MD186Y - Photocatalytic reactor for water purification - Google Patents
Photocatalytic reactor for water purification Download PDFInfo
- Publication number
- MD186Y MD186Y MDS20090140A MDS20090140A MD186Y MD 186 Y MD186 Y MD 186Y MD S20090140 A MDS20090140 A MD S20090140A MD S20090140 A MDS20090140 A MD S20090140A MD 186 Y MD186 Y MD 186Y
- Authority
- MD
- Moldova
- Prior art keywords
- housing
- cylinder
- reflectors
- water
- types
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 13
- 238000000746 purification Methods 0.000 title claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 12
- 239000010453 quartz Substances 0.000 claims abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 claims abstract description 8
- 239000010936 titanium Substances 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 239000002071 nanotube Substances 0.000 claims abstract description 6
- 239000012798 spherical particle Substances 0.000 claims abstract description 6
- 230000007717 exclusion Effects 0.000 claims 1
- 239000012535 impurity Substances 0.000 abstract description 5
- 244000005700 microbiome Species 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 description 12
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 150000002894 organic compounds Chemical class 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- -1 hydrogen dioxide radical Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000033116 oxidation-reduction process Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HPYIMVBXZPJVBV-UHFFFAOYSA-N barium(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Fe+3].[Ba+2] HPYIMVBXZPJVBV-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 239000012028 Fenton's reagent Substances 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000003608 radiolysis reaction Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Catalysts (AREA)
- Physical Water Treatments (AREA)
Abstract
Inventia se refera la reactoarele pentru epurarea apei, in special la un reactor fotocatalitic pentru epurarea apei de impuritati organice stabile si microorganisme. Reactorul, conform inventiei, include o carcasa (1) cilindrica cu capace (5, 6), dotata cu un racord (2) de debitare in partea inferioara si un racord (3) de evacuare in partea superioara a carcasei (1). In carcasa (1) este instalat coaxial un cilindru (7) de cuart in care este amplasata o lampa (9) cu radiatie ultravioleta, iar in spatiul dintre cilindru (7) si carcasa (1), in partea inferioara, este amplasata o incarcatura (10) din particule sferice magnetizate, deasupra careia sunt dispuse alternativ doua tipuri de reflectoare (4) conice perforate, si anume cu diametrul mic, fixate cu marginea superioara de cilindrul (7) de cuart, si cu diametrul mare, fixate cu marginea de jos de peretele carcasei (1), ambele tipuri sunt executate cu un unghi de 45…60° fata de axa carcasei si dispuse in asa mod ca sa fie exclusa suprapunerea zonelor de fotoiradiere. Reflectoarele (4) sunt executate din titan si acoperite cu un strat de dioxid de titan sub forma de nanotuburi (8). In exteriorul carcasei (1), la nivelul incarcaturii (10) magnetizate este amplasat un solenoid (11) unit la o sursa (12) de curent alternativ.The invention relates to reactors for purifying water, in particular to a photocatalytic reactor for purifying water of stable organic impurities and microorganisms. The reactor, according to the invention, includes a cylindrical housing (1) with caps (5, 6), equipped with a connection (2) for cutting at the bottom and a connection (3) for discharge at the top of the housing (1). In the housing (1) a quartz cylinder (7) is coaxially installed in which a lamp (9) with ultraviolet radiation is located, and in the space between the cylinder (7) and the housing (1), at the bottom, a load is located (10) from magnetized spherical particles, above which are arranged alternatively two types of perforated conical reflectors (4), namely small diameter, fixed with the upper edge of the cylinder (7) of quartz, and with the large diameter, fixed with the edge of below the wall of the housing (1), both types are executed at an angle of 45 ... 60 ° to the axis of the housing and arranged in such a way that the overlapping of the photo-radiation areas is excluded. The reflectors (4) are made of titanium and covered with a layer of titanium dioxide in the form of nanotubes (8). Outside the housing (1), a solenoid (11) connected to a source (12) of AC is located at the level of the magnetized charge (10).
Description
Invenţia se referă la reactoarele pentru epurarea apei, în special la un reactor fotocatalitic pentru epurarea apei de impurităţi organice stabile şi microorganisme. The invention relates to reactors for water purification, in particular to a photocatalytic reactor for purifying water from stable organic impurities and microorganisms.
Este cunoscut un aparat pentru purificarea apei de impurităţi organice, care include o carcasă în mijlocul căreia, coaxial, într-o husă de cuarţ, este instalată o lampă ultravioletă, nişte ştuţuri de admisiune şi evacuare a apei, montate tangenţial pe partea laterală a carcasei tronconice, nişte reflectoare, o încărcătură feromagnetică şi un solenoid [1]. An apparatus for purifying water from organic impurities is known, which includes a housing in the middle of which, coaxially, in a quartz case, an ultraviolet lamp is installed, some water inlet and outlet nozzles, mounted tangentially on the side of the truncated conical housing, some reflectors, a ferromagnetic load and a solenoid [1].
Dezavantajul acestui aparat constă în faptul că la utilizarea lui, procesele redox de degradare a impurităţilor organice stabile din apă decurg prea lent. The disadvantage of this device is that when using it, the redox processes of degradation of stable organic impurities in water proceed too slowly.
Cea mai apropiată soluţie este o instalaţie pentru epurarea electrofotocatalitică complexă a apei de compuşi organici stabili, care include o capacitate auxiliară pentru apa poluată, un corp cilindric din sticlă de cuarţ cu lămpi de radiaţie ultravioletă cu reflector, un racord pentru evacuarea apei epurate, un racord de admisiune a oxidantului cu ventil, conectat la fundul corpului. Coaxial cu corpul este instalată o membrană poroasă din ceramică, acoperită cu un strat fotocatalitic activ, conectată cu capacitatea auxiliară pentru apa poluată, având la intrare o conductă dotată cu un ventil, o pompă şi un debitmetru, iar la ieşire - o conductă dotată cu un ventil şi un manometru. La fundul corpului este amplasată o incărcătură sferică magnetizată, iar în partea superioară a corpului este amplasat un filtru cu incărcătură flotantă granulată, intre care sunt repartizate particule fin dispersate. De partea exterioară a corpului, in zona amplasării incărcăturii sferice magnetizate este instalat un solenoid cu reglator de curent [2]. The closest solution is a complex electrophotocatalytic water purification system for stable organic compounds, which includes an auxiliary tank for polluted water, a cylindrical quartz glass body with ultraviolet radiation lamps with a reflector, a connection for draining purified water, an oxidant inlet connection with a valve, connected to the bottom of the body. A porous ceramic membrane is installed coaxially with the body, covered with an active photocatalytic layer, connected to the auxiliary tank for polluted water, having at the inlet a pipe equipped with a valve, a pump and a flow meter, and at the outlet - a pipe equipped with a valve and a pressure gauge. A magnetized spherical charge is located at the bottom of the body, and a filter with a granular floating charge is located in the upper part of the body, between which finely dispersed particles are distributed. On the outside of the body, in the area where the magnetized spherical charge is located, a solenoid with a current regulator is installed [2].
Dezavantajul acestei instalaţii constă în faptul că aceasta nu este destul de eficientă în cazul purificării apelor cu un conţinut înalt de substanţe organice toxice stabile. The disadvantage of this installation is that it is not efficient enough in purifying water with a high content of stable toxic organic substances.
Problema pe care o rezolvă invenţia revendicată constă în mărirea randamentului şi a eficacităţii degradării fotocatalitice a impurităţilor organice stabile, cât şi în îmbunătăţirea calităţii apei purificate. The problem solved by the claimed invention consists in increasing the yield and effectiveness of the photocatalytic degradation of stable organic impurities, as well as in improving the quality of purified water.
Reactorul, conform invenţiei, include o carcasă cilindrică cu capace, dotată cu un racord de debitare în partea inferioară şi un racord de evacuare în partea superioră a carcasei. În carcasă este instalat coaxial un cilindru de cuarţ în care este amplasată o lampă cu radiaţie ultravioletă, iar în spaţiul dintre cilindru şi carcasă, în partea inferioară este amplasată o încărcătură din particule sferice magnetizate, deasupra căreia sunt dispuse alternativ două tipuri de reflectoare conice perforate, şi anume cu diametrul mic, fixate cu marginea superioară de cilindrul de cuarţ şi cu diametrul mare, fixate cu marginea de jos de peretele carcasei, ambele tipuri sunt executate cu un unghi de 45…60° faţă de axa carcasei şi dispuse în aşa mod ca să fie exclusă suprapunerea zonelor de fotoiradiere. Reflectoarele sunt executate din titan şi acoperite cu un strat de dioxid de titan în formă de nanotuburi. În exteriorul carcasei, la nivelul încărcăturii magnetizate este amplasat un solenoid unit la o sursă de curent alternativ. The reactor, according to the invention, includes a cylindrical housing with covers, equipped with a discharge connection in the lower part and an exhaust connection in the upper part of the housing. A quartz cylinder is coaxially installed in the housing in which an ultraviolet radiation lamp is located, and in the space between the cylinder and the housing, in the lower part, a charge of magnetized spherical particles is located, above which two types of perforated conical reflectors are arranged alternatively, namely with a small diameter, fixed with the upper edge to the quartz cylinder and with a large diameter, fixed with the lower edge to the wall of the housing, both types are made at an angle of 45…60° to the axis of the housing and arranged in such a way as to exclude the overlap of the photoirradiation zones. The reflectors are made of titanium and covered with a layer of titanium dioxide in the form of nanotubes. Outside the casing, at the level of the magnetized load, a solenoid connected to an alternating current source is located.
Rezultatul invenţiei constă în simplitatea constructivă şi de exploatare a reactorului revendicat. Procesul de prelucrare a apei în reactor decurge fără utilizarea reagenţilor chimici, cu un consum minim de energie şi poate fi realizat pe o durată lungă, fără schimbul componentelor structurale. The result of the invention consists in the constructive and operational simplicity of the claimed reactor. The process of water processing in the reactor proceeds without the use of chemical reagents, with minimal energy consumption and can be carried out over a long period of time, without the exchange of structural components.
Instalaţia revendicată asigură posibilitatea decurgerii simultane a proceselor: The claimed installation ensures the possibility of simultaneous execution of the following processes:
- eterogene de fotodisociere, ce au loc pe suprafaţa dioxidului de titan nanostructurat, cu o activitate fotocatalitică înaltă, care la iradiere cu lumină ultravioletă iniţiază formarea peroxizilor şi a radicalilor liberi, de exemplu, ·HO,·HO2,·O şi ·H. Acest lucru este posibil datorită faptului că pe suprafaţa nanotuburilor din dioxid de titan, cu o fotosensibilite specifică la acţiunea cuantelor de lumină, are loc cedarea electronilor liberi (e-) şi formarea unor goluri, care iniţiază formarea radicalilor liberi şi desfăşurarea reacţiilor de oxido-reducere înlănţuite ce conduc la ruperea legăturilor chimice în moleculele compuşilor organici şi la degradarea lor până la compuşi simpli, inofensivi, fapt ce asigură detoxicarea şi îmbunătăţirea calităţii apei prelucrate; - heterogeneous photodissociation reactions, which occur on the surface of nanostructured titanium dioxide, with a high photocatalytic activity, which upon irradiation with ultraviolet light initiates the formation of peroxides and free radicals, for example, ·HO,·HO2,·O and ·H. This is possible due to the fact that on the surface of titanium dioxide nanotubes, with a specific photosensitivity to the action of light quanta, the release of free electrons (e-) and the formation of holes occur, which initiate the formation of free radicals and the development of chain oxidation-reduction reactions that lead to the breaking of chemical bonds in the molecules of organic compounds and their degradation to simple, harmless compounds, which ensures detoxification and improvement of the quality of the processed water;
- omogene de fotoliză, datorită introducerii suplimentare în apa prelucrată a reagentului Fenton (Fe2+/H2O2), care asemeni dioxidului de titan, sub acţiunea luminii ultraviolete iniţiază formarea peroxizilor şi a radicalilor liberi ce accelerează descompunerea substanţelor organice stabile în tot volumul apei supuse prelucrării; - homogeneous photolysis, due to the additional introduction of the Fenton reagent (Fe2+/H2O2) into the processed water, which, like titanium dioxide, under the action of ultraviolet light initiates the formation of peroxides and free radicals that accelerate the decomposition of stable organic substances in the entire volume of water subjected to processing;
- de degradare, datorită formei conice a reflectoarelor perforate dispuse pe toată lungimea reactorului, care prin mărirea suprafeţei active accelerează procesele menţionate, asigură o utilizare mai bună a fluxului de lumină şi îmbunătăţesc condiţiile hidrodinamice de schimb şi de transfer a masei de apă prelucrată, mărind astfel randamentul, eficacitatea şi calitatea procesului de epurare a apelor de suprafaţă şi a apelor tehnice de poluanţi organici stabili; - degradation, due to the conical shape of the perforated reflectors arranged along the entire length of the reactor, which by increasing the active surface accelerates the aforementioned processes, ensures better use of the light flux and improves the hydrodynamic exchange and transfer conditions of the processed water mass, thus increasing the efficiency, effectiveness and quality of the surface water and technical water purification process of stable organic pollutants;
- de degradare, ca urmare a influenţei câmpului electromagnetic variabil şi a celui permanent, ce contribuie la distrugerea fotocatalitică a poluanţilor, iar efectul de pseudomagnetolichefiere ce apare în acest caz, intensifică procesul de descompunere. - degradation, as a result of the influence of the variable and permanent electromagnetic fields, which contribute to the photocatalytic destruction of pollutants, and the pseudomagnetoliquefaction effect that occurs in this case intensifies the decomposition process.
Instalaţia se explică prin figurile 1 şi 2, care reprezintă: The installation is explained by figures 1 and 2, which represent:
- fig. 1, reactorul revendicat în secţiune; - Fig. 1, the claimed reactor in section;
- fig. 2, reactorul revendicat, vedere generală. - Fig. 2, the claimed reactor, general view.
Reactorul include o carcasă 1 cilindrică cu capace 5 şi 6, dotată cu un racord 2 de debitare în partea inferioară şi un racord 3 de evacuare în partea superioară a carcasei 1. În carcasă 1 este instalat coaxial un cilindru 7 de cuarţ în care este amplasată o lampă 9 cu radiaţie ultravioletă, iar în spaţiul dintre cilindru 7 şi carcasă 1, în partea inferioară, este amplasată o încărcătură 10 din particule sferice magnetizate, deasupra căreia sunt dispuse alternativ două tipuri de reflectoare 4 conice perforate, şi anume cu diametrul mic, fixate cu marginea superioară de cilindrul 7 de cuarţ, şi cu diametrul mare, fixate cu marginea de jos de peretele carcasei 1, ambele tipuri sunt executate cu un unghi de 45…60° faţă de axa carcasei şi dispuse în aşa mod ca să fie exclusă suprapunerea zonelor de fotoiradiere. Reflectoarele 4 sunt executate din titan şi acoperite cu un strat de dioxid de titan sub formă de nanotuburi 8. În exteriorul carcasei 1, la nivelul încărcăturii 10 magnetizate este amplasat un solenoid 11 unit la o sursă 12 de curent alternativ. The reactor includes a cylindrical housing 1 with covers 5 and 6, equipped with a discharge connection 2 in the lower part and an exhaust connection 3 in the upper part of the housing 1. A quartz cylinder 7 is coaxially installed in the housing 1 in which a lamp 9 with ultraviolet radiation is located, and in the space between the cylinder 7 and the housing 1, in the lower part, a charge 10 of magnetized spherical particles is located, above which two types of perforated conical reflectors 4 are arranged alternatively, namely with a small diameter, fixed with the upper edge to the quartz cylinder 7, and with a large diameter, fixed with the lower edge to the wall of the housing 1, both types are made at an angle of 45…60° to the axis of the housing and arranged in such a way as to exclude overlapping of the photoirradiation zones. The reflectors 4 are made of titanium and covered with a layer of titanium dioxide in the form of nanotubes 8. Outside the housing 1, at the level of the magnetized load 10, a solenoid 11 connected to an alternating current source 12 is located.
În calitate de lămpi cu radiaţie ultravioletă pot fi utilizate lămpile de presiune înaltă de tip СВД-120A, ce dispun de o putere de iluminare de 18,9 W/m2 pe o lungime a spectrului de 200…400 nm. High-pressure lamps of the type SVD-120A can be used as ultraviolet radiation lamps, which have an illumination power of 18.9 W/m2 over a spectrum length of 200…400 nm.
În calitate de material pentru reflectoare poate fi utilizată folia de titan cu o puritate de 99,0…99,5% şi o grosime de 0,2…1,0 mm, pe suprafaţa exterioară a căreia se depune un strat de dioxid de titan nanotubular, prin prelucrare anodică electrochimică a titanului în electrolit ce conţine acid fluorhidric şi etilenglicol sau glicerină. O astfel de prelucrare permite obţinerea unor structuri nanotubulare de TiO2 cu o adeziune înaltă faţă de suprafaţa de titan, o plasare compactă a tuburilor, mărimea diametrelor inferioare fiind de 100…200 nm, a celor exterioare de 130…150 nm, iar înălţimea lor, în dependenţă de timpul de prelucrare electrochimică, poate fi de 20…250 µm. Stratul format are în starea iniţială o structură apropiată de cea amorfă, dar odată cu efectuarea unui tratament termic la o temperatură de 400…450°C au loc transformări de fază şi structură în strat, însoţite de formarea unei structuri cristaline de tip anataz, care se evidenţiază printr-o activitate fotocatalitică înaltă. În interiorul nanotuburilor sunt prezente de asemenea şi structuri filiforme de tipul unor site moleculare, ce contribuie la creşterea suprafeţei active specifice, care depăşeşte de câteva ori suprafaţa plată externă a suportului de titan. As a material for reflectors, titanium foil with a purity of 99.0…99.5% and a thickness of 0.2…1.0 mm can be used, on the outer surface of which a layer of nanotubular titanium dioxide is deposited, by electrochemical anodic processing of titanium in an electrolyte containing hydrofluoric acid and ethylene glycol or glycerin. Such processing allows obtaining nanotubular structures of TiO2 with high adhesion to the titanium surface, a compact placement of the tubes, the size of the lower diameters being 100…200 nm, the outer ones 130…150 nm, and their height, depending on the electrochemical processing time, can be 20…250 µm. The formed layer has in the initial state a structure close to the amorphous one, but with the performance of a heat treatment at a temperature of 400…450°C phase and structure transformations take place in the layer, accompanied by the formation of a crystalline structure of the anatase type, which is highlighted by a high photocatalytic activity. Inside the nanotubes there are also filiform structures of the type of molecular sieves, which contribute to the increase of the specific active surface, which exceeds the external flat surface of the titanium support several times.
În calitate de încărcătură 10 din particule sferice magnetizate pot fi utilizate particulele de hexaferit de bariu magnetizat până la saturaţie, cu depunerea pe suprafaţa acestora a unui strat protector de cauciuc. As a charge 10 of magnetized spherical particles, barium hexaferrite particles magnetized to saturation can be used, with a protective rubber layer deposited on their surface.
Reactorul funcţionează în felul următor. The reactor works as follows.
Iniţial se conectează o lampă 9 cu radiaţie ultravioletă, apoi are loc pomparea apei impurificate în carcasa 1 cilindrică prin racordul 2 de debitare, de jos în sus, prin reflectoarele 4 conice perforate cu diametrul mic şi cu diametrul mare, asigurându-se un flux continuu şi un schimb constant al volumului de apă purificat. Apoi se conectează solenoidul 11 unit la o sursă 12 de curent alternativ, ce face ca particulele sferice magnetizate de hexaferit de bariu ce formează încărcătura 10 să se agite, amplificând astfel procesele de schimb de substanţă în fluxul de apă supusă tratării. Initially, a lamp 9 with ultraviolet radiation is connected, then the impure water is pumped into the cylindrical housing 1 through the discharge connection 2, from bottom to top, through the perforated conical reflectors 4 with small and large diameters, ensuring a continuous flow and a constant exchange of the purified water volume. Then the solenoid 11 connected to an alternating current source 12 is connected, which causes the magnetized spherical particles of barium hexaferrite that form the charge 10 to stir, thus amplifying the processes of substance exchange in the flow of water subject to treatment.
Structura nanotubulară a dioxidului de titan, datorită caracterului specific al nanoporilor asigură o suprafaţă şi un efect fotocatalitic sporit în condiţiile de iluminare cu radiaţie ultravioletă şi contribuie la formarea radicalilor liberi, care, la rândul său, asigură degradarea moleculelor organice în apă şi transformarea lor în substanţe simple inofensive. The nanotubular structure of titanium dioxide, due to the specific nature of the nanopores, provides an increased surface area and photocatalytic effect under ultraviolet radiation illumination conditions and contributes to the formation of free radicals, which, in turn, ensure the degradation of organic molecules in water and their transformation into harmless simple substances.
Activizarea fotocatalitică a suprafeţei acoperite cu dioxid de titan nanotubular este legată de structura nivelelor electronice ale compusului dat. La iluminarea dioxidului de titan cu lumină ultravioletă, electronii de valenţă (e-) se excită trecând la un nivel energetic superior, cu formarea de goluri (h+), conform ecuaţiei: The photocatalytic activation of the surface covered with nanotubular titanium dioxide is related to the electronic level structure of the given compound. When illuminating titanium dioxide with ultraviolet light, the valence electrons (e-) are excited to a higher energy level, with the formation of holes (h+), according to the equation:
TiO2 + hν→ TiO2 (e- + h+). TiO2 + hν→ TiO2 (e- + h+).
Ambele particule iniţiază procese de oxidoreducere cu formarea peroxizilor şi a radicalilor liberi, cea ce contribuie la distrugerea compuşilor organici conţinuţi în apa tratată. De remarcat că cristalele de dioxid de titan cu o structură cristalină de tip anataz dispun de o activitate fotocatalitică mai intensă în comparaţie cu alte structuri, cum ar fi, rutil sau brookit. La iluminare şi în prezenţa oxigenului dizolvat, apa se oxidează cu formarea de ·OH şi H+, ceea ce contribuie la generarea anionilor superoxid-radicali (·O2 -) care, la rândul său, reacţionează cu H+, generând radicalul dioxid hidrogen (·HO2). În urma ciocnirii particulelor menţionate cu electronii, se obţin radicalii hidrogen-dioxid ·HO2 - şi are loc formarea moleculei de H2O2. Both particles initiate oxidation-reduction processes with the formation of peroxides and free radicals, which contribute to the destruction of organic compounds contained in the treated water. It is worth noting that titanium dioxide crystals with an anatase crystal structure have a more intense photocatalytic activity compared to other structures, such as rutile or brookite. Upon illumination and in the presence of dissolved oxygen, water is oxidized with the formation of ·OH and H+, which contributes to the generation of superoxide radical anions (·O2 -) which, in turn, react with H+, generating the hydrogen dioxide radical (·HO2). As a result of the collision of the mentioned particles with electrons, hydrogen dioxide radicals ·HO2 - are obtained and the formation of the H2O2 molecule takes place.
Astfel, radicalii ·OH şi ·OH2 dispun de o energie negativă liberă sporită (263 kJ/mol) şi, în consecinţă, manifestă o activitate mai mare în reacţiile de oxidoreducere, oxidând moleculele compuşilor organici conform reacţiei: Thus, the ·OH and ·OH2 radicals have an increased negative free energy (263 kJ/mol) and, consequently, exhibit greater activity in oxidation-reduction reactions, oxidizing the molecules of organic compounds according to the reaction:
RH + ·OH→·R + H2O RH + OH→ R + H2O
Radicalul ·O2 -, în dependenţă de condiţii, este de asemenea un oxidant, dar şi un reducător puternic, şi poate uşor descompune compuşii organici. În rezultatul tratamentului fotocatalitic complex al apei ce conţine compuşi organici stabili, aceştia sunt descompuşi până la dioxid de carbon şi apă, conform ecuaţiei: The ·O2 - radical, depending on the conditions, is also an oxidant, but also a strong reductant, and can easily decompose organic compounds. As a result of the complex photocatalytic treatment of water containing stable organic compounds, they are decomposed to carbon dioxide and water, according to the equation:
·OH + O2 + CnOmH(2n-2m+2)→nCO2 + (n-m+1)H2O ·OH + O2 + CnOmH(2n-2m+2)→nCO2 + (n-m+1)H2O
În cazul introducerii preliminare în apa tratată a unor cantităţi catalitice de compuşi ai Fe2+ şi Fe3+, concomitent cu procesele de oxidoreducere eterogene decurg şi procesele de oxidoreducere omogene care amplifică descompunerea compuşilor organici stabili. Procesul omogen de descompunere decurge sub acţiunea ionilor de Fe2+ şi Fe3+ în prezenţa peroxidului de hidrogen cu formarea radicalilor liberi ·OH-, ·OH2 şi ·O2 -, conform ecuaţiilor: In the case of preliminary introduction of catalytic amounts of Fe2+ and Fe3+ compounds into the treated water, simultaneously with the heterogeneous oxidation-reduction processes, homogeneous oxidation-reduction processes also occur, which amplify the decomposition of stable organic compounds. The homogeneous decomposition process occurs under the action of Fe2+ and Fe3+ ions in the presence of hydrogen peroxide with the formation of free radicals ·OH-, ·OH2 and ·O2 -, according to the equations:
Fe2+ + H2O2→ Fe3+ + OH- + ·OH Fe2+ + H2O2 → Fe3+ + OH- + ·OH
·OH + H2O2→HO2 ·+ H2O ·OH + H2O2→HO2 ·+ H2O
HO2 ·+ ·OH→·O2 - + H2O HO2 ·+ ·OH→·O2 - + H2O
Formarea radicalilor liberi, care sunt cei mai puternici oxidanţi, decurge de asemenea ca rezultat al radiolizei moleculei de apă sub acţiunea iradierii ultraviolete puternice, pe o lungime a spectrului de 180…300 nm, conform ecuaţiei: The formation of free radicals, which are the strongest oxidants, also occurs as a result of the radiolysis of the water molecule under the action of strong ultraviolet irradiation, over a spectral length of 180…300 nm, according to the equation:
H2O + γ-fascicul→ ·OH + eaq H2O + γ-beam→ ·OH + eq
În acest caz, electronul hidratat (eaq) interacţionează cu peroxidul de hidrogen, formând de asemenea radicali activi, conform ecuaţiei: In this case, the hydrated electron (eaq) interacts with hydrogen peroxide, also forming active radicals, according to the equation:
eaq + H2O2→ OH- + ·OH eaq + H2O2→ OH- + OH
Prezenţa carcasei 7 cilindrice de cuarţ asigură nu doar protecţia lămpilor electrice de umiditate, dar face posibilă de asemenea montarea şi demontarea rapidă a acestora în caz de necesitate. În afară de aceasta, spre deosebire de alte tipuri de sticlă, selectarea materialului pentru o astfel de carcasă e determinată de o transmisie bună a luminii de către cuarţ. Apa prelucrată este evacuată prin racordul 3, asigurându-se astfel un proces neîntrerupt de tratare. The presence of the cylindrical quartz housing 7 not only ensures the protection of the electric lamps from moisture, but also makes it possible to quickly mount and dismount them if necessary. In addition, unlike other types of glass, the selection of the material for such a housing is determined by the good light transmission of quartz. The processed water is discharged through the connection 3, thus ensuring an uninterrupted treatment process.
Aşadar, reactorul fotocatalitic revendicat prezintă o construcţie simplă din punct de vedere a executării şi exploatării, iar procesul de tratare a apei în el se deosebeşte prin simplitate şi consum relativ mic de curent electric. Reactorul nu necesită reagenţi chimici şi poate fi exploatat un timp îndelungat. Concomitent cu degradarea compuşilor organici stabili, în timpul tratării în reactor are loc şi decontaminarea rapidă a apei de bacterii. Intensificarea proceselor de degradare poate fi efectuată prin introducerea catalizatorilor fotoactivi, de exemplu, a compuşilor fierului sau ai altor metale de tranziţie. Thus, the claimed photocatalytic reactor has a simple design in terms of execution and operation, and the process of water treatment in it is distinguished by simplicity and relatively low consumption of electric current. The reactor does not require chemical reagents and can be operated for a long time. Simultaneously with the degradation of stable organic compounds, during treatment in the reactor, rapid decontamination of water by bacteria also occurs. Intensification of degradation processes can be carried out by introducing photoactive catalysts, for example, compounds of iron or other transition metals.
1. MD 1540 G2 2000.09.30 1. MD 1540 G2 2000.09.30
2. MD 3726 G2 2008.10.31 2. MD 3726 G2 2008.10.31
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20090140A MD186Z (en) | 2009-07-27 | 2009-07-27 | Photocatalytic reactor for water purification |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MDS20090140A MD186Z (en) | 2009-07-27 | 2009-07-27 | Photocatalytic reactor for water purification |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| MD186Y true MD186Y (en) | 2010-04-30 |
| MD186Z MD186Z (en) | 2010-11-30 |
Family
ID=43569603
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| MDS20090140A MD186Z (en) | 2009-07-27 | 2009-07-27 | Photocatalytic reactor for water purification |
Country Status (1)
| Country | Link |
|---|---|
| MD (1) | MD186Z (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2685300C1 (en) * | 2018-01-09 | 2019-04-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Тольяттинский государственный университет" | Photocatalytic reactor |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2040474C1 (en) * | 1992-12-30 | 1995-07-25 | Совместное предприятие "Санкт-Петербург - чистая вода" | Method of water purification and disinfection |
| MD841G2 (en) * | 1996-02-28 | 1998-06-30 | Государственный Университет Молд0 | Method and device for sewage treatment from biological hard decomposable organic substances |
| MD920G2 (en) * | 1996-11-04 | 1998-10-31 | Государственный Университет Молд0 | Process for electrochemical purification of sewage from the organic substances |
| MD954G2 (en) * | 1997-06-19 | 1998-12-31 | Alexandr Muzlov | Installation for petrol containing sewage purification |
| MD1023G2 (en) * | 1997-07-02 | 1999-10-31 | Государственный Университет Молд0 | Process for purification of the natural waters from the hydrogen sulphide and installation for realization thereof |
| SE515317C2 (en) * | 1999-10-14 | 2001-07-16 | Josab Internat Ab | Apparatus and method for purifying water from microorganisms |
| MD1540G2 (en) * | 1999-11-23 | 2001-03-31 | Государственный Университет Молд0 | Apparatus for purification of water from organic impurities |
| MD2425G2 (en) * | 2003-01-15 | 2004-10-31 | Государственный Университет Молд0 | Installation for water purification from organic impurities |
| RU2287365C2 (en) * | 2004-11-10 | 2006-11-20 | Институт Физической Химии Им. Л.В. Писаржевского Национальной Академии Наук Украины | Catalyst for photo-chemical reactions on base of titanium dioxide and method of production of such catalyst |
| MD3149G2 (en) * | 2005-09-15 | 2007-04-30 | Государственный Университет Молд0 | Plant for water photocatalytic purification from organic substances |
| MD3728G2 (en) * | 2007-02-26 | 2009-05-31 | Государственный Университет Молд0 | Photocatalytic reactor for water purification from pollutants |
| MD3707G2 (en) * | 2007-02-26 | 2009-04-30 | Государственный Университет Молд0 | Installation for automatic control of the water softeming electromagnetic process |
| MD3726G2 (en) * | 2007-06-13 | 2009-05-31 | Государственный Университет Молд0 | Installation for complex electrophotocatalytic purification of water from stable organic compounds |
| MD3911G2 (en) * | 2008-06-11 | 2009-12-31 | Государственный Университет Молд0 | Combined photo-biocatalytic reactor for destructive purification of sewage waters from hard-degradable organic compounds |
-
2009
- 2009-07-27 MD MDS20090140A patent/MD186Z/en not_active IP Right Cessation
Also Published As
| Publication number | Publication date |
|---|---|
| MD186Z (en) | 2010-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AlMohamadi et al. | Photocatalytic activity of metal-and non-metal-anchored ZnO and TiO2 nanocatalysts for advanced photocatalysis: comparative study | |
| Laoufi et al. | The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor | |
| CN101786756B (en) | Process method for treating hardly-biodegradable organic wastewater | |
| Song et al. | Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol | |
| CN101492199B (en) | Method for removing arsenic with platinum doped titanium dioxide photoelectrocatalysis oxidization | |
| CN104609500B (en) | A kind of ozone enhanced photocatalysis reactor and method for treating water | |
| CN101786757A (en) | Dielectric barrier discharge plasma, adsorption and photocatalysis synergy waste water treatment device | |
| CN101492200A (en) | Method for photoelectrocatalysis oxidization of organic waste water with ozone | |
| CN206720796U (en) | A kind of photoelectrocatalysioxidization oxidization rolling membrane reactor device for water process | |
| Alikarami et al. | An innovative combination of electrochemical and photocatalytic processes for decontamination of bisphenol A endocrine disruptor form aquatic phase: Insight into mechanism, enhancers and bio-toxicity assay | |
| CN101327968A (en) | Rotating disk-loaded catalyst photoelectric catalytic degradation organic matter reactor and degradation method | |
| CN101385964A (en) | A tubular photocatalytic reactor | |
| Sennaoui et al. | Advanced oxidation of reactive yellow 17 dye: a comparison between Fenton, photo-Fenton, electro-Fenton, anodic oxidation and heterogeneous photocatalysis processes | |
| CN109179814A (en) | A method of combination advanced oxidation handles sewage | |
| CN201043148Y (en) | Photocatalytic and electrocatalytic co-processing device for organic wastewater | |
| CN105481051A (en) | Integrated photoelectrocatalysis-membrane separation fluidized bed reaction device | |
| KR100454260B1 (en) | Advanced water and wastewater treatment apparatus and method | |
| MD186Y (en) | Photocatalytic reactor for water purification | |
| CN104803444A (en) | Advanced oxidation pollution control technology and device | |
| CN102616915B (en) | Device and method for comprehensively treating water body | |
| CN201686584U (en) | A casing-type photocatalytic degradation device for water treatment | |
| CN112499854B (en) | Integrated drinking water treatment system | |
| KR100326897B1 (en) | Titanium Dioxide-anchored Titanosilicalite Photocatalyst and its Preparation | |
| Manoli et al. | A review on ferrate (VI) and photocatalysis as oxidation processes for the removal of organic pollutants in water and wastewater | |
| CN111517512B (en) | Heterogeneous catalytic reactor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| KA4Y | Short-term patent lapsed due to non-payment of fees (with right of restoration) |