NL1036417A - Thermodynamische warmte transformator. - Google Patents
Thermodynamische warmte transformator. Download PDFInfo
- Publication number
- NL1036417A NL1036417A NL1036417A NL1036417A NL1036417A NL 1036417 A NL1036417 A NL 1036417A NL 1036417 A NL1036417 A NL 1036417A NL 1036417 A NL1036417 A NL 1036417A NL 1036417 A NL1036417 A NL 1036417A
- Authority
- NL
- Netherlands
- Prior art keywords
- energy
- heat
- gas
- circuit
- extracted
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/06—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/004—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Thermodvnamische warmte transformator.Thermodvnamic heat transformer.
De uitvinding betreft een thermodynamische warmte transformator waarbij aanwezige laag energetische warmte wordt omgezet in hoogenergetische warmte welke omgezet kan worden in bruikbare energie i.e. mechanische energie.The invention relates to a thermodynamic heat transformer in which present low-energy heat is converted into high-energy heat which can be converted into usable energy, i.e. mechanical energy.
De installatie lijkt in basis wel wat op een gasturbinemotor waarbij in plaats van energieopwekking d.m.v. verbranding van brandstof, energie wordt opgewekt door laag energetische warmte uit een externe warmtebron aan het proces toe te voegen.The installation is basically a bit like a gas turbine engine where instead of power generation by means of combustion of fuel, energy is generated by adding low energy heat from an external heat source to the process.
Om dat mogelijk te maken dient de temperatuur van het gas in het circuit ver beneden temperatuur van de beschikbare, externe warmtebron te worden gebracht.To make this possible, the temperature of the gas in the circuit must be brought far below the temperature of the available external heat source.
Dit kan worden gerealiseerd door een circuit waarin een gas circuleert wat door een compressor gaat waardoor de temperatuur van het gas door het comprimeren (sterk) toeneemt. Nu wordt zoveel mogelijk van de in het gas aanwezige hoog energetische energie (warmte) via warmtewisselaars aan het circuit onttrokken om later, verderop weer terug in het circuit te worden gebracht.This can be achieved by a circuit in which a gas circulates, which passes through a compressor, whereby the temperature of the gas increases (strongly) through compression. Now as much as possible of the high energy energy (heat) present in the gas is withdrawn from the circuit via heat exchangers in order to be brought back into the circuit later, later on.
Vervolgens laat men het gas in een turbine expanderen waarbij de temperatuur zeer ver zal dalen. Het gas in het circuit kan hier zeer lage temperaturen bereiken. Daardoor kan er nu via warmtewisselaars warmte uit een externe warmtebron, als omgevingswater, aan het circuit worden toegevoegd. De temperatuur van het gas in het circuit zal nu sterk zijn toegenomen. Desgewenst kunnen er meerdere turbine secties worden geplaatst om zoveel mogclijk energie uit het gas te onttrekken en in verschillende stappen weer warmte uit een externe warmtebron toe te voegen.The gas is then allowed to expand in a turbine, whereby the temperature will drop very far. The gas in the circuit can reach very low temperatures here. As a result, heat from an external heat source, such as ambient water, can now be added to the circuit via heat exchangers. The temperature of the gas in the circuit will now have increased significantly. If desired, several turbine sections can be placed to extract as much energy as possible from the gas and to add heat from an external heat source again in various steps.
Nadat er zoveel mogelijk warmte uit een externe bron is toegevoegd, wordt de eerder aan het circuit onttrokken warmte door warmtewisselaars weer aan het circuit toegevoegd. Het gas in het circuit zal hierdoor weer veel warmer worden en willen uitzetten. Deze energie kan door een turbine aan het proces worden onttrokken.After as much heat as possible has been added from an external source, the heat previously extracted from the circuit is added back to the circuit by heat exchangers. The gas in the circuit will therefore become much warmer again and want to expand. This energy can be extracted from the process by a turbine.
Bij 100% rendement zal de volledige warmte welke uit de externe warmtebron is onttrokken benutbaar zijn voor bijvoorbeeld mechanische energie. In de praktijk zal echter een deel van deze energie nodig zijn om verliezen van de compressor en turbine te compenseren en zal maar een beperkt deel van deze energie te benutten zijn.At 100% efficiency, the entire heat extracted from the external heat source will be usable for mechanical energy, for example. In practice, however, a part of this energy will be needed to compensate for losses of the compressor and turbine and only a limited part of this energy can be used.
Verder is er een variant denkbaar waar enkel een deel van de energie, welke na het comprimeren aan het circuit is onttrokken, weer terug wordt gevoerd teneinde verliezen te compenseren en de resterende warmte direct wordt aangewent voor energieopwekking / benutting.Furthermore, a variant is conceivable in which only a part of the energy that is extracted from the circuit after compression is recycled in order to compensate for losses and the remaining heat is immediately used for energy generation / utilization.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1036417A NL1036417C2 (en) | 2009-01-13 | 2009-01-13 | THERMODYNAMIC HEAT TRANSFORMER. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1036417A NL1036417C2 (en) | 2009-01-13 | 2009-01-13 | THERMODYNAMIC HEAT TRANSFORMER. |
NL1036417 | 2009-01-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
NL1036417A true NL1036417A (en) | 2010-07-22 |
NL1036417C2 NL1036417C2 (en) | 2010-08-25 |
Family
ID=42126487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NL1036417A NL1036417C2 (en) | 2009-01-13 | 2009-01-13 | THERMODYNAMIC HEAT TRANSFORMER. |
Country Status (1)
Country | Link |
---|---|
NL (1) | NL1036417C2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107682A (en) * | 1986-12-11 | 1992-04-28 | Cosby Thomas L | Maximum ambient cycle |
DE4404844A1 (en) * | 1994-02-16 | 1995-08-17 | Ekrut Horst Dieter Dr | Compression refrigerator of low refrigeration capacity |
DE19802613A1 (en) * | 1998-01-23 | 1999-07-29 | Fkw Hannover Forschungszentrum | Road or rail vehicle air-conditioning unit refrigeration circuit operating method |
WO2001068393A1 (en) * | 2000-03-17 | 2001-09-20 | Zexel Valeo Climate Control Corporation | Air conditioning unit and a method of operating an air conditioning unit, both being in particular for motor vehicles |
EP1182065A2 (en) * | 2000-08-15 | 2002-02-27 | Visteon Global Technologies, Inc. | Climate control system having electromagnetic compressor |
WO2006012406A2 (en) * | 2004-07-22 | 2006-02-02 | Carrier Corporation | Combined rankine and vapor compression cycles |
-
2009
- 2009-01-13 NL NL1036417A patent/NL1036417C2/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5107682A (en) * | 1986-12-11 | 1992-04-28 | Cosby Thomas L | Maximum ambient cycle |
DE4404844A1 (en) * | 1994-02-16 | 1995-08-17 | Ekrut Horst Dieter Dr | Compression refrigerator of low refrigeration capacity |
DE19802613A1 (en) * | 1998-01-23 | 1999-07-29 | Fkw Hannover Forschungszentrum | Road or rail vehicle air-conditioning unit refrigeration circuit operating method |
WO2001068393A1 (en) * | 2000-03-17 | 2001-09-20 | Zexel Valeo Climate Control Corporation | Air conditioning unit and a method of operating an air conditioning unit, both being in particular for motor vehicles |
EP1182065A2 (en) * | 2000-08-15 | 2002-02-27 | Visteon Global Technologies, Inc. | Climate control system having electromagnetic compressor |
WO2006012406A2 (en) * | 2004-07-22 | 2006-02-02 | Carrier Corporation | Combined rankine and vapor compression cycles |
Also Published As
Publication number | Publication date |
---|---|
NL1036417C2 (en) | 2010-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peris et al. | Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery | |
Wang et al. | Payback period estimation and parameter optimization of subcritical organic Rankine cycle system for waste heat recovery | |
Heberle et al. | Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation | |
US20120012280A1 (en) | Device and method for generating steam with a high level of efficiency | |
WO2008067855A3 (en) | Method and apparatus for increasing the performance and efficiency of an orc power plant process | |
Altayib et al. | Analysis and assessment of using an integrated solar energy based system in crude oil refinery | |
CA3023380C (en) | Method and apparatus for increasing the efficiency of the cogeneration power plant by the heat pump principle utilization for increasing the coolant inlet temperature | |
JP2005291112A (en) | Temperature difference power generation device | |
FR2911912B1 (en) | METHOD FOR ENERGETIC OPTIMIZATION OF AN ENERGY PRODUCTION SITE AND WATER VAPOR. | |
NL1036417C2 (en) | THERMODYNAMIC HEAT TRANSFORMER. | |
Cameretti et al. | Combined MGT–ORC solar–hybrid system. PART A: plant optimization | |
Zhou et al. | Thermal investigations into an organic Rankine cycle (ORC) system utilizing low grade waste heat sources | |
Permana et al. | The theoretical approach of the solar organic Rankine cycle integrated with phase change material for the Hungarian region | |
RU2015111724A (en) | METHOD FOR RECYCLING ENERGY OF GEOTHERMAL WATERS | |
Berezin et al. | Enhanced efficiency, sustainable power generation, and CO2 emission reduction in energy-intensive industries through Organic Rankine Cycle Technology | |
CA2975956C (en) | Apparatus and method for energy storage | |
Fu et al. | Optimal integration of compression heat with regenerative steam Rankine cycles | |
Park et al. | Thermodynamic efficiencies of organic rankine cycles with a feed liquid heater or regenerator | |
RU88781U1 (en) | DETANDER-GENERATOR INSTALLATION | |
Kim et al. | Experimental Study on the Performance Characteristics of a Scroll Expander for 1kW-class Organic Rankine Cycle | |
Yun et al. | Development of small-scale organic rankine cycle system and study on its operating characteristics | |
RU122124U1 (en) | HEAT ELECTRIC STATION WITH HEAT PUMP INSTALLATION | |
US20180340451A1 (en) | Gas-and-Steam Combined-Cycle Power Plant | |
RU2562730C1 (en) | Utilisation method of thermal energy generated by thermal power plant | |
RU2559655C9 (en) | Method of operation of thermal power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
V1 | Lapsed because of non-payment of the annual fee |
Effective date: 20130801 |