MD679Z - Thermal machine based on the Stirling cycle - Google Patents

Thermal machine based on the Stirling cycle Download PDF

Info

Publication number
MD679Z
MD679Z MDS20130039A MDS20130039A MD679Z MD 679 Z MD679 Z MD 679Z MD S20130039 A MDS20130039 A MD S20130039A MD S20130039 A MDS20130039 A MD S20130039A MD 679 Z MD679 Z MD 679Z
Authority
MD
Moldova
Prior art keywords
cylinder
regenerator
stirling cycle
piston
heat exchanger
Prior art date
Application number
MDS20130039A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Юрий САИНСУС
Алексей КОНЕВ
Юрий РУССЕВ
Original Assignee
ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ filed Critical ИНСТИТУТ ЭЛЕКТРОННОЙ ИНЖЕНЕРИИ И НАНОТЕХНОЛОГИЙ "D. Ghitu" АНМ
Priority to MDS20130039A priority Critical patent/MD679Z/en
Publication of MD679Y publication Critical patent/MD679Y/en
Publication of MD679Z publication Critical patent/MD679Z/en

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to propulsion engineering, particularly to engines operating on the Stirling cycle, and can be used in mechanical engineering.The Stirling cycle-based heat engine includes a hot cylinder (1) with a piston (2) and a cold cylinder (9) with a piston (8). The cylinder (1) via a pipeline (3), located in its upper part, communicates with a heat exchanger (4). On the opposite side the heat exchanger (4) is connected to a regenerator, consisting of a housing (5), a regenerative material (13) and a layer (11) of thermally insulating material of a thickness of 1…5 mm, placed on the inner surface of the housing (5). The opposite side of the regenerator via a pipeline (6) communicates with a cooler (7), placed in the upper part of the cylinder (9). The outer surface of the pipeline (3) and the upper part of the cylinder (1) are covered with a layer (10) of thermally insulating material of a thickness of 1…5 mm.

Description

Invenţia se referă la construcţia motoarelor, în special la motoarele, care lucrează conform ciclului Stirling, şi poate fi utilizată în industria constructoare de maşini. The invention relates to the construction of engines, in particular to engines operating according to the Stirling cycle, and can be used in the machine building industry.

Este cunoscut motorul Stirling, care conţine doi cilindri cu compactoare, un schimbător de căldură, un regenerator şi un răcitor [1]. The Stirling engine is known, which contains two cylinders with compressors, a heat exchanger, a regenerator and a cooler [1].

Dezavantajul acestui motor constă în pierderile de energie termică mari în conducta dintre schimbătorul de căldură şi cilindrul fierbinte, în cilindrul fierbinte şi în regenerator. The disadvantage of this engine is the high thermal energy losses in the pipe between the heat exchanger and the hot cylinder, in the hot cylinder and in the regenerator.

Este cunoscut motorul Stirling, care conţine doi cilindri separaţi, în care este amplasat câte un piston cu etanşări. Volumele variabile ale gazelor fierbinte şi rece se formează independent unul faţă de altul, în procesul de mişcare a pistoanelor corespunzătoare [2]. The Stirling engine is known, which contains two separate cylinders, each containing a piston with seals. The variable volumes of hot and cold gases are formed independently of each other, in the process of movement of the corresponding pistons [2].

Dezavantajul acestui motor constă în pierderile de energie termică mari. The disadvantage of this engine is the high thermal energy losses.

Problema pe care o rezolvă prezenta invenţie constă în majorarea randamentului motorului şi micşorarea pierderilor de energie termică. The problem solved by the present invention consists in increasing engine efficiency and reducing thermal energy losses.

Maşina termică în baza ciclului Stirling, conform invenţiei, înlătură dezavantajele menţionate mai sus prin aceea că include un cilindru fierbinte cu un piston şi un cilindru rece cu un piston. Cilindrul prin intermediul unei conducte, amplasată în partea de sus a lui, comunică cu un schimbător de căldură. Din partea opusă schimbătorul de căldură este unit cu un regenerator, format dintr-un corp, un material regenerator şi un strat din material termoizolant cu grosimea de 1…5 mm, amplasat pe suprafaţa interioară a corpului. Partea opusă a regeneratorului prin intermediul unei conducte comunică cu un răcitor, amplasat în partea de sus a cilindrului. Suprafaţa exterioară a conductei şi partea de sus a cilindrului sunt acoperite cu un strat din material termoizolant cu grosimea de 1…5 mm. The heat engine based on the Stirling cycle, according to the invention, eliminates the above-mentioned disadvantages by including a hot cylinder with a piston and a cold cylinder with a piston. The cylinder communicates with a heat exchanger through a pipe located at its top. On the opposite side, the heat exchanger is connected to a regenerator consisting of a body, a regenerator material and a layer of heat-insulating material with a thickness of 1…5 mm, located on the inner surface of the body. The opposite side of the regenerator communicates with a cooler located at the top of the cylinder through a pipe. The outer surface of the pipe and the upper part of the cylinder are covered with a layer of heat-insulating material with a thickness of 1…5 mm.

Invenţia se explică prin desenul din figură, care reprezintă schema maşinii termice în baza ciclului Stirling. The invention is explained by the drawing in the figure, which represents the diagram of the heat engine based on the Stirling cycle.

Maşina termică în baza ciclului Stirling include un cilindru fierbinte 1 cu un piston 2 şi un cilindru rece 9 cu un piston 8. Cilindrul 1 prin intermediul unei conducte 3, amplasată în partea de sus a lui, comunică cu un schimbător de căldură 4. Din partea opusă schimbătorul de căldură 4 este unit cu un regenerator, format dintr-un corp 5, un material regenerator 13 şi un strat 11 din material termoizolant cu grosimea de 1…5 mm, amplasat pe suprafaţa interioară a corpului 5. Partea opusă a regeneratorului prin intermediul unei conducte 6 comunică cu un răcitor 7, amplasat în partea de sus a cilindrului 9. Suprafaţa exterioară a conductei 3 şi partea de sus a cilindrului 1 sunt acoperite cu un strat 10 din material termoizolant cu grosimea de 1…5 mm. The heat engine based on the Stirling cycle includes a hot cylinder 1 with a piston 2 and a cold cylinder 9 with a piston 8. The cylinder 1, through a pipe 3, located at its top, communicates with a heat exchanger 4. From the opposite side, the heat exchanger 4 is connected to a regenerator, consisting of a body 5, a regenerator material 13 and a layer 11 of thermal insulation material with a thickness of 1…5 mm, located on the inner surface of the body 5. The opposite side of the regenerator, through a pipe 6, communicates with a cooler 7, located at the top of the cylinder 9. The outer surface of the pipe 3 and the top of the cylinder 1 are covered with a layer 10 of thermal insulation material with a thickness of 1…5 mm.

Maşina termică în baza ciclului Stirling funcţionează în felul următor. The heat engine based on the Stirling cycle works as follows.

Agentul termic gazos 12 circulă între cilindrul fierbinte 1 şi cilindrul rece 9, trecând consecutiv prin schimbătorul de căldură 4, materialul regenerator 13 şi răcitorul 7. Această mişcare se datorează mişcării pistonului 2 din cilindrul fierbinte 1 şi a pistonului 8 din cilindrul rece 9. The gaseous heat agent 12 circulates between the hot cylinder 1 and the cold cylinder 9, passing consecutively through the heat exchanger 4, the regenerative material 13 and the cooler 7. This movement is due to the movement of the piston 2 in the hot cylinder 1 and the piston 8 in the cold cylinder 9.

Stratul din material termoizolant 10 de pe suprafaţa exterioară a conductei 3 şi partea de sus a cilindrului 1 micşorează transmiterea energiei termice a agentului termic gazos 12 în exterior. Totodată stratul din material termoizolant 11 micşorează transmiterea energiei termice a agentului termic gazos 12, care circulă prin materialul regenerator 13 către corpul 5 al regeneratorului şi mai departe în exterior. The layer of thermal insulation material 10 on the outer surface of the pipe 3 and the upper part of the cylinder 1 reduces the transmission of thermal energy of the gaseous heat carrier 12 to the outside. At the same time, the layer of thermal insulation material 11 reduces the transmission of thermal energy of the gaseous heat carrier 12, which circulates through the regenerator material 13 to the body 5 of the regenerator and further to the outside.

Eficienţa şi puterea maşinii termice în baza ciclului Stirling este cu atât mai mare, cu cât este mai mare diferenţa de temperaturi la intrarea şi ieşirea materialului regenerator 13 din corpul 5 al regeneratorului şi cu cât este mai mare diferenţa de temperaturi în cilindrul fierbinte 1 şi cilindrul rece 9. Deoarece stratul din material termoizolant cu grosimea de 1,00 mm duce la o scădere de temperatură de cel puţin 20°C, atunci acoperirea cu straturi termoizolante cu grosimea de 1…5 mm duce la o scădere de temperatură de la 20°C până la 100°C, iar temperatura agentului termic gazos 12 în schimbătorul de căldură 4 atinge valoarea de 650°C. Prin urmare, se obţine o creştere a randamentului maşinii termice în baza ciclului Stirling de circa 1,5%. The efficiency and power of the heat engine based on the Stirling cycle is the greater, the greater the temperature difference at the inlet and outlet of the regenerator material 13 from the regenerator body 5 and the greater the temperature difference in the hot cylinder 1 and the cold cylinder 9. Since the layer of thermal insulation material with a thickness of 1.00 mm leads to a temperature drop of at least 20°C, then the coating with thermal insulation layers with a thickness of 1…5 mm leads to a temperature drop from 20°C to 100°C, and the temperature of the gaseous heat carrier 12 in the heat exchanger 4 reaches the value of 650°C. Therefore, an increase in the efficiency of the heat engine based on the Stirling cycle of about 1.5% is obtained.

În baza cercetărilor a fost elaborată o construcţie a acestei maşini. S-au făcut teste de laborator, care au arătat că în cazul utilizării straturilor termoizolante în maşina termică în baza ciclului Stirling, cantitatea de energie termică necesară este mai mică. Based on the research, a design of this machine was developed. Laboratory tests were conducted, which showed that when using thermal insulation layers in a thermal machine based on the Stirling cycle, the amount of thermal energy required is lower.

1. Ридер Г., Хупер Ч. Двигатели Стирлинга. Москва, Мир, 1986, с. 31 - 33 1. Ryder Г., Хупер Ч. Stirling engines. Moscow, Mir, 1986, p. 31 - 33

2. Ридер Г., Хупер Ч. Двигатели Стирлинга. Москва, Мир, 1986, с. 213 2. Ryder Г., Хупер Ч. Stirling engines. Moscow, Mir, 1986, p. 213

Claims (1)

Maşină termică în baza ciclului Stirling, care include un cilindru fierbinte (1) cu un piston (2) şi un cilindru rece (9) cu un piston (8); cilindrul (1) prin intermediul unei conducte (3), amplasată în partea de sus a lui, comunică cu un schimbător de căldură (4); din partea opusă schimbătorul de căldură (4) este unit cu un regenerator, format dintr-un corp (5), un material regenerator (13) şi un strat (11) din material termoizolant cu grosimea de 1…5 mm, amplasat pe suprafaţa interioară a corpului (5); partea opusă a regeneratorului prin intermediul unei conducte (6) comunică cu un răcitor (7), amplasat în partea de sus a cilindrului (9); suprafaţa exterioară a conductei (3) şi partea de sus a cilindrului (1) sunt acoperite cu un strat (10) din material termoizolant cu grosimea de 1…5 mm.Heat engine based on the Stirling cycle, which includes a hot cylinder (1) with a piston (2) and a cold cylinder (9) with a piston (8); the cylinder (1) communicates with a heat exchanger (4) through a pipe (3) located at its top; from the opposite side, the heat exchanger (4) is connected to a regenerator, consisting of a body (5), a regenerator material (13) and a layer (11) of heat-insulating material with a thickness of 1…5 mm, located on the inner surface of the body (5); the opposite side of the regenerator communicates with a cooler (7) located at the top of the cylinder (9); the outer surface of the pipe (3) and the upper part of the cylinder (1) are covered with a layer (10) of heat-insulating material with a thickness of 1…5 mm.
MDS20130039A 2013-03-01 2013-03-01 Thermal machine based on the Stirling cycle MD679Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20130039A MD679Z (en) 2013-03-01 2013-03-01 Thermal machine based on the Stirling cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20130039A MD679Z (en) 2013-03-01 2013-03-01 Thermal machine based on the Stirling cycle

Publications (2)

Publication Number Publication Date
MD679Y MD679Y (en) 2013-09-30
MD679Z true MD679Z (en) 2014-04-30

Family

ID=49301211

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20130039A MD679Z (en) 2013-03-01 2013-03-01 Thermal machine based on the Stirling cycle

Country Status (1)

Country Link
MD (1) MD679Z (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4437C1 (en) * 2016-04-20 2017-05-31 Ион ЧЕРЕМПЕЙ External combustion engine (embodiments)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007603C1 (en) * 1991-10-21 1994-02-15 Фонд международного научно-технического сотрудничества "Восток" Stirling engine
RU97116156A (en) * 1995-03-27 1999-06-27 ППВ Фервальтунгс АГ HEATING UNIT OPERATING ON THE BASIS OF STIRLING
EA003980B1 (en) * 2000-05-29 2003-12-25 Карл Кочисек Stirling engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511215A1 (en) * 1995-03-27 1996-10-02 Ppv Verwaltungs Ag Heat engine working according to the Stirling principle
  • 2013

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007603C1 (en) * 1991-10-21 1994-02-15 Фонд международного научно-технического сотрудничества "Восток" Stirling engine
RU97116156A (en) * 1995-03-27 1999-06-27 ППВ Фервальтунгс АГ HEATING UNIT OPERATING ON THE BASIS OF STIRLING
EA003980B1 (en) * 2000-05-29 2003-12-25 Карл Кочисек Stirling engine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ридер Г., Хупер Ч. Двигатели Стирлинга. Москва, Мир, 1986, с. 213 *
Ридер Г., Хупер Ч. Двигатели Стирлинга. Москва, Мир, 1986, с. 31 - 33 *

Also Published As

Publication number Publication date
MD679Y (en) 2013-09-30

Similar Documents

Publication Publication Date Title
Li et al. Development and test of a Stirling engine driven by waste gases for the micro-CHP system
Gheith et al. Experimental investigations of a gamma Stirling engine
WO2009103871A3 (en) Thermodynamic machine, particularly of the carnot and/or stirling type
CN106958515A (en) A kind of heat engine driven based on marmem
TW200617275A (en) Method and system for generation of power using stirling engine principles
CN103047044A (en) Low temperature cold source heat engine
JP4848058B1 (en) Stirling engine
CN202832852U (en) Heating and heat storage device for a heat storage type stirling engine
MD679Z (en) Thermal machine based on the Stirling cycle
CN102720578A (en) Explosion-proof diesel engine exhaust pipe
CN116907887A (en) A system and method for testing the performance of a Stirling machine regenerator and its layered regenerator
US20150113995A1 (en) Isothermal compression type heat engine
CN103047045B (en) Regenerative Stirling engine
WO2014063639A1 (en) Stirling engine employing regenerative heater, annular gapped cooler, and a linearly driven displacer piston
WO2015067168A1 (en) Novel stirling heat engine
CN202442545U (en) Traditional piston single heat source closed refrigeration system
MD680Z (en) Knot for the thermal machine based on the Stirling cycle
CN103122806B (en) High-temperature tail gas waste heat hydraulic energy recovery system based on stirling engine
Winkelmann et al. Design, modeling, and experimental validation of a stirling pressurizer with a controlled displacer piston
CN202832851U (en) Stirling engine utilizing heat storing type heater, ring type interval cooler and linear driving gas distributing piston
CN204175455U (en) The Stirling engine of a kind of cold and hot chamber stand alone type power piston
CN203175701U (en) High-temperature tail gas waste heat hydraulic energy recovery system based on Stirling engine
CN207036424U (en) A kind of device for detecting performance of Stirling engine regenerator
CN202442547U (en) Traditional piston single heat source open circuit refrigerating system
BG111240A (en) A method and a device for a low-temperature thermal engine for the conversion of heat into mechanical and electric energy

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)