MX2017012438A - HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME. - Google Patents

HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME.

Info

Publication number
MX2017012438A
MX2017012438A MX2017012438A MX2017012438A MX2017012438A MX 2017012438 A MX2017012438 A MX 2017012438A MX 2017012438 A MX2017012438 A MX 2017012438A MX 2017012438 A MX2017012438 A MX 2017012438A MX 2017012438 A MX2017012438 A MX 2017012438A
Authority
MX
Mexico
Prior art keywords
steel sheet
rolled steel
mpa
retained austenite
strength
Prior art date
Application number
MX2017012438A
Other languages
Spanish (es)
Inventor
Murata Tadao
Kasuya Koji
Futamura Yuichi
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57322703&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=MX2017012438(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority claimed from PCT/JP2016/056169 external-priority patent/WO2016158160A1/en
Publication of MX2017012438A publication Critical patent/MX2017012438A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are: a high-strength cold-rolled steel sheet having a tensile strength of 980 MPa or more, having good workability as evaluated by ductility and stretch-flangeability, and having excellent collision characteristics; and a method for producing said steel sheet. In this high-strength cold-rolled steel sheet, the metal structure at a position of 1/4 sheet thickness satisfies (1)-(4) below. (1) The area ratio of ferrite is 10-65%, inclusive, and the balance is a hard phase comprising at least one selected from the group consisting of bainitic ferrite, bainite, and tempered martensite, said hard phase including quenched martensite and retained austenite. (2) The volume ratio V? of retained austenite is 5-30%, inclusive. (3) The area ratio VMA of an MA structure in which quenched martensite and retained austenite are combined is 3-25%, inclusive, and the average equivalent circle diameter of the MA structure is 2.0 µm or less. (4) The ratio VMA/V? of the area ratio VMA of the MA structure to the volume ratio V? of the retained austenite is 0.50-1.50.
MX2017012438A 2015-03-31 2016-03-01 HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME. MX2017012438A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015071438 2015-03-31
JP2015225507A JP6554397B2 (en) 2015-03-31 2015-11-18 High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
PCT/JP2016/056169 WO2016158160A1 (en) 2015-03-31 2016-03-01 HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME

Publications (1)

Publication Number Publication Date
MX2017012438A true MX2017012438A (en) 2018-01-26

Family

ID=57322703

Family Applications (1)

Application Number Title Priority Date Filing Date
MX2017012438A MX2017012438A (en) 2015-03-31 2016-03-01 HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME.

Country Status (6)

Country Link
US (1) US20180044752A1 (en)
EP (1) EP3279363B1 (en)
JP (1) JP6554397B2 (en)
KR (1) KR101970095B1 (en)
CN (1) CN107429371B (en)
MX (1) MX2017012438A (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554396B2 (en) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
MX2018010791A (en) 2016-03-07 2019-02-07 Jfe Steel Corp High-strength steel plate and method for manufacturing same.
JP6844627B2 (en) * 2017-01-16 2021-03-17 日本製鉄株式会社 Steel plate and its manufacturing method
JP6901417B2 (en) * 2018-02-21 2021-07-14 株式会社神戸製鋼所 High-strength steel sheet and high-strength galvanized steel sheet, and their manufacturing method
KR102437795B1 (en) * 2018-03-30 2022-08-29 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
MX2020010211A (en) * 2018-03-30 2020-11-09 Jfe Steel Corp High-strength sheet steel and method for manufacturing same.
JP6690793B1 (en) * 2018-06-29 2020-04-28 日本製鉄株式会社 High-strength steel sheet and method for manufacturing the same
JP6747612B1 (en) 2018-10-10 2020-08-26 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing the same
WO2020189530A1 (en) * 2019-03-15 2020-09-24 日本製鉄株式会社 Steel sheet
KR102527545B1 (en) * 2019-03-28 2023-05-03 닛폰세이테츠 가부시키가이샤 high strength steel plate
CN114585766B (en) * 2019-10-23 2023-04-28 杰富意钢铁株式会社 High-strength steel sheet and method for producing same
KR102321297B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102348527B1 (en) * 2019-12-18 2022-01-07 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102353611B1 (en) * 2019-12-18 2022-01-20 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102348529B1 (en) * 2019-12-18 2022-01-07 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321292B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321285B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321295B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321287B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
KR102321288B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same
CN111733367B (en) * 2020-07-08 2021-07-09 东莞理工学院 High-strength steel with nanometer, layered and metastable bone tissue and preparation method thereof
CN113215484B (en) * 2021-04-14 2022-04-19 首钢集团有限公司 Phase-change induced plasticity steel and preparation method and application thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1484862A (en) 1973-09-12 1977-09-08 Zenith Carburetter Co Ltd Cold start fuel/air mixture supply devices for internal combustion engines
DE2519190C3 (en) 1975-04-30 1979-07-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Copy grinder for true-to-size grinding of blades for turbines and compressors
JPS5487916A (en) 1977-12-24 1979-07-12 Nippon Accumulator Kk Special fluid feed method employing accumulator
JP3740779B2 (en) * 1997-03-12 2006-02-01 Jfeスチール株式会社 Steel plate for easy open can lid excellent in openability and rivet formability, manufacturing method thereof, and easy open can lid
EP2202327B1 (en) * 2007-10-25 2020-12-02 JFE Steel Corporation Method for manufacturing a high-strength galvanized steel sheet with excellent formability
JP5369663B2 (en) * 2008-01-31 2013-12-18 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5487916B2 (en) * 2009-11-30 2014-05-14 新日鐵住金株式会社 High-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more excellent in impact absorption energy and a method for producing the same
JP5668337B2 (en) * 2010-06-30 2015-02-12 Jfeスチール株式会社 Ultra-high-strength cold-rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
CA2805834C (en) * 2010-08-12 2016-06-07 Jfe Steel Corporation High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
US9745639B2 (en) 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
MX356410B (en) * 2011-07-06 2018-05-24 Nippon Steel & Sumitomo Metal Corp Cold-rolled steel sheet.
EP2740812B1 (en) * 2011-07-29 2019-09-11 Nippon Steel Corporation High-strength steel sheet excellent in impact resistance and manufacturing method thereof,and high-strength galvanized steel sheet and manufacturing method thereof
JP5408314B2 (en) * 2011-10-13 2014-02-05 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP5632947B2 (en) * 2012-12-12 2014-11-26 株式会社神戸製鋼所 High-strength steel sheet excellent in workability and low-temperature toughness and method for producing the same
JP5776761B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
US10253389B2 (en) * 2014-03-31 2019-04-09 Jfe Steel Corporation High-yield-ratio, high-strength cold-rolled steel sheet and production method therefor

Also Published As

Publication number Publication date
EP3279363A4 (en) 2018-08-15
CN107429371B (en) 2020-04-21
US20180044752A1 (en) 2018-02-15
EP3279363A1 (en) 2018-02-07
CN107429371A (en) 2017-12-01
EP3279363B1 (en) 2020-05-13
JP2016194139A (en) 2016-11-17
JP6554397B2 (en) 2019-07-31
KR20170130578A (en) 2017-11-28
KR101970095B1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
MX2017012438A (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME.
MX2017012442A (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME.
MX2018007649A (en) Method for producing a high strength coated steel sheet having improved ductility and formability, and obtained coated steel sheet.
MX2016007948A (en) High strength hot-dip galvanized steel sheet and manufacturing method therefor.
MX2016007954A (en) High strength hot-dip galvanized steel sheet and manufacturing method therefor.
MX2018009643A (en) High-strength steel sheet and method for manufacturing same.
GB201210376D0 (en) High Strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
MX2019001828A (en) Thin steel sheet and process for producing same.
MX335961B (en) High-strength cold-rolled steel sheet and process for manufacturing same.
MX2019001794A (en) High strength cold-rolled steel sheet and method for manufacturing same.
MX2017001529A (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet.
MX357839B (en) High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each.
MX2016012708A (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability.
UA118036C2 (en) High-strength steel and method for producing same
MX2018007645A (en) Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet.
MX2018007641A (en) Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet.
IN2014DN03212A (en)
MX2013001456A (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same.
MX2018011688A (en) Thin ste.
MX2017001688A (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet.
MX366776B (en) Galvannealed hot-rolled steel sheet and method for manufacturing same.
MX2018009735A (en) High-strength steel sheet and method for manufacturing same.
MX2016012797A (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet having excellent ductility, stretch-flangeability, and weldability.
MX2020006773A (en) High-strength cold rolled steel sheet and method for manufacturing same.
MX2018002607A (en) High strength thin steel sheet and method for manufacturing same.