temperature difference power generation device
FR2911912B1 (en) METHOD FOR ENERGETIC OPTIMIZATION OF AN ENERGY PRODUCTION SITE AND WATER VAPOR.
HU4233U (en) Solid-waste recycling system
Cameretti et al. Combined MGT–ORC solar–hybrid system. PART A: plant optimization
NL1036417C2 (en) THERMODYNAMIC HEAT TRANSFORMER.
Zhou et al. Thermal investigations into an organic Rankine cycle (ORC) system utilizing low grade waste heat sources
Permana et al. The theoretical approach of the solar organic Rankine cycle integrated with phase change material for the Hungarian region
RU2015111724A (en) METHOD FOR RECYCLING ENERGY OF GEOTHERMAL WATERS
Berezin et al. Enhanced efficiency, sustainable power generation, and CO2 emission reduction in energy-intensive industries through Organic Rankine Cycle Technology
Park et al. Thermodynamic efficiencies of organic rankine cycles with a feed liquid heater or regenerator
RU88781U1 (en) DETANDER-GENERATOR INSTALLATION
Yun et al. Development of small-scale organic rankine cycle system and study on its operating characteristics
Kim et al. Experimental Study on the Performance Characteristics of a Scroll Expander for 1kW-class Organic Rankine Cycle
RU2403406C1 (en) Turbine expander plant
RU2562730C1 (en) Utilisation method of thermal energy generated by thermal power plant
US20180340451A1 (en) Gas-and-Steam Combined-Cycle Power Plant
US10794369B1 (en) Solar powered closed loop system and method for powering a cooling device
CH619029A5 (en) Method for conversion of heat energy, installation for implementing the method and application of the method

Legal Events

Date Code Title Description
V1 Lapsed because of non-payment of the annual fee

Effective date: 20130801