NL1016247C2 - Heart-lung machine provided with an electrical impedance measurement device for signaling microemboli and / or fibrinogen concentration. - Google Patents

Heart-lung machine provided with an electrical impedance measurement device for signaling microemboli and / or fibrinogen concentration. Download PDF

Info

Publication number
NL1016247C2
NL1016247C2 NL1016247A NL1016247A NL1016247C2 NL 1016247 C2 NL1016247 C2 NL 1016247C2 NL 1016247 A NL1016247 A NL 1016247A NL 1016247 A NL1016247 A NL 1016247A NL 1016247 C2 NL1016247 C2 NL 1016247C2
Authority
NL
Netherlands
Prior art keywords
heart
lung machine
electrodes
blood
machine according
Prior art date
Application number
NL1016247A
Other languages
Dutch (nl)
Inventor
Gheorghe Aurel Marie Pop
Original Assignee
Martil Instr B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martil Instr B V filed Critical Martil Instr B V
Priority to NL1016247A priority Critical patent/NL1016247C2/en
Priority to PCT/NL2001/000701 priority patent/WO2002025277A1/en
Priority to AU2002214386A priority patent/AU2002214386A1/en
Application granted granted Critical
Publication of NL1016247C2 publication Critical patent/NL1016247C2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/367Circuit parts not covered by the preceding subgroups of group A61M1/3621
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/65Impedance, e.g. conductivity, capacity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

Hart-long machine voorzien van een inrichting voor eleXtrische impedantiemeting ter signalering van microembolïen en/of fibrinogeenconcentratie.Heart-lung machine provided with an electrical impedance measurement device for signaling microembolies and / or fibrinogen concentration.

5 Bijna 1.000.000 mensen in de wereld ondergaan jaarlijks een open hart operatie (OHO) en het grootste deel van deze operaties wordt uitgevoerd met de hart-long machine (HLM). Cerebrale dysfunktie ten gevolge van deze operatie komt voor in meer of mindere mate in ongeveer 6,1 % van 10 alle gevallen. Deze cerebrale problemen vormen niet alleen een oorzaak van meer of mindere mate van blijvende invaliditeit voor de patient, maar zorgen op de korte termijn door het langduriger verblijf in het ziekenhuis en op de langere termijn door de vaak chronische 15 mantelzorg (rehabilitatie ed) voor een belangrijke financiële kostenpost in de gezondheidszorg van de westerse landen. Voorzichtige schattingen gaan uit van een extra kostenpost van tenminste 400 miljoen dollars per jaar voor het extra verblijf in het ziekenhuis en van 20 ongeveer 2 tot 4 miljard dollar voor de mantelzorg na ontslag uit het ziekenhuis.5 Nearly 1,000,000 people in the world undergo an open heart surgery (OHO) every year and most of these operations are performed with the heart-lung machine (HLM). Cerebral dysfunction due to this operation occurs to a greater or lesser extent in approximately 6.1% of all cases. These cerebral problems are not only a cause of a greater or lesser degree of permanent disability for the patient, but in the short term due to a longer stay in the hospital and in the longer term due to the often chronic informal care (rehabilitation etc.) important financial cost item in health care in Western countries. Cautious estimates assume an additional cost of at least 400 million dollars per year for the extra stay in the hospital and of around 2 to 4 billion dollars for informal care after discharge from the hospital.

Het optreden van microembolieen tijdens OHO met HLM wordt als belangrijkste oorzaak gezien van de boven genoemde 25 cerebrale problemen. Het moment van canuleren, manipulatie van het hart en 'declamping' van de aorta zijn de belangrijkste chirurgische bronnen voor het optreden van microembolieen. Ondanks het gebruik van verschillende filters in conjunctie met de HLM blijken 30 nog steeds ook een significant deel van de microembolieen op te treden als gevolg van perfusieproblemen, verband houdende met de hart-long machine. De onderhavige uitvinding is bedoeld om enerzijds het optreden van microembolieen door perfusieproblemen zo snel mogelijk op 35 te sporen en op grond daarvan te behandelen en anderzijds de mate van antistollingtherapie te monitoren bij gebruik van fibrinogeen-verlagende medicatie.The occurrence of microemboli during OHO with HLM is seen as the main cause of the above-mentioned cerebral problems. The moment of cannulation, manipulation of the heart and 'declamping' of the aorta are the most important surgical sources for the occurrence of microembolisms. In spite of the use of different filters in conjunction with the HLM, a significant proportion of the microemboli also appears to occur due to perfusion problems associated with the heart-lung machine. The present invention is intended on the one hand to detect the occurrence of microemboli due to perfusion problems as quickly as possible and to treat them on the basis thereof, and on the other hand to monitor the degree of anticoagulation therapy when using fibrinogen-lowering medication.

22

Op zichzelf is het bekend dat bloed elektrische eigenschappen heeft en dat deze elektrische eigenschappen voor het plasma en de bloedcellen verschillend zijn. Het plasma en het inwendige van de bloedcellen bestaat uit 5 geleidende fluïda met een bepaalde elektrische impedantie en de celmembranen bestaan uit fosfolipiden en proteïnen met d.i.-elektrische eigenschappen. De elektrische impedantie van bloed wordt dus primair bepaald door drie parameters: de plasmaweerstand, de inwendige weerstand in 10 de cel en de capaciteit van de celmembraan. De specifieke weerstand van bloed bevindt zich tussen de 120 en 191 Qcm.It is known per se that blood has electrical properties and that these electrical properties are different for plasma and blood cells. The plasma and the interior of the blood cells consist of conductive fluids with a certain electrical impedance and the cell membranes consist of phospholipids and proteins with d.i. electrical properties. The electrical impedance of blood is thus primarily determined by three parameters: the plasma resistance, the internal resistance in the cell and the capacity of the cell membrane. The specific resistance of blood is between 120 and 191 Qcm.

Een voorkeursuitvoeringsvorm van de uitvinding omvat 2 15 buitenste stroomelektrodes en 2 binnenste meetelektrodes in de perfusieslang, direct na de oorsprong uit de hart-longmachine (zie figuur 1). De elektrodes zijn bij voorkeur circulair en van platina. Teneinde een homogeen elektrisch veld te verkrijgen zijn de afstanden tussen de 20 elektrodes gekozen als meer dan 2x de doorsnede van de perfusieslang, welke uit de hart-longmachine komt. Door middel van het opwekken van een lage wisselstroom (ΙΟμΑ -ImA) met frequentie tussen de 4 kHz en 5000 kHz via de 2 buitenste elektrodes zal via de meetelektrodes continu 25 een impedantie (ZO) gemeten kunnen worden van het bloed, dat de meetelektrodes passeert. Eveneens kan een continue registratie plaatsvinden van de verandering van het impedantiesignaal (delta Z).A preferred embodiment of the invention comprises 2 outer flow electrodes and 2 inner measurement electrodes in the perfusion tube, immediately after the origin from the heart-lung machine (see Figure 1). The electrodes are preferably circular and made of platinum. In order to obtain a homogeneous electric field, the distances between the electrodes have been selected as more than 2x the cross-section of the perfusion tube coming from the heart-lung machine. By means of generating a low alternating current (ΙΟμΑ -ImA) with a frequency between 4 kHz and 5000 kHz via the 2 outer electrodes, it will be possible to continuously measure an impedance (ZO) of the blood passing through the measuring electrodes via the measuring electrodes. . A continuous recording of the change in the impedance signal (delta Z) can also take place.

Kleine partikels (< 100 micron) met een andere impedantie 30 dan bloed, zullen zich manifesteren in een plotselinge verandering van het impedantiesignaal (Figuur 2). Deze veranderingen zijn met name te zien in het deltaZ signaal en de grootte van deze verandering hangt af van het verschil in specifieke weerstand tussen dat van de 35 partikel en dat van bloed. Bij passeren van luchtpartikels zal een grote uitslag plaatsvinden in het deltaZ signaal gezien de duidelijk hogere specifieke weerstand van lucht ten opzichte van bloed. Deze uitslag 3 van het deltaZ signaal zal minder groot zijn bij passeren van partikels met andere consistentie, zoals wanneer sprake is van kleine stolsels, waarvan de specifieke weerstand in mindere mate verschilt van de specifieke 5 weerstand van bloed. De uitslag van het impedantiesignaal zal daarom niet alleen aangeven of er wel of niet kleine partikels passeren zoals microembolieen, maar zal ook door middel van de karakteristieken van de impedantie bij verschillende frequenties inzicht geven in de Ί0 consistentie van deze partikels, m.a.w. of er sprake is van luchtembolien door bijv. lekkage in het perfusiesysteem of van microembolieen van trombotisch materiaal. In beide gevallen zal de behandeling van het probleem zeer verschillend zijn. Bij aanwijzingen voor 15 kleine trombi zal de antistolling moeten worden aangepast en bij aanwezigheid van lucht zal naar lekkage in het perfusiesysteem gezocht moeten worden.Small particles (<100 microns) with an impedance other than blood will manifest in a sudden change in the impedance signal (Figure 2). These changes can be seen in particular in the delta Z signal and the magnitude of this change depends on the difference in specific resistance between that of the particle and that of blood. When passing air particles, a large result will occur in the deltaZ signal, given the clearly higher specific resistance of air to blood. This result 3 of the delta Z signal will be less large when passing particles with other consistency, such as when small clots are involved, the specific resistance of which differs to a lesser extent from the specific resistance of blood. The result of the impedance signal will therefore not only indicate whether or not small particles pass through, such as microembolisms, but will also provide insight into the Ί0 consistency of these particles, ie whether there is any question, through the characteristics of the impedance at different frequencies of air embolism due to, for example, leakage into the perfusion system or of microembolisms of thrombotic material. In both cases the treatment of the problem will be very different. With indications for small thrombi, the anticoagulation will have to be adjusted and in the presence of air leakage in the perfusion system will have to be sought.

Niet alleen kan het impedantiesignaal inzicht geven in de wel of niet aanwezigheid en consistentie van partikels 20 met andere impedantie dan bloed, maar bij kennis van de continue stroomsnelheid door de perfusieslangen zal de totale tijd van verandering van het impedantiesignaal iets zeggen over de doorsnede van het partikel, evenwijdig aan de lijn tussen de meetelektrodes (zie 25 Figuur 3).Not only can the impedance signal provide insight into the presence and consistency of particles with impedance other than blood, but when the continuous flow rate through the perfusion tubes is known, the total time of changing the impedance signal will say something about the cross-section of the impedance signal. particle parallel to the line between the measuring electrodes (see Figure 3).

Een andere methode van monitoring van de stolling gedurende OHO met HLM door middel van on-line bioimpedantie metingen doet zich voor bij het gebruik van fibrinogeen verlagende middelen in plaats van heparine 30 als antistollingstherapie. Vergelijkend onderzoek heeft aangetoond, dat de kans op trombotische complicaties enerzijds en hemorragische complicaties anderzijds tijdens open hartoperatie voor heparine en een fibrinogeen verlagende medicatie als Ancrod niet 35 significant verschillend is. Eerder in-vitro bioimpedantie-onderzoek heeft aangetoond, dat er een sterke correlatie bestaat tussen de gemeten impedantie van bloed en de aanwezige concentratie fibrinogeen en dus 4 tussen de impedantie en de viscositeit van het bloed. De impedantie van bloed neemt af bij lager worden van de viscositeit en fibrinogeenconcentratie; andere factoren, die de impedantie beïnvloeden, zoals met name hematocriet 5 en temperatuur dienen constant te worden gehouden. Bij een streefconcentratie van fibrinogeen tijdens OHO door middel van bijvoorbeeld Ancrod kan de dosering van de Ancrod getitreerd worden aan de hand van continue impedantiemetingen. De impedantie kan weer gemeten worden 10 door middel van dezelfde opstelling van 4 elektrodes (2 stroomelektrodes en 2 meetelektrodes) in de perfusieslang (zie figuur 1). De impedantiewaarden, die het best korreleren met de fibrinogeenconcentratie, zijn de Rp en Cm. Deze kunnen berekend worden door middel van het 15 achtereenvolgens binnen enkele seconden meten van de impedantie bij tenminste 3 verschillende stroomfrequenties (bijv. 4 kHz, 512 kHz en 2000 kHz).Another method of monitoring coagulation during OHO with HLM by means of on-line bioimpedance measurements occurs with the use of fibrinogen-lowering agents instead of heparin as anticoagulation therapy. Comparative research has shown that the risk of thrombotic complications on the one hand and hemorrhagic complications on the other during open heart surgery for heparin and a fibrinogen-lowering medication such as Ancrod is not significantly different. Earlier in vitro bioimpedance studies have shown that there is a strong correlation between the measured impedance of blood and the concentration of fibrinogen present and thus 4 between the impedance and the viscosity of the blood. The impedance of blood decreases as the viscosity and fibrinogen concentration decrease; other factors that influence the impedance, such as hematocrit and temperature in particular, must be kept constant. At a target concentration of fibrinogen during OHO by means of, for example, Ancrod, the dosage of the Ancrod can be titrated on the basis of continuous impedance measurements. The impedance can again be measured by means of the same arrangement of 4 electrodes (2 current electrodes and 2 measuring electrodes) in the perfusion tube (see figure 1). The impedance values, which correlate best with the fibrinogen concentration, are the Rp and Cm. These can be calculated by measuring the impedance successively within a few seconds at at least 3 different current frequencies (e.g. 4 kHz, 512 kHz and 2000 kHz).

Claims (13)

1. Hart-long machine, ten minste omvattende transportmiddelen voor het transporteren van bloed, waarbij de hartlongmachine verder is voorzien van een inrichting voor elektrische impedantiemeting van het bloed, 5 welke middelen voor het opwekken van een elektrische stroom in het bloed, middelen voor het meten van de elektrische impedantie en middelen voor het registreren van de elektrische impedantie en/of impedantieverandering van het bloed omvat.A heart-lung machine, at least comprising transport means for transporting blood, the heart lung machine further comprising a device for electrical impedance measurement of the blood, which means for generating an electric current in the blood, means for measuring the electrical impedance and means for recording the electrical impedance and / or impedance change of the blood. 2. Hart-long machine volgens conclusie 1 met het kenmerk dat transportmiddelen ten minste een perfu-sieslang omvatten en de stroomopwekmiddelen en de meetmiddelen in de perfusieslang zijn aangebracht.Heart-lung machine according to claim 1, characterized in that transport means comprise at least one perfusion hose and the power generation means and the measuring means are arranged in the perfusion hose. 3. Hart-long machine volgens conclusie 2 met 15 het kenmerk dat de stroomopwekmiddelen en de meetmiddelen zijn aangebracht in de perfusieslang nabij de oorsprong daarvan uit de hart-longmachine.3. Heart-lung machine as claimed in claim 2, characterized in that the current-generating means and the measuring means are arranged in the perfusion hose near the origin thereof from the heart-lung machine. 4. Hart-longmachine volgens conclusie 1, 2 of 3 met het kenmerk dat de stroomopwekmiddelen een stel met 20 een wisselspanningsbron verbonden stroomopwekelektrodes omvatten welke een wisselstroom opwekken in het bloed.4. A heart-lung machine as claimed in claim 1, 2 or 3, characterized in that the current generating means comprise a set of current generation electrodes connected to an alternating voltage source which generate an alternating current in the blood. 5. Hart-longmachine volgens een van de conclusies 1-4 met het kenmerk dat de meetmiddelen een stel meetelektrodes omvatten.A heart-lung machine according to any one of claims 1-4, characterized in that the measuring means comprise a set of measuring electrodes. 6. Hart-longmachine volgens conclusie 4 of 5 met het kenmerk dat de elektrodes circulair zijn.Heart-lung machine according to claim 4 or 5, characterized in that the electrodes are circular. 7. Hart-longmachine volgens conclusie 4, 5 of 6 met het kenmerk dat de elektrodes platina elektrodes zijn.Heart-lung machine according to claim 4, 5 or 6, characterized in that the electrodes are platinum electrodes. 8. Hart-longmachine volgens een van de voor gaande conclusies 2-7 met het kenmerk dat de elektrodes in de richting van de bloedstroom op regelmatige afstand van elkaar zijn aangebracht in de perfusieslang.Heart-lung machine according to one of the preceding claims 2-7, characterized in that the electrodes are arranged in the perfusion tube at regular intervals in the direction of blood flow. 9. Hart-longmachine volgens conclusie 8 met het 35 kenmerk dat de afstand ten minste twee maal de doorsnede van de perfusieslang is. 101 6247 19. Heart-lung machine according to claim 8, characterized in that the distance is at least twice the cross-section of the perfusion tube. 101 6247 1 10. Hart-longmachine volgens een van de voorgaande conclusies met het kenmerk dat in de richting van de bloedstroom de stroomopwekelektrodes de buitenste elektrodes en de meetelektrodes de binnenste elektrodes 5 omvatten.10. A heart-lung machine as claimed in any one of the preceding claims, characterized in that in the direction of the blood flow the current generating electrodes comprise the outer electrodes and the measuring electrodes the inner electrodes. 11. Gebruik van een hart-longmachine volgens een van de voorgaande conclusies voor het signaleren van het optreden van embolieën in het bloed.Use of a heart-lung machine according to one of the preceding claims for signaling the occurrence of emboli in the blood. 12. Gebruik volgens conclusie 11 met het ken-10 merk dat de embolieën luchtembolieën en/of microembolieën omvatten.Use according to claim 11, characterized in that the emboli comprise air embolisms and / or microembolisms. 13. Gebruik van een hart-longmachine volgens een van de voorgaande conclusies voor het meten van de viscositeit van bloed. 1016247Use of a heart-lung machine according to one of the preceding claims for measuring the viscosity of blood. 1016247
NL1016247A 2000-09-22 2000-09-22 Heart-lung machine provided with an electrical impedance measurement device for signaling microemboli and / or fibrinogen concentration. NL1016247C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL1016247A NL1016247C2 (en) 2000-09-22 2000-09-22 Heart-lung machine provided with an electrical impedance measurement device for signaling microemboli and / or fibrinogen concentration.
PCT/NL2001/000701 WO2002025277A1 (en) 2000-09-22 2001-09-24 Heart-lung machine provided with a device for electrical impedance measurement, and method therefore
AU2002214386A AU2002214386A1 (en) 2000-09-22 2001-09-24 Heart-lung machine provided with a device for electrical impedance measurement, and method therefore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1016247A NL1016247C2 (en) 2000-09-22 2000-09-22 Heart-lung machine provided with an electrical impedance measurement device for signaling microemboli and / or fibrinogen concentration.
NL1016247 2000-09-22

Publications (1)

Publication Number Publication Date
NL1016247C2 true NL1016247C2 (en) 2002-03-25

Family

ID=19772129

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1016247A NL1016247C2 (en) 2000-09-22 2000-09-22 Heart-lung machine provided with an electrical impedance measurement device for signaling microemboli and / or fibrinogen concentration.

Country Status (3)

Country Link
AU (1) AU2002214386A1 (en)
NL (1) NL1016247C2 (en)
WO (1) WO2002025277A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2340378T3 (en) * 2003-12-16 2010-06-02 Dynabyte Informationssysteme Gmbh CARTRIDGE DEVICE FOR BLOOD ANALYSIS.
EP2187201B1 (en) * 2003-12-16 2012-02-15 Dynabyte Informationssysteme GmbH Cartridge device for blood analysis
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8794063B2 (en) * 2007-01-08 2014-08-05 Meggitt (Orange County), Inc. System and method for optimizing sweep delay and aliasing for time domain reflectometric measurement of liquid height within a tank
US8549909B2 (en) 2007-10-01 2013-10-08 Meggitt (Orange County), Inc. Vessel probe connector with solid dielectric therein
WO2009046103A1 (en) 2007-10-01 2009-04-09 Vibro-Meter, Inc. System and method for accurately measuring fluid level in a vessel
ES2651898T3 (en) 2007-11-26 2018-01-30 C.R. Bard Inc. Integrated system for intravascular catheter placement
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
ES2525525T3 (en) 2008-08-22 2014-12-26 C.R. Bard, Inc. Catheter assembly that includes ECG and magnetic sensor assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
ES2745861T3 (en) 2009-06-12 2020-03-03 Bard Access Systems Inc Apparatus, computer-aided data-processing algorithm, and computer storage medium for positioning an endovascular device in or near the heart
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US10639008B2 (en) 2009-10-08 2020-05-05 C. R. Bard, Inc. Support and cover structures for an ultrasound probe head
WO2011044421A1 (en) 2009-10-08 2011-04-14 C. R. Bard, Inc. Spacers for use with an ultrasound probe
CN102821679B (en) 2010-02-02 2016-04-27 C·R·巴德股份有限公司 For the apparatus and method that catheter navigation and end are located
DE102010028902A1 (en) * 2010-05-11 2011-11-17 Fresenius Medical Care Deutschland Gmbh Method and device for determining cellular and / or extracellular, in particular macromolecular portions of liquids, preferably of body fluids of living beings
ES2778041T3 (en) 2010-05-28 2020-08-07 Bard Inc C R Apparatus for use with needle insertion guidance system
EP2912999B1 (en) 2010-05-28 2022-06-29 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
WO2012024577A2 (en) 2010-08-20 2012-02-23 C.R. Bard, Inc. Reconfirmation of ecg-assisted catheter tip placement
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
AU2012278809B2 (en) 2011-07-06 2016-09-29 C.R. Bard, Inc. Needle length determination and calibration for insertion guidance system
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
US9211107B2 (en) 2011-11-07 2015-12-15 C. R. Bard, Inc. Ruggedized ultrasound hydrogel insert
EP2861153A4 (en) 2012-06-15 2016-10-19 Bard Inc C R Apparatus and methods for detection of a removable cap on an ultrasound probe
ITUD20130047A1 (en) * 2013-04-03 2014-10-04 Ct Di Riferimento Oncologico EQUIPMENT FOR THE ANALYSIS OF THE PROCESS OF FORMING AGGREGATES IN A BIOLOGICAL FLUID AND RELATIVE ANALYSIS METHOD
CN105979868B (en) 2014-02-06 2020-03-10 C·R·巴德股份有限公司 Systems and methods for guidance and placement of intravascular devices
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
JP2016174752A (en) * 2015-03-20 2016-10-06 ソニー株式会社 Blood state monitoring device, blood state monitoring method, blood state monitoring system, and blood state improving program
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
WO2020081373A1 (en) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
GB2622574A (en) * 2022-09-08 2024-03-27 Univ Newcastle Microfluidic cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014206A (en) * 1975-03-31 1977-03-29 Akron City Hospital Apparatus and method for monitoring air emboli during extracorporeal circulation
EP0542140A2 (en) * 1991-11-15 1993-05-19 Fresenius AG Tube arrangement for use in a blood circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3627814A1 (en) * 1986-08-16 1988-02-25 Fresenius Ag DEVICE FOR DETERMINING THE HAEMATOCRIT
NL1012223C2 (en) * 1999-06-03 2000-12-06 Martil Instr B V Cardiac pacemaker as well as pacemaker unit and electric wire therefor.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014206A (en) * 1975-03-31 1977-03-29 Akron City Hospital Apparatus and method for monitoring air emboli during extracorporeal circulation
EP0542140A2 (en) * 1991-11-15 1993-05-19 Fresenius AG Tube arrangement for use in a blood circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VRIES DE P M J M ET AL: "IMPLICATIONS OF THE DIELECTRICAL BEHAVIOUR OF HUMAN BLOOD FOR CONTINUOUS ONLINE MEASUREMENT OF HAEMATOCRIT", MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING,GB,PETER PEREGRINUS LTD. STEVENAGE, vol. 31, no. 5, 1 September 1993 (1993-09-01), pages 445 - 448, XP000400532, ISSN: 0140-0118 *

Also Published As

Publication number Publication date
AU2002214386A1 (en) 2002-04-02
WO2002025277A1 (en) 2002-03-28

Similar Documents

Publication Publication Date Title
NL1016247C2 (en) Heart-lung machine provided with an electrical impedance measurement device for signaling microemboli and / or fibrinogen concentration.
US9823207B2 (en) Method and device for determining intracellular and/or extracellular, in particular macromolecular fractions of fluids, preferably of body fluids of living organisms
US8529490B2 (en) Systems and methods for dialysis access disconnection
Lukaski et al. Bioelectrical impedance assessment of wound healing
US7138088B2 (en) Access disconnection system and methods
Zhao et al. Triple-frequency method for measuring blood impedance
JPH0399254A (en) Hematocrit measuring apparatus
Li et al. Red blood cells aggregability measurement of coagulating blood in extracorporeal circulation system with multiple-frequency electrical impedance spectroscopy
WO2012022456A1 (en) Device for determining and/or monitoring foreign structures in a fluid or in a fluid stream, and method for doing same
WO2016152304A1 (en) Blood state monitoring device, method for monitoring blood state, blood state monitoring system, and blood state improving program
US20200324039A1 (en) Apparatus and method for microwave therapy for blood cancer treatment
US20170000940A1 (en) Method for establishing and/or monitoring the state of an extracorporeal fluid or fluid flow by means of ultrasound
Sapkota et al. Application of electrical resistance tomography for thrombus visualization in blood
JP5726662B2 (en) Blood impedance measuring device, artificial dialysis device, and method for operating blood impedance measuring device
Fridman et al. Use of non-thermal atmospheric pressure plasma discharge for coagulation and sterilization of surface wounds
Jaffrin et al. Extra-and intracellular volume monitoring by impedance during haemodialysis using Cole-Cole extrapolation
Sudnik et al. The role of selectins in alopecia areata
Van Kreel Multi-frequency bioimpedance measurements of children in intensive care
Treo et al. Comparative analysis of hematocrit measurements by dielectric and impedance techniques
Sifuna et al. Connector sensors for permittivity-based thrombus monitoring in extracorporeal life support
JP2004004002A (en) Thrombus forming ability measuring instrument
Bradbury et al. Measurement of intercompartmental fluid shifts during haemodialysis in children
Jung A Study on Rheological Properties of Blood
Sapkota et al. Risk analysis and detection of thrombosis by measurement of electrical resistivity of blood
Tayebi-Khosroshahi et al. Online Clearance Monitoring With Electrical Conductance (Dt/V) Versus Blood-driven (Kt/V) of Urea: A Compressional Study

Legal Events

Date Code Title Description
PD2B A search report has been drawn up
PD2B A search report has been drawn up