MD714Z - Process for chromium electroplating - Google Patents

Process for chromium electroplating Download PDF

Info

Publication number
MD714Z
MD714Z MDS20130063A MDS20130063A MD714Z MD 714 Z MD714 Z MD 714Z MD S20130063 A MDS20130063 A MD S20130063A MD S20130063 A MDS20130063 A MD S20130063A MD 714 Z MD714 Z MD 714Z
Authority
MD
Moldova
Prior art keywords
electrolyte
inductive
capacitive
chromium
coatings
Prior art date
Application number
MDS20130063A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Виорел ГОЛОГАН
Жанна БОБАНОВА
Серджиу ИВАШКУ
Думитру КРОИТОРУ
Original Assignee
Институт Прикладной Физики Академии Наук Молдовы
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Прикладной Физики Академии Наук Молдовы filed Critical Институт Прикладной Физики Академии Наук Молдовы
Priority to MDS20130063A priority Critical patent/MD714Z/en
Publication of MD714Y publication Critical patent/MD714Y/en
Publication of MD714Z publication Critical patent/MD714Z/en

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Invenţia se referă la galvanotehnică, şi anume la un procedeu de depunere a acoperirii galvanice de crom.Procedeul, conform invenţiei, include depunerea acoperirii de crom din electrolitul tetracromat, care conţine, g/l: CrO3 - 350…400, H2SO4 - 2,5…2,7, NaOH - 40…60, zahăr - 1, cu utilizarea unei surse de curent trifazat şi a unui dispozitiv inductiv-capacitiv, conectat în serie între polii negativi ai sursei de curent trifazat şi băii galvanice. Totodată dispozitivul este format din două blocuri - capacitiv şi inductiv, conectate paralel între ele, blocul inductiv având inductanţa în limitele 0,1 µH…10,0 H, iar blocul capacitiv având capacitatea sumară în limitele 0,01…0,10 F.The invention relates to electroplating, namely to a process for depositing the galvanic coating of chromium. The process according to the invention includes the deposition of the chromium coating of the tetrachromatic electrolyte, which contains, g / l: CrO3 - 350 ... 400, H2SO4 - 2, 5 ... 2,7, NaOH - 40 ... 60, sugar - 1, using a three-phase current source and an inductive-capacitive device, connected in series between the negative poles of the three-phase current source and the galvanic bath. At the same time, the device consists of two blocks - capacitive and inductive, connected in parallel, the inductive block having the inductance within the limits of 0.1 µH ... 10.0 H, and the capacitive block having the summary capacity within the limits of 0.01 ... 0.10 F.

Description

Invenţia se referă la galvanotehnică, şi anume la un procedeu de depunere a acoperirii galvanice de crom. The invention relates to electroplating, namely to a process for depositing galvanic chromium coating.

Este cunoscut faptul că acoperirile de crom, obţinute din electrolit universal care conţine CrO3 şi H2SO4, corespund cerinţelor producţiei moderne. Însă agresivitatea înaltă a electrolitului la temperatura de 50…65°C şi a produselor gazoase degajate în sectorul galvanic duce la dezechilibrarea siguranţei ecologice, comportă cheltuieli sporite la ventilare şi la neutralizarea deşeurilor, iar în acoperirile de crom apar tensiuni interioare de întindere, contribuind la formarea unei reţele de microfisuri, care duc la coroziunea bazei. It is known that chromium coatings, obtained from universal electrolyte containing CrO3 and H2SO4, meet the requirements of modern production. However, the high aggressiveness of the electrolyte at a temperature of 50…65°C and the gaseous products released in the galvanic sector lead to an imbalance in ecological safety, entail increased expenses for ventilation and waste neutralization, and internal tensile stresses appear in chromium coatings, contributing to the formation of a network of microcracks, which lead to corrosion of the base.

Este cunoscut procedeul de depunere a acoperirilor de crom din electrolitul tetracromat. Rolul principal în acest caz îl execută componenţa electrolitului, în g/l: CrO3 - 350…400, H2SO4 - 2,5…2,7, NaOH - 40…60, zahăr - 1, care se deosebeşte de cel universal prin aceea că acidul cromic se neutralizează cu baza şi se găseşte în soluţie în formă de tetracromat de sodiu. Ca rezultat al neutralizării acidului cromic agresivitatea soluţiei se micşorează brusc şi cromul se depozitează la temperatura electrolitului de 289…295 K, densitatea curentului pe suprafaţa catodului fiind de 1,0…8,0 kA/m2. În depuneri practic lipsesc fisurarea şi porozitatea, nu este necesară depozitarea cuprului şi a nichelului pentru protecţia substratului. Randamentul cromului, în funcţie de curent în electrolit, atinge peste 30%, ceea ce depăşeşte considerabil indicele respectiv pentru electrolitul universal (13%). Totodată, electrolitul este simplu în utilizare şi asigură obţinerea acoperirilor cu o rezistenţă necesară de aderenţă cu baza [1]. The process of depositing chromium coatings from tetrachromate electrolyte is known. The main role in this case is played by the composition of the electrolyte, in g/l: CrO3 - 350…400, H2SO4 - 2.5…2.7, NaOH - 40…60, sugar - 1, which differs from the universal one in that chromic acid is neutralized with a base and is found in solution in the form of sodium tetrachromate. As a result of the neutralization of chromic acid, the aggressiveness of the solution sharply decreases and chromium is deposited at an electrolyte temperature of 289…295 K, the current density on the cathode surface being 1.0…8.0 kA/m2. Cracking and porosity are practically absent in the deposits, there is no need to deposit copper and nickel for substrate protection. The chromium yield, depending on the current in the electrolyte, reaches over 30%, which considerably exceeds the respective index for the universal electrolyte (13%). At the same time, the electrolyte is simple to use and ensures the obtaining of coatings with the necessary adhesion strength to the base [1].

Dezavantajul acestor acoperiri îl constituie rezistenţa la uzură şi duritatea (3,0…5,0 GPa) scăzute, ce nu permit aplicarea acestora în cuplurile de frecare, de aceea se utilizează ca acoperiri decorative şi pentru protecţie împotriva coroziunii. The disadvantage of these coatings is their low wear resistance and hardness (3.0…5.0 GPa), which do not allow their application in friction pairs, therefore they are used as decorative coatings and for protection against corrosion.

În calitate de cea mai apropiată soluţie serveşte instalaţia de depunere electrochimică a cromului care constă dintr-un dispozitiv inductiv-capacitiv, o baie electrolitică şi un redresor de curent trifazat. Totodată, dispozitivul este format din două blocuri - capacitiv şi inductiv, conectate paralel între ele. Depunerea cromului se efectuează din electrolitul universal, la densitatea curentului catodic de 30…110 A/dm2 [2]. The closest solution is the electrochemical chromium deposition installation consisting of an inductive-capacitive device, an electrolytic bath and a three-phase current rectifier. At the same time, the device consists of two blocks - capacitive and inductive, connected in parallel with each other. The chromium deposition is carried out from the universal electrolyte, at the cathodic current density of 30…110 A/dm2 [2].

Dezavantajele acoperirilor de crom obţinute constau în agresivitatea înaltă a electrolitului la temperaturi ridicate şi rezistenţa la uzură scăzută. The disadvantages of the obtained chromium coatings consist in the high aggressiveness of the electrolyte at high temperatures and low wear resistance.

Problema pe care o rezolvă invenţia propusă constă în obţinerea acoperirilor galvanice de crom rezistente la uzură din electrolitul tetracromat. The problem solved by the proposed invention consists in obtaining wear-resistant chromium galvanic coatings from tetrachromate electrolyte.

Problema se rezolvă prin aceea că procedeul de depunere a acoperirii galvanice de crom include depunerea acoperirii de crom din electrolitul tetracromat, care conţine, g/l: CrO3 - 350…400, H2SO4 - 2,5…2,7, NaOH - 40…60, zahăr - 1, la temperatura electrolitului de 291…297 K, densitatea curentului catodic de 2,0…8,0 kA/m2, cu utilizarea unei surse de curent trifazat şi a unui dispozitiv inductiv-capacitiv, conectat în serie între polii negativi ai sursei de curent trifazat şi băii galvanice, totodată dispozitivul este format din două blocuri - capacitiv şi inductiv, conectate paralel între ele, blocul inductiv având inductanţa în limitele 0,1 µH…10,0 H, iar blocul capacitiv având capacitatea sumară în limitele 0,01…0,10 F. The problem is solved by the fact that the process of depositing the galvanic chromium coating includes the deposition of the chromium coating from the tetrachromate electrolyte, which contains, g/l: CrO3 - 350…400, H2SO4 - 2.5…2.7, NaOH - 40…60, sugar - 1, at the electrolyte temperature of 291…297 K, the cathodic current density of 2.0…8.0 kA/m2, with the use of a three-phase current source and an inductive-capacitive device, connected in series between the negative poles of the three-phase current source and the galvanic bath, at the same time the device is formed by two blocks - capacitive and inductive, connected in parallel with each other, the inductive block having the inductance within the limits of 0.1 µH…10.0 H, and the capacitive block having the total capacitance within the limits of 0.01…0.10 F.

Rezultatul tehnic al invenţiei constă în determinarea condiţiilor optime de electroliză pentru obţinerea acoperirilor de crom rezistente la uzură, ce se caracterizează prin următoarele: The technical result of the invention consists in determining the optimal electrolysis conditions for obtaining wear-resistant chromium coatings, which are characterized by the following:

1) selectarea compoziţiei electrolitului; 1) selection of electrolyte composition;

2) alimentarea băii galvanice de la o sursă de curent trifazat, cu conectarea dispozitivului inductiv-capacitiv (DIC); 2) powering the galvanic bath from a three-phase current source, with the connection of the inductive-capacitive device (DIC);

3) determinarea parametrilor procesului. 3) determination of process parameters.

Invenţia se explică cu ajutorul desenelor din fig. 1-2, care reprezintă: The invention is explained with the help of the drawings in Fig. 1-2, which represent:

- fig. 1, schema instalaţiei pentru depunerea acoperirilor de crom cu utilizarea dispozitivului inductiv-capacitiv, - Fig. 1, diagram of the installation for depositing chromium coatings using the inductive-capacitive device,

- fig. 2, variaţia uzurii acoperirilor de crom obţinute din: 1 - electrolitul tetracromat cu utilizarea DIC; 2 - electrolitul universal; 3 - electrolitul tetracromat fără DIC. - Fig. 2, variation of wear of chromium coatings obtained from: 1 - tetrachromate electrolyte with the use of DIC; 2 - universal electrolyte; 3 - tetrachromate electrolyte without DIC.

Instalaţia experimentală pentru depunerea acoperirilor de crom (fig. 1) constă dintr-un dispozitiv inductiv-capacitiv (1), un regulator de curent (2), o baie galvanică (3) şi un redresor de curent trifazat (4) cu puterea de 60 W. Pentru formarea spectrului componentelor variabile, au fost determinate mărimile optimale ale inductanţei (Lop) şi ale capacităţii (Cop) la care s-a observat deplasarea maximală a potenţialului catodic spre zona pozitivă, totodată amplificarea componentelor variabile ale spectrului şi banda de frecvenţe a ”zgomotelor” s-a extins la frecvenţe mai mari. Totodată, inductanţa s-a format cu un bloc inductiv, compus din bobine separate, fiecare fiind amplasate pe un miez separat şi unite consecutiv, paralel sau paralel-consecutiv la ajustare, iar capacitatea s-a format cu un bloc capacitiv, alcătuit din condensatoare polare, unite în paralel. The experimental installation for depositing chromium coatings (Fig. 1) consists of an inductive-capacitive device (1), a current regulator (2), a galvanic bath (3) and a three-phase current rectifier (4) with a power of 60 W. To form the spectrum of the variable components, the optimal values of the inductance (Lop) and capacitance (Cop) were determined at which the maximum displacement of the cathodic potential towards the positive zone was observed, at the same time the amplification of the variable components of the spectrum and the frequency band of the “noises” was extended to higher frequencies. At the same time, the inductance was formed with an inductive block, consisting of separate coils, each of which was placed on a separate core and connected consecutively, parallel or parallel-consecutively to the adjustment, and the capacitance was formed with a capacitive block, consisting of polar capacitors, connected in parallel.

Încercările s-au efectuat în Laboratorul „Prelucrarea Electrochimică a Materialelor” a Institutului de Fizică Aplicată al AŞM. La depunerea cromului s-au stabilit următorii parametri optimali ai DIC: L = 5 H; C = 0,0176 F. The tests were carried out in the Laboratory "Electrochemical Processing of Materials" of the Institute of Applied Physics of the ASM. When depositing chromium, the following optimal DIC parameters were established: L = 5 H; C = 0.0176 F.

Depunerea acoperirilor de crom s-a efectuat în decurs de şapte ore pe trei loturi de probe: 1 lot - în electrolitul tetracromat (CrO3 - 400 g/l; H2SO4 - 2,7 g/l; NaOH - 60 g/l; zahăr - 1 g/l), la densitatea curentului pe suprafaţa catodului Dk = 2,0 kA/m2 şi temperatura electrolitului t = 291 K, cu utilizarea dispozitivului inductiv-capacitiv; lotul 2 - în electrolitul universal (CrO3 - 250 g/l; H2SO4 - 2,5 g/l), la densitatea curentului catodic Dk = 5,5 kA/m2 şi temperatura electrolitului t = 328 K; lotul 3 - în electrolitul tetracromat fără DIC. The chromium coatings were deposited within seven hours on three batches of samples: batch 1 - in the tetrachromate electrolyte (CrO3 - 400 g/l; H2SO4 - 2.7 g/l; NaOH - 60 g/l; sugar - 1 g/l), at the current density on the cathode surface Dk = 2.0 kA/m2 and the electrolyte temperature t = 291 K, using the inductive-capacitive device; batch 2 - in the universal electrolyte (CrO3 - 250 g/l; H2SO4 - 2.5 g/l), at the cathodic current density Dk = 5.5 kA/m2 and the electrolyte temperature t = 328 K; batch 3 - in the tetrachromate electrolyte without DIC.

Probele pentru depunerea cromului supuse cercetărilor la uzare au fost confecţionate din oţel St. 3 (10x50x4 mm), iar contracorpul din fontă cenuşie SC15-32 cu suprafaţa de 15 mm2 (1,5x10 mm). În calitate de anod s-au utilizat lamele din plumb (GOST 3778-77E). Suprafaţa de încercare la uzură a probelor a fost supusă rectificării, unde s-a asigurat grosimea stratului depus de 0,15 mm şi rugozitatea Rz = 0,32. Acoperirile primului lot aveau microduritatea Hµ = 8,4 GPa, lotului doi Hµ = 9,15 GPa şi lotului trei Hµ = 6,13 GPa, adică microduritatea acoperirilor depozitate din electrolitul tetracromatic cu utilizarea DIC a crescut considerabil. Încercările la uzură a acoperirilor s-au efectuat la maşina de frecare cu mişcare du-te-vino la viteza de alunecare V = 11,4 m/min (180 curse duble/min) şi sarcina de 2 kg fără ulei. The chromium deposition samples subjected to wear tests were made of steel St. 3 (10x50x4 mm), and the counter body was made of gray cast iron SC15-32 with an area of 15 mm2 (1.5x10 mm). Lead plates (GOST 3778-77E) were used as anodes. The wear test surface of the samples was subjected to grinding, where the thickness of the deposited layer was 0.15 mm and the roughness Rz = 0.32 was ensured. The coatings of the first batch had a microhardness of Hµ = 8.4 GPa, the second batch had Hµ = 9.15 GPa and the third batch had Hµ = 6.13 GPa, i.e. the microhardness of the coatings deposited from the tetrachromatic electrolyte using DIC increased considerably. The wear tests of the coatings were performed on a friction machine with back-and-forth motion at a sliding speed of V = 11.4 m/min (180 double strokes/min) and a load of 2 kg without oil.

În urma încercărilor efectuate s-a stabilit că în procesul rodajului mai puţin s-au uzat probele cu acoperiri depuse din electrolitul tetracromat cu DIC, apoi din electrolitul universal şi mai apoi din electrolitul tetracromat fără DIC (fig. 2). Following the tests performed, it was established that during the running-in process, the samples with coatings deposited from the tetrachromate electrolyte with DIC, then from the universal electrolyte and then from the tetrachromate electrolyte without DIC were less worn (Fig. 2).

S-a constatat că, în zona de uzare stabilizată, acoperirile obţinute din electrolitul tetracromat cu DIC şi electrolitul de cromare universal se uzau cu aceeaşi viteză, iar la acoperirile obţinute din electrolitul tetracromat fără DIC viteza de uzare era de 2 ori mai mare. It was found that, in the stabilized wear zone, the coatings obtained from tetrachromate electrolyte with DIC and the universal chroming electrolyte wore at the same rate, and for coatings obtained from tetrachromate electrolyte without DIC, the wear rate was 2 times higher.

În aşa mod, rezultatele cercetărlor au demonstrat că utilizarea dispozitivului inductiv-capacitiv a contribuit la creşterea microdurităţii acoperirilor depuse din electrolitul tetracromat şi la creşterea rezistenţei la uzură, ce favorizează utilizarea acestor acoperiri în cuplurile de frecare. Thus, the research results demonstrated that the use of the inductive-capacitive device contributed to increasing the microhardness of coatings deposited from tetrachromate electrolyte and to increasing wear resistance, which favors the use of these coatings in friction pairs.

1. Шлугер М. Гальванические покрытия в машиностроении. Москва, 1985, Том № 1, с. 136-137 1. Shluger M. Electroplating in machine construction. Moscow, 1985, Volume № 1, p. 136-137

2. SU 1621559 A1 1989.03.10 2. SU 1621559 A1 1989.03.10

Claims (1)

Procedeu de depunere a acoperirii galvanice de crom, care include depunerea acoperirii de crom din electrolitul tetracromat, care conţine, g/l: CrO3 - 350…400, H2SO4 - 2,5…2,7, NaOH - 40…60, zahăr - 1, la temperatura electrolitului de 291…297 K, densitatea curentului catodic de 2,0…8,0 kA/m2, cu utilizarea unei surse de curent trifazat şi a unui dispozitiv inductiv-capacitiv, conectat în serie între polii negativi ai sursei de curent trifazat şi băii galvanice, totodată dispozitivul este format din două blocuri - capacitiv şi inductiv, conectate paralel între ele, blocul inductiv având inductanţa în limitele 0,1 µH…10,0 H, iar blocul capacitiv având capacitatea sumară în limitele 0,01…0,10 F.Process for depositing galvanic chromium coating, which includes depositing chromium coating from tetrachromate electrolyte, which contains, g/l: CrO3 - 350…400, H2SO4 - 2.5…2.7, NaOH - 40…60, sugar - 1, at electrolyte temperature of 291…297 K, cathodic current density of 2.0…8.0 kA/m2, with the use of a three-phase current source and an inductive-capacitive device, connected in series between the negative poles of the three-phase current source and the galvanic bath, at the same time the device consists of two blocks - capacitive and inductive, connected in parallel with each other, the inductive block having inductance within the limits of 0.1 µH…10.0 H, and the capacitive block having total capacitance within the limits of 0.01…0.10 F.
MDS20130063A 2013-04-01 2013-04-01 Process for chromium electroplating MD714Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20130063A MD714Z (en) 2013-04-01 2013-04-01 Process for chromium electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20130063A MD714Z (en) 2013-04-01 2013-04-01 Process for chromium electroplating

Publications (2)

Publication Number Publication Date
MD714Y MD714Y (en) 2013-12-31
MD714Z true MD714Z (en) 2014-07-31

Family

ID=49912597

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20130063A MD714Z (en) 2013-04-01 2013-04-01 Process for chromium electroplating

Country Status (1)

Country Link
MD (1) MD714Z (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU376487A1 (en) * 1971-03-09 1973-04-05 SIOZNAL, j -iKT ^ -. F;.> &. (- ^ '• • M-' '•' "" '-' ilAltJaiiiiW '^ * - ^^ "- ^'
SU398700A1 (en) * 1971-06-28 1973-09-27 METHOD OF ELECTROLYTIC CHROMINATION
SU1617062A1 (en) * 1987-10-01 1990-12-30 Московский вечерний металлургический институт Method of electrochemical chrome-plating
SU1730207A1 (en) * 1989-12-27 1992-04-30 Московский вечерний металлургический институт Method of chrome-plating
MD3573B2 (en) * 2005-12-02 2008-04-30 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Device for electrochemical processes
  • 2013

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU376487A1 (en) * 1971-03-09 1973-04-05 SIOZNAL, j -iKT ^ -. F;.> &. (- ^ '• • M-' '•' "" '-' ilAltJaiiiiW '^ * - ^^ "- ^'
SU398700A1 (en) * 1971-06-28 1973-09-27 METHOD OF ELECTROLYTIC CHROMINATION
SU1617062A1 (en) * 1987-10-01 1990-12-30 Московский вечерний металлургический институт Method of electrochemical chrome-plating
SU1730207A1 (en) * 1989-12-27 1992-04-30 Московский вечерний металлургический институт Method of chrome-plating
MD3573B2 (en) * 2005-12-02 2008-04-30 Institutul De Fizica Aplicata Al Academiei De Stiinte A Moldovei Device for electrochemical processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Шлугер М. Гальванические покрытия в машиностроении. Москва, 1985, Том № 1, с. 136-137 *

Also Published As

Publication number Publication date
MD714Y (en) 2013-12-31

Similar Documents

Publication Publication Date Title
Li et al. Plasma Electrolytic Oxidation Coatings on Lightweight
Martini et al. PEO layers obtained from mixed aluminate–phosphate baths on Ti–6Al–4V: Dry sliding behaviour and influence of a PTFE topcoat
Němcová et al. Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy
US8337687B2 (en) Structured chrome solid particle layer and method for the production thereof
ZHANG et al. Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy
Wang et al. Effect of cerium additive on aluminum-based chemical conversion coating on AZ91D magnesium alloy
Devaneyan et al. Electro co-deposition and characterization of SiC in nickel metal matrix composite coatings on aluminium 7075
MX2019005540A (en) METHOD FOR ELECTROPLATING A STRIP OF STEEL NOT COVERED WITH A LAYER OF PLATE.
CN101122038A (en) A kind of electric brush plating nano-Ni-Fe alloy coating and its plating solution, preparation method and application
CN102154583A (en) Method for preparing high-silicon silicon steel
RU152032U1 (en) DEVICE FOR MICROARC OXIDATION OF WORKING SURFACE PISTON HYDROCYLINDER
MD714Z (en) Process for chromium electroplating
CN102352510A (en) Method for preparing high-performance silicon-doped type diamond film layer on magnesium alloy at low temperature
Wang et al. Microstructure, friction, and wear properties of Ni‐Al2O3‐MoS2 composite coatings
US11279112B2 (en) Coating laminated body and method for producing the same
Lin et al. Effect of H2O addition on the corrosion resistance of trivalent chromium-carbon coatings electrodeposited from choline chloride deep eutectic solvent
CN205115644U (en) High corrosion resistance's trivalent chromium chromium -plated layer structure
RU2489527C2 (en) Electrolyte composition of antifriction electrolytic zinc-iron alloy for deposition in hydromechanical activation conditions
Ghosh Electrodeposition of Cu, Sn and Cu-Sn alloy from choline chloride ionic liquid
CN107858719B (en) A kind of NdFeB magnet surface composite metal protective layer and preparation method thereof
CN109266937A (en) A kind of drill bit building machinery material
MD4720B1 (en) Process for depositing trivalent chromium electrolyte coatings
Liu et al. Effect of nickel pre-plating on the plating of Zn-Ni alloy coating on stainless steel substrate
MD685Z (en) Process for producing a multilayer coating by the electrospark alloying method
Hou et al. Corrosion resistance of pulse-electroplated Ni-W alloys

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)