NL1015378C1 - Steam produced by exhaust gas heat exchanger drives turbo-compressor of conventional diesel engine to improve performance and efficiency - Google Patents

Steam produced by exhaust gas heat exchanger drives turbo-compressor of conventional diesel engine to improve performance and efficiency Download PDF

Info

Publication number
NL1015378C1
NL1015378C1 NL1015378A NL1015378A NL1015378C1 NL 1015378 C1 NL1015378 C1 NL 1015378C1 NL 1015378 A NL1015378 A NL 1015378A NL 1015378 A NL1015378 A NL 1015378A NL 1015378 C1 NL1015378 C1 NL 1015378C1
Authority
NL
Netherlands
Prior art keywords
compressor
exhaust gas
steam
heat exchanger
diesel engine
Prior art date
Application number
NL1015378A
Other languages
Dutch (nl)
Inventor
Renu Van Der Ir Meer
Original Assignee
Renu Van Der Ir Meer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renu Van Der Ir Meer filed Critical Renu Van Der Ir Meer
Priority to NL1015378A priority Critical patent/NL1015378C1/en
Application granted granted Critical
Publication of NL1015378C1 publication Critical patent/NL1015378C1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/085Non-mechanical drives, e.g. fluid drives having variable gear ratio the fluid drive using expansion of fluids other than exhaust gases, e.g. a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Exhaust gas is cooled in the heat exchanger (2) to create steam. This expands in the turbine (4) to drive the air compressor (5). Compressed air passes via a cooler to a conventional diesel engine (1). From the turbine, saturated steam is condensed (3). The engine-driven pump (6) pumps the water back to the heat exchanger.

Description

De stoom dieselmotorThe steam diesel engine

De uitvinding heeft betrekking op het verbeteren van het rendement van dieselmotoren met turbolader. De rendementverbetering berust op het principe van stoom expansie in de turbocompressor van de motor.The invention relates to improving the efficiency of turbocharged diesel engines. The efficiency improvement is based on the principle of steam expansion in the turbocharger of the engine.

Dit principe wordt reeds toegepast in elektriciteitscentrales. Hier wordt gebruik gemaakt van het STEG principe. De uitlaatgassen van de gasturbine worden gebruikt om oververhitte stoom te creëren. De stoom laat men expanderen in een of meerdere trappen van een stoomturbine. Hierbij gaat het om zeer gecompliceerde installaties omdat de turbine een constant toerental moet blijven draaien in verband met het lichtnet.This principle is already applied in power plants. The STEG principle is used here. The exhaust gases from the gas turbine are used to create superheated steam. The steam is allowed to expand in one or more stages of a steam turbine. These are very complicated installations because the turbine has to run at a constant speed in connection with the mains.

Verder zijn er toepassen van stoominjectie bekend bij zuiger-verbrandingsmotoren ten behoeve van het reduceren van NOx uitstoot. Hierbij wordt stoom direct in de cilinders geïnjecteerd.Furthermore, applications of steam injection are known in piston-combustion engines to reduce NOx emissions. Steam is injected directly into the cylinders.

Bij de uitvinding wordt het principe van STEG toegepast op kleine schaal. Aan de 15 dieselmotor zelf, verandert constructief niets. De dieselmotor blijft constructief dezelfde als de huidige dieselmotoren, en wordt thermische en mechanisch niet zwaarder belast. De motor blijft met dezelfde vul- en verbrandingsdrukken werken. Deze worden alleen op de andere manier verkregen.In the invention, the principle of STEG is applied on a small scale. Constructionally nothing changes on the 15 diesel engine. The diesel engine remains structurally the same as current diesel engines, and is not subjected to a heavier thermal and mechanical load. The engine continues to operate with the same filling and combustion pressures. These are only obtained the other way.

Nadat de uitlaatgassen (tussen 400 en 450 gr C) de uitlaatkleppen gepasseerd zijn worden deze in de uitlaatgassenketel (zie fig 1 ond. 2) teruggekoeld. De ketel creëert hierbij oververhitte stoom. De stoom expandeert in een turbine(fig. 1 ond 4) welke direct aan de luchtcompressor (fig.1 ond. 5) gekoppeld zit. Dit is volgens het zelfde principe als de uitlaatgassenturbo. De gecomprimeerde lucht gaat dan al dan niet via een luchtkoeler naar de motor. Nadat de stoom geëxpandeerd is in de turbine, zal de verzadigde stoom condenseren in 25 de condensor (fig. 1 ond 3) tot water. De voedingspomp (fig 1 ond. 6)(deze haalt zijn mechanisch energie van de motor) brengt het water op druk en pomp het in de uitlaatgassenketel (fig 1 ond. 2).After the exhaust gases (between 400 and 450 degrees C) have passed the exhaust valves, they are cooled in the exhaust gas boiler (see fig. 1 part 2). The boiler creates superheated steam. The steam expands in a turbine (fig. 1 to 4) which is directly connected to the air compressor (fig. 1 to 5). This is on the same principle as the exhaust gas turbo. The compressed air then goes to the engine via an air cooler or not. After the steam has been expanded in the turbine, the saturated steam will condense in the condenser (Fig. 1 to 3) into water. The feed pump (fig. 1 part 6) (which draws its mechanical energy from the engine) pressurizes the water and pumps it into the exhaust boiler (fig. 1 part 2).

Energie ballans van huidige generatie turbogedreven dieselmotorenEnergy balance of current generation of turbo driven diesel engines

Krukas vermogen ca 38 % „ Koelwater ca 24 % 30Crankshaft power approx. 38% „Cooling water approx. 24% 30

Stralingwarmte ca 8 %Radiant heat approx. 8%

Uitlaatgassen ca 30 % totaal 100%Exhaust gases approx. 30%, total 100%

Een lagedruk stoom proces heeft een rendement van ca 25 % Dit betekent dat 25 % van de 30 % uitlaatgassen warmte benut kan worden voor het comprimeren van vullucht. De gecomprimeerde lucht, en na verbranding de verbrandingsgassen, kunnen volledige expanderen tot atmosferische druk, en zo direct extra bijdragen aan het krukasvermogen. Dit in tegenstelling tot conventionele turbomotoren waarbij de uitlaatgassen een zekere druk moeten behouden na het verlaten van de cilinders, om de uitlaatgassenturbine aan de drijven.A low-pressure steam process has an efficiency of approx. 25%. This means that 25% of the 30% exhaust gases can be used to compress filling air. The compressed air, and after combustion the combustion gases, can fully expand to atmospheric pressure, thus directly contributing to the crankshaft power. This is in contrast to conventional turbo engines where the exhaust gases have to maintain a certain pressure after leaving the cylinders in order to drive the exhaust gas turbine.

1015378 21015378 2

Het gevolg is dat dus ca. 7,5 % uitlaatgassen warmte benut kan worden om het krukas vermogen te vergroten van ca. 38 % naar ca. 45,5 %. Wanneer we hiervan de ca 1 % aftrekken voor het aandrijven van de voedingpomp (fig 1ond 6) vinden we een rendement verbetering van ca. 17 % krukasvermogen.As a result, approx. 7.5% of exhaust gases can be used to increase the crankshaft power from approx. 38% to approx. 45.5%. When we subtract the approx. 1% for driving the feed pump (fig 1ond 6), we find an efficiency improvement of approx. 17% crankshaft power.

5 Optioneel kan een extra brander in de uitiaatgassenketel zorgen voor verdere oververhitting van de stoom. Hiermee kunnen de stoomdrukken voor de turbine geregeld worden onafhankelijk van de motorbelasting.5 Optionally, an additional burner in the exhaust gas boiler can further overheat the steam. This allows the steam pressures for the turbine to be controlled independently of the engine load.

10153781015378

Claims (3)

1. Als gevolg van een stoomgedreven turbocompressor kan een brandstofbesparing van ca. 15 % bereikt worden op dieselmotoren.1. As a result of a steam-driven turbocharger, fuel savings of approx. 15% can be achieved on diesel engines. 2. Het toerental van de inlaatluchtcompressor wordt niet direct door de ^ uitlaatgassen wordt beïnvloed maar indirect via de stoomdruk in de uitlaatgassenketel. Dit betekent dat bij plotseling wegvallende en inkomende belasting (bijvoorbeeld: het schakelen van een vrachtwagen naar een andere versnelling) de compressor voldoende vullucht kan leveren. Dit betekent dat de motor geen onvolledige verbranding zal hebben tijdens de belasting wisseling en de uitstoot van milieuonvriendelijke delen zoals roet en CO zal verminderen.2. The speed of the charge air compressor is not directly influenced by the exhaust gases but indirectly via the steam pressure in the exhaust gas boiler. This means that in case of sudden loss and incoming load (for example: switching a truck to another gear), the compressor can supply sufficient filling air. This means that the engine will not have incomplete combustion during the load changeover and will reduce the emission of environmentally unfriendly parts such as soot and CO. 3. De inlaatluchtcompressor kan bij laag motortoerentai en hoge belating toch voldoende vullucht geven zodat en gunstiger koppel-toerenkromme onstaat, welke een hoger koppel geeft bij lage motortoeren. 10153783. The charge air compressor can still provide sufficient fill air at low engine speed and high load, so that a more favorable torque-speed curve is created, which gives a higher torque at low engine speeds. 1015378
NL1015378A 2000-06-05 2000-06-05 Steam produced by exhaust gas heat exchanger drives turbo-compressor of conventional diesel engine to improve performance and efficiency NL1015378C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL1015378A NL1015378C1 (en) 2000-06-05 2000-06-05 Steam produced by exhaust gas heat exchanger drives turbo-compressor of conventional diesel engine to improve performance and efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1015378 2000-06-05
NL1015378A NL1015378C1 (en) 2000-06-05 2000-06-05 Steam produced by exhaust gas heat exchanger drives turbo-compressor of conventional diesel engine to improve performance and efficiency

Publications (1)

Publication Number Publication Date
NL1015378C1 true NL1015378C1 (en) 2001-12-10

Family

ID=19771497

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1015378A NL1015378C1 (en) 2000-06-05 2000-06-05 Steam produced by exhaust gas heat exchanger drives turbo-compressor of conventional diesel engine to improve performance and efficiency

Country Status (1)

Country Link
NL (1) NL1015378C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167932A1 (en) * 2012-05-10 2013-11-14 Renault Trucks Truck internal combustion engine arrangement comprising a waste heat recovery system for compressing intake air
GB2544051A (en) * 2015-11-03 2017-05-10 Perkins Engines Co Ltd An energy recovery system for an internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167932A1 (en) * 2012-05-10 2013-11-14 Renault Trucks Truck internal combustion engine arrangement comprising a waste heat recovery system for compressing intake air
GB2544051A (en) * 2015-11-03 2017-05-10 Perkins Engines Co Ltd An energy recovery system for an internal combustion engine
GB2544051B (en) * 2015-11-03 2020-01-01 Perkins Engines Co Ltd An energy recovery system for an internal combustion engine

Similar Documents

Publication Publication Date Title
JP5221541B2 (en) Supercharger
US4366674A (en) Internal combustion engine with Rankine bottoming cycle
JPS5870023A (en) Improving of operation condition of internal combustion engine
KR101449141B1 (en) Turbo device using waste heat recovery system of vhicle
KR100881467B1 (en) Control strategy for turbocharged engine having variable valve actuation apparatus
JPS58187521A (en) Exhaust gas turbo overcharger
WO2019235951A1 (en) Gas-turbine power-plant with pneumatic motor with isobaric internal combustion
NL1015378C1 (en) Steam produced by exhaust gas heat exchanger drives turbo-compressor of conventional diesel engine to improve performance and efficiency
CN103670670B (en) Turbocharged two stroke uniflow internal combustion engine with crossheads and turbine
US6481206B1 (en) Compound cycle internal combustion engine
US20240068398A1 (en) Hot exhaust gas energy recovery system
US5014516A (en) Turbocharger with downstream pressure-gain combustor
RU2334114C1 (en) Gas turbine vehicle propulsion unit
US11913402B2 (en) Diesel-steam power plant
CN1101397A (en) Compensating turbine charging system
RU2232343C1 (en) Power waste recovery plant of gas-transfer stations of main gas pipe-lines
SU1267030A1 (en) Power plant
US20170016392A1 (en) Systems and methods for use with internal combustion engines and vehicles comprising the same
RU2372509C1 (en) Combined aircraft engine
CN112012799B (en) Sliding vane type engine
Mothilal et al. Design of turbocharger in petrol engine with intercooler and discharger chamber
RU2231659C2 (en) Turbocharged internal combustion engine
SU842208A1 (en) Piston i.c. engine with gas turbine supercharging system
US999873A (en) Internal-combustion-motor apparatus.
RU2044911C1 (en) Heat internal combustion engine

Legal Events

Date Code Title Description
VD2 Lapsed due to expiration of the term of protection

Effective date: 20060605