LV15715B - Hydrogen hydraulic compression device - Google Patents
Hydrogen hydraulic compression device Download PDFInfo
- Publication number
- LV15715B LV15715B LVP-21-47A LVP2021000047A LV15715B LV 15715 B LV15715 B LV 15715B LV P2021000047 A LVP2021000047 A LV P2021000047A LV 15715 B LV15715 B LV 15715B
- Authority
- LV
- Latvia
- Prior art keywords
- hydrogen
- compression
- tank
- stage
- working
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/02—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
- F04F5/04—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/54—Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C5/00—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
- F17C5/06—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Fluid-Pressure Circuits (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Izgudrojums attiecas uz mašīnbūves jomu, jo īpaši hidrauliskās kompresijas ierīcēm, proti, kompresoriem, kuros vienlaikus tiek realizēta šķidras un gāzveida vides ievadīšana darba kamerā, un to var izmantot ūdeņraža hidrauliskajai kompresijai. Izgudrojuma mērķis ir ūdeņraža hidrauliskās kompresijas ierīces produktivitātes palielināšana. Ierīce satur kontrolieri (1), divus gāzes kompresijas pirmās stadijas darba cilindrus (2, 3). Pirmās ieplūdes caurules (4, 5) ir savienotas ar zemspiediena gāzveida ūdeņraža padeves bloku (9) caur cauruļvadu (8) un vārstiem (6, 7). Otrās ieplūdes caurules (10, 11) caur vārstiem (14, 15) ir savienotas ar pirmās stadijas šķidruma sūkņa (13) izeju (12). Cilindros (2, 3) ir izplūdes caurules (16, 18 un 17, 19), kas savienotas ar vārstiem (20, 22 un 21, 23). Ierīce ir aprīkota ar buferšķīduma tvertni (26) piepildīšanai ar ūdeņradi, tvertnēm (27, 48) darba šķidruma (24) uzglabāšanai un šķidruma plūsmas sensoriem (28, 29, 30, 49, 50). Buferšķīduma tvertne (26) ir savienota ar augstspiediena cauruļvadu (25) caur cauruli (33). Tvertne (37) caur vārstu (39) ir savienota ar šķidruma sūkņa (41) izeju (40). Vārstu (44, 45) ieejas un otrās stadijas šķidruma sūkņa (41) ieplūdes atveres (47) ir savienotas ar tvertni (48) caur šķidruma plūsmas sensoriem (49, 50). Izeja (51) ir savienota ar otrās stadijas augstspiediena cauruļvadu.The invention relates to the field of mechanical engineering, in particular to hydraulic compression devices, namely compressors, in which liquid and gaseous media are simultaneously introduced into the working chamber, and can be used for hydraulic compression of hydrogen. The purpose of the invention is to increase the productivity of the hydrogen hydraulic compression device. The device contains a controller (1), two working cylinders of the first stage of gas compression (2, 3). The first inlet pipes (4, 5) are connected to the low-pressure gaseous hydrogen supply unit (9) through a pipeline (8) and valves (6, 7). The second inlet pipes (10, 11) are connected to the outlet (12) of the first stage liquid pump (13) through the valves (14, 15). Cylinders (2, 3) have exhaust pipes (16, 18 and 17, 19) connected to valves (20, 22 and 21, 23). The device is equipped with a buffer solution tank (26) for filling with hydrogen, tanks (27, 48) for storing the working fluid (24) and liquid flow sensors (28, 29, 30, 49, 50). The buffer tank (26) is connected to the high pressure pipeline (25) through a pipe (33). The tank (37) is connected to the outlet (40) of the liquid pump (41) through the valve (39). The inlets of the valves (44, 45) and the inlets (47) of the second stage liquid pump (41) are connected to the tank (48) through liquid flow sensors (49, 50). The outlet (51) is connected to the high pressure pipeline of the second stage.
Description
IZGUDROJUMA APRAKSTSDESCRIPTION OF THE INVENTION
[001] Izgudrojums attiecas uz mašīnbūves jomu, jo īpaši uz hidrauliskās kompresijas ierīcēm, proti kompresoriem, kuros šķidra un gāzveida vide vienlaicīgi tiek ievadīta darba kamerā, un to var izmantot ūdeņraža hidrauliskajai kompresijai.[001] The invention relates to the field of mechanical engineering, in particular to hydraulic compression devices, namely compressors in which liquid and gaseous media are simultaneously introduced into the working chamber, and can be used for hydraulic compression of hydrogen.
Zināmais tehnikas līmenisThe known state of the art
[002] Gāzes hidrauliskās kompresijas tehnoloģijai ir vairākas būtiskas priekšrocības salīdzinājumā ar virzuļkompresoriem. Zināmajā tehniskajā risinājumā [1] ir īstenota kompresora konstrukcija, kurā virzulis saspiež darba šķidrumu cilindrā ar noteiktu tilpumu un ievada to citā tvertnē, kas caur ieplūdes vārstu ir piepildīta ar gāzi. Kad tvertne tiek piepildīta ar darba šķidrumu, tiek saspiesta gāze, kas cikla beigās caur atvērto izplūdes vārstu tiek izspiesta uzglabāšanas tvertnē. Katra cikla beigās spiediens uzglabāšanas tvertnē diskrēti palielinās un sasniedz gāzes spiediena līmeni cilindrā.[002] Gas hydraulic compression technology has several significant advantages over reciprocating compressors. The known technical solution [1] implements a compressor design in which a piston compresses the working fluid in a cylinder with a certain volume and introduces it into another tank, which is filled with gas through the inlet valve. When the tank is filled with the working fluid, the gas is compressed, which at the end of the cycle is forced out through the open outlet valve into the storage tank. At the end of each cycle, the pressure in the storage tank increases discretely and reaches the gas pressure level in the cylinder.
[003] Zināmās konstrukcijas trūkums ir tāds, ka kompresijas kameras tilpums nevar pārsniegt virzuļsūkņa cilindra tilpumu. Tas ierobežo iespēju saspiest lielu gāzes daudzumu vienā ciklā un attiecīgi samazina sūkņa efektivitāti.[003] A disadvantage of the known design is that the volume of the compression chamber cannot exceed the volume of the piston pump cylinder. This limits the possibility of compressing a large amount of gas in one cycle and accordingly reduces the efficiency of the pump.
[004] Lai kontrolētu kompresijas pakāpi zināmajos tehniskajos risinājumos [2, 3], gāzes kompresijas tvertnes iekšpusē tiek ierosināts ievietot plāksni, kas peld uz darba šķidruma virsmas. Pie maksimālā uzpildes līmeņa plāksne paceļas un iedarbojas uz sensoru, kas izslēdz darba šķidruma padevi tvertnē.[004] In order to control the degree of compression in the known technical solutions [2, 3], it is proposed to insert a plate floating on the surface of the working fluid inside the gas compression tank. At the maximum filling level, the plate rises and acts on the sensor, which turns off the supply of working fluid to the tank.
Izgudrojuma mērķis un būtībaPurpose and essence of the invention
[005] Šī metode, kā kontrolēt tvertnes tilpuma piepildīšanu ar darba šķidrumu, ir saistīta ar plāksnes stāvokļa nenoteiktību šķidruma kustīgajā tilpumā, kas samazina darba šķidruma līmeņa noteikšanas precizitāti tvertnē. Tā rezultātā ierīcei ir ierobežojumi gāzes kompresijas pakāpē, un samazinās ierīces drošums. Ierīces darbības laikā ūdeņraža kompresijas pakāpe netiek regulēta.[005] This method of controlling the filling of the tank volume with the working fluid is associated with the uncertainty of the position of the plate in the moving volume of the fluid, which reduces the accuracy of determining the level of the working fluid in the tank. As a result, the device has limitations in the degree of gas compression, and the safety of the device decreases. During the operation of the device, the degree of hydrogen compression is not regulated.
[006] Šī izgudrojuma tehniskais uzdevums ir nodrošināt iespēju kontrolēt ūdeņraža kompresijas līmeni, palielināt ūdeņraža hidrauliskās kompresijas ierīces produktivitāti un drošumu.[006] The technical task of this invention is to provide the ability to control the level of hydrogen compression, to increase the productivity and safety of the hydrogen hydraulic compression device.
Izgudrojuma īstenošanas piemeriExamples of implementation of the invention
[007] Ūdeņraža hidrauliskās kompresijas ierīce, kas satur kontrolieri, pirmo un otro darba cilindru, no kuriem katram ir pirmās ieplūdes caurules, kas savienotas ar zemspiediena gāzveida ūdeņraža padeves bloku caur cauruļvadu un regulējamiem vārstiem, turklāt darba cilindru otrās ieplūdes caurules ir savienotas ar šķidruma sūkņa izeju pirmajā ūdeņraža kompresijas posmā caur kontrolētiem vārstiem, turklāt minētajiem darba cilindriem ir pirmās izplūdes caurules un otrās izplūdes caurules, kas ir savienotas ar attiecīgajiem regulējamiem vārstiem, pirmie regulējamie vārsti ir savienoti ar augstspiediena cauruļvadu, bet otrie regulējamie vārsti kalpo darba šķidruma plūsmas kontrolei, atbilstoši izgudrojumam, ierīce ir aprīkota ar buferšķīduma tvertni piepildīšanai ar saspiestu ūdeņradi, ūdeņraža pirmās kompresijas stadijas tvertni darba šķidruma uzglabāšanai, ūdeņraža otrās kompresijas stadijas tvertni darba šķidruma uzglabāšanai, kā ari pirmajiem un otrajiem šķidruma plūsmas sensoriem, turklāt pirmie šķidruma plūsmas sensori ir savienoti ar ūdeņraža pirmās kompresijas stadijas tvertni darba šķidruma uzglabāšanai un caur otrajiem regulējamiem vārstiem un otrajām izplūdes caurulēm ir attiecīgi pievienoti darba cilindri un ūdeņraža pirmās kompresijas stadijas šķidruma sūkņa ieejas atvere, bet otrie šķidruma plūsmas sensori ir savienoti ar ūdeņraža otrās kompresijas stadijas tvertni darba šķidruma uzglabāšanai, turklāt buferšķīduma tvertnei ir ieejas caurule, kas paredzēta savienošanai ar ūdeņraža pirmās kompresijas stadijas augstspiediena cauruļvadu, un izejas caurule, kas caur regulējamo vārstu ir savienota ar ūdeņraža otrās kompresijas stadijas uzglabāšanas tvertni caur ieplūdes cauruli, bet tvertnes otrā ieejas caurule caur regulējamo vārstu ir savienota ar ūdeņraža otrās kompresijas stadijas šķidruma sūkņa izeju, bet ūdeņraža otrās kompresijas stadijas uzglabāšanas tvertnes divas izejas caurules ir savienotas ar regulējamiem vārstiem, turklāt pirmā no kontrolētajiem vārstiem izejas atvere un ūdeņraža otrās kompresijas stadijas šķidruma sūkņa ieejas atvere ir savienota ar tvertni darba šķidruma uzglabāšanai caur otrajiem šķidruma plūsmas sensoriem, bet otrā regulējamā vārsta izeja ir paredzēta savienošanai ar ūdeņraža otrās kompresijas stadijas augstspiediena cauruļvadu.[007] A hydrogen hydraulic compression device comprising a controller, a first and a second working cylinder, each of which has first inlet pipes connected to a low-pressure gaseous hydrogen supply unit through a line and adjustable valves, and the second inlet pipes of the working cylinders are connected to a liquid the output of the pump in the first stage of hydrogen compression through controlled valves, in addition, said working cylinders have first discharge pipes and second discharge pipes, which are connected to the respective adjustable valves, the first adjustable valves are connected to the high-pressure pipeline, and the second adjustable valves serve to control the flow of the working fluid, according to the invention, the device is equipped with a buffer solution tank for filling with compressed hydrogen, a hydrogen first compression stage tank for working fluid storage, a hydrogen second compression stage tank for working fluid storage, as well as first and second fluid flow sensors, and the first fluid flow sensors are connected to the hydrogen the first compression stage tank for working fluid storage, and through the second adjustable valves and the second outlet pipes, the working cylinders and the hydrogen first compression stage fluid pump inlet are respectively connected, and the second liquid flow sensors are connected to the hydrogen second compression stage tank for working fluid storage, in addition to the buffer solution the tank has an inlet pipe for connecting to the high-pressure pipeline of the first hydrogen compression stage, and an outlet pipe connected through an adjustable valve to the storage tank of the second hydrogen compression stage through an inlet pipe, and the second inlet pipe of the tank is connected to the second hydrogen compression stage through an adjustable valve the outlet of the liquid pump of the compression stage, but the two outlet pipes of the storage tank of the second compression stage of hydrogen are connected with adjustable valves, in addition, the outlet of the first of the controlled valves and the inlet of the liquid pump of the second compression stage of hydrogen are connected to the tank for storing the working fluid through the second liquid flow sensors , but the outlet of the second control valve is designed to connect to the high-pressure pipeline of the second stage of hydrogen compression.
[008] Ūdeņraža pirmās un otrās kompresijas stadijas tvertnes darba šķidruma uzglabāšanai var tikt savienotas ar atmosfēru caur regulējamiem vārstiem.[008] The tanks of the first and second stages of hydrogen compression for the storage of the working fluid can be connected to the atmosphere through adjustable valves.
[009] Buferšķīduma tvertne, tvertne ūdeņraža uzglabāšanai un ūdeņraža pirmās un otrās kompresijas stadijas tvertnes darba šķidruma uzglabāšanai var tikt aprīkotas ar spiediena kontroles sensoriem.[009] The buffer solution tank, hydrogen storage tank and hydrogen first and second compression stage tanks for working fluid storage can be equipped with pressure monitoring sensors.
[0010] Pirmie un otrie šķidruma plūsmas sensori, regulējamie vārsti, spiediena kontroles sensori un ūdeņraža pirmās un otrās kompresijas stadijas šķidruma sūkņu strāvas ķēdes var būt savienotas ar kontrolieri.[0010] The first and second fluid flow sensors, control valves, pressure control sensors, and power circuits of the hydrogen first and second compression stage fluid pumps may be connected to the controller.
[0011] Caurules, kas savienotas ar darba cilindriem un ūdeņraža uzglabāšanas tvertni, atrodas darba cilindru un tvertnes apakšējā daļā.[0011] Pipes connected to the working cylinders and the hydrogen storage tank are located in the lower part of the working cylinders and the tank.
[0012] 1. zīmējumā parādīta šī izgudrojuma ūdeņraža hidrauliskās kompresijas ierīces blokshēma.[0012] Figure 1 shows a block diagram of a hydrogen hydraulic compression device of the present invention.
[0013] Ūdeņraža hidrauliskās kompresijas ierīce (1. zīm) satur kontrolieri (1), pirmo un otro darba cilindru (2; 3), no kuriem katram ir pirmās ieplūdes caurules (4; 5), kas savienotas ar zemspiediena gāzveida ūdeņraža padeves bloku (9) caur cauruļvadu (8) un regulējamiem vārstiem (6; 7). Darba cilindru (2; 3) otrās ieplūdes caurules (10; 11) ir savienotas ar ūdeņraža pirmās kompresijas stadijas šķidruma sūkņa (13) izeju (12) caur regulējamiem vārstiem (14; 15). Darba cilindriem (2; 3) ir pirmās izplūdes caurules (16; 18) un otrās izplūdes caurules (17; 19); kas savienotas ar atbilstošajiem regulējamiem vārstiem (22; 20 un 23; 21). Pirmie regulējamie vārsti (22; 23) ir savienoti ar augstspiediena cauruļvadu (25), kas kalpo, lai caur ieejas cauruli (33) piegādātu saspiestu ūdeņradi buferšķīduma tvertnei (26), un otrie regulējamie vārsti (20; 21) kalpo darba šķidruma (24) plūsmas kontrolei. Ierīce ir aprīkota ar pirmajiem šķidruma plūsmas sensoriem (28; 29; 30), kas savienoti ar tvertni (27) darba šķidruma (24) uzglabāšanai un secīgi savienoti caur otrajiem regulējamiem vārstiem (20; 21) un otrajām izejas caurulēm (18 un 19) ar darba cilindriem (2 un 3) un ūdeņraža pirmās kompresijas stadijas šķidruma sūkņa (13) ieejas atveri (32).[0013] The hydrogen hydraulic compression device (Fig. 1) comprises a controller (1), first and second working cylinders (2; 3), each of which has first inlet pipes (4; 5) connected to a low-pressure gaseous hydrogen supply unit (9) through pipeline (8) and adjustable valves (6; 7). The second inlet pipes (10; 11) of the working cylinders (2; 3) are connected to the outlet (12) of the liquid pump (13) of the first compression stage of hydrogen through adjustable valves (14; 15). Working cylinders (2; 3) have first exhaust pipes (16; 18) and second exhaust pipes (17; 19); connected to the corresponding adjustable valves (22; 20 and 23; 21). The first adjustable valves (22; 23) are connected to the high-pressure pipeline (25), which serves to supply compressed hydrogen to the buffer tank (26) through the inlet pipe (33), and the second adjustable valves (20; 21) serve to supply the working fluid (24) ) for flow control. The device is equipped with first fluid flow sensors (28; 29; 30) connected to a tank (27) for storing the working fluid (24) and sequentially connected through second adjustable valves (20; 21) and second outlet pipes (18 and 19) with the working cylinders (2 and 3) and the inlet (32) of the liquid pump (13) of the first stage of hydrogen compression.
[0014] Otrās izplūdes caurules (18; 19) atrodas darba cilindru (2; 3) apakšā. Ūdeņraža pirmās un otrās kompresijas stadijas tvertnes (27; 48) darba šķidruma (24) uzglabāšanai ir savienotas ar atmosfēru caur regulējamiem vārstiem (52; 53). Tvertnes (27; 48) darba šķidruma (24) uzglabāšanai un buferšķīduma tvertne (26) ir aprīkota ar spiediena kontroles sensoriem (54; 55; 56). Šķidruma plūsmas sensori (28; 29; 30; 49; 50), regulējamie vārsti (6; 7; 14; 15; 20; 21; 22; 23; 35; 39; 44; 45; 52; 53), spiediena sensori (54; 55; 56) un šķidruma sūkņa (13) barošanas ķēdes ir pievienotas kontrolierim (1).[0014] The second exhaust pipes (18; 19) are located at the bottom of the working cylinders (2; 3). The first and second hydrogen compression stage tanks (27; 48) for storing the working fluid (24) are connected to the atmosphere through adjustable valves (52; 53). The tanks (27; 48) for storing the working fluid (24) and the buffer solution tank (26) are equipped with pressure control sensors (54; 55; 56). Liquid flow sensors (28; 29; 30; 49; 50), adjustable valves (6; 7; 14; 15; 20; 21; 22; 23; 35; 39; 44; 45; 52; 53), pressure sensors ( 54; 55; 56) and liquid pump (13) supply circuits are connected to the controller (1).
[0015] Sākotnējā stāvoklī kontrolieris (1), šķidruma plūsmas sensori (28; 29; 30; 49; 50), regulējamie vārsti (6; 7; 14; 15; 20; 21; 22; 23; 35; 39; 44; 45; 52; 53), spiediena sensori (54; 55; 56; 57) ūdeņraža pirmās un otrās kompresijas stadijas šķidruma sūkņu (13; 41) strāvas ķēdes ir izslēgtas. Tvertnes (27; 48) ir piepildītas ar atbilstošā tipa un tilpuma darba šķidrumu (24). Ierīces darbības algoritms sastāv no ūdeņraža kompresijas procesa cikliskas atkārtošanas pārmaiņus pirmajā un otraja darba cilindra (2 un 3) un ta uzkrāšanas buferšķiduma tvertne (26).[0015] In the initial state, the controller (1), liquid flow sensors (28; 29; 30; 49; 50), adjustable valves (6; 7; 14; 15; 20; 21; 22; 23; 35; 39; 44; 45; 52; 53), pressure sensors (54; 55; 56; 57) current circuits of liquid pumps (13; 41) of the first and second stage of hydrogen compression are switched off. Tanks (27; 48) are filled with working fluid (24) of the appropriate type and volume. The operation algorithm of the device consists of cyclic repetition of the hydrogen compression process alternately in the first and second working cylinders (2 and 3) and its accumulation buffer liquid tank (26).
[0016] Pēc kontroliera (1) ieslēgšanas sākas pirmais ūdeņraža kompresijas posms, kas sastāv no darba cilindru piepildīšanas ar ūdeņradi un darba šķidrumu. Turklāt vārsti (14; 15; 20; 21; 22; 23; 35; 39; 44; 45; 52; 53) ir aizvērti, vārsti (6; 7) ir atvērti, un zemspiediena ūdeņradis no ūdeņraža padeves bloka (9) nonāk pirmajā un otrajā darba cilindrā (2; 3), kas piepildās ar ūdeņradi. Pēc tam vārsti (6; 7) tiek aizvērti.[0016] After switching on the controller (1), the first stage of hydrogen compression begins, which consists of filling the working cylinders with hydrogen and working fluid. In addition, valves (14; 15; 20; 21; 22; 23; 35; 39; 44; 45; 52; 53) are closed, valves (6; 7) are open, and low-pressure hydrogen from the hydrogen supply unit (9) enters in the first and second working cylinders (2; 3), which are filled with hydrogen. Then the valves (6; 7) are closed.
[0017] Nākamajā posmā kontroliera (1) izejas komanda ieslēdz šķidruma sūkni (13) un atver vārstu (15). Darba šķidrums (24) no tvertnes (27) darba šķidruma uzglabāšanai tiek piegādāts otrajam darba cilindram (3) caur šķidruma plūsmas sensoru (29). Šajā laika posmā atveras vārsts (52), caur kuru tvertne (27) tiek piepildīta ar atmosfēras spiediena gaisu.[0017] In the next step, the output command of the controller (1) turns on the liquid pump (13) and opens the valve (15). The working fluid (24) from the working fluid storage tank (27) is supplied to the second working cylinder (3) through the fluid flow sensor (29). During this period, the valve (52) opens, through which the tank (27) is filled with atmospheric pressure air.
[0018] Informācija no šķidruma plūsmas sensora (29) nonāk kontrolierī (1), kur to salīdzina ar iepriekš noteikto šķidruma tilpuma robežlīmeni, kas jāiesūknē otrajā darba cilindrā (3). Piepildot cilindra (3) darbtelpu ar darba šķidrumu (24), samazinās ūdeņraža aizņemtais tilpums un palielinās spiediens šajā cilindrā.[0018] The information from the liquid flow sensor (29) goes to the controller (1), where it is compared with the predetermined limit level of the liquid volume to be pumped into the second working cylinder (3). When filling the working space of the cylinder (3) with the working fluid (24), the volume occupied by hydrogen decreases and the pressure in this cylinder increases.
[0019] Šķidruma plūsmas sensora (29) izmantošana ļauj vienkāršot tvertnes piepildīšanas ar darba šķidrumu (24) uzraudzību. Tajā pašā laikā saskaņā ar Boila-Mariota formulu tiek aprēķināts ūdeņraža spiediens slēgtajā otrajā darba cilindrā (3), kas palielināsies proporcionāli tā aizņemtā tilpuma samazinājumam.[0019] The use of a liquid flow sensor (29) makes it possible to simplify the monitoring of the filling of the tank with the working liquid (24). At the same time, according to the Boyle-Mariot formula, the hydrogen pressure in the closed second working cylinder (3) is calculated, which will increase in proportion to the decrease in its occupied volume.
[0020] Nākamā vārstu (15) un (52) aizvēršanas komanda nāk no kontroliera (1), pamatojoties uz sensoru (29) informāciju par darba cilindrā (3) iesūknētā darba šķidruma (24) daudzumu. Kad tiek sasniegts otrā darba cilindra (3) iepriekš iestatītais piepildījuma līmenis, atveras vārsts (14). Tajā pašā laikā atveras vārsts (23), caur kuru saspiestais ūdeņradis nonāk augstspiediena cauruļvadā (25) un tiek piegādāts buferšķīduma tvertnē (26).[0020] The next command to close the valves (15) and (52) comes from the controller (1) based on information from sensors (29) about the amount of working fluid (24) pumped into the working cylinder (3). When the preset filling level of the second working cylinder (3) is reached, the valve (14) opens. At the same time, the valve (23) opens, through which the compressed hydrogen enters the high-pressure pipeline (25) and is supplied to the buffer tank (26).
[0021] Buferšķīduma tvertnes (26) izmantošana ļauj vienlaicīgi veikt saspiesta ūdeņraža aizvadīšanas darbību no viena cilindra (2 vai 3) un sūknēt darba šķidrumu otrā darba cilindrā (3 vai 2). Tā rezultātā tiek nodrošināti apstākļi, kuros ūdeņraža pirmā kompresijas posma šķidruma sūknis (13) turpina darboties ar nemainīgu slodzi, netērējot laiku darba šķidruma (24) plūsmas pārslēgšanai no viena darba cilindra uz otru.[0021] The use of the buffer solution tank (26) allows simultaneous operation of removing compressed hydrogen from one cylinder (2 or 3) and pumping the working liquid into the other working cylinder (3 or 2). As a result, conditions are provided in which the fluid pump (13) of the first stage of hydrogen compression continues to operate at a constant load, without wasting time switching the flow of the working fluid (24) from one working cylinder to another.
[0022] Vārsts (23) aizveras pēc aprēķināta laika, kura laikā spiediens otrajā darba cilindrā (3) un buferšķīduma tvertnē (26) izlīdzinās. Tajā pašā laikā pirmais darba cilindrs (2) tiek piepildīts ar darba šķidrumu (24), un tajā notiek ūdeņraža kompresijas process, kas aprakstīts otrajam darba cilindram (3).[0022] The valve (23) closes after a calculated time during which the pressure in the second working cylinder (3) and the buffer solution tank (26) equalize. At the same time, the first working cylinder (2) is filled with working fluid (24) and undergoes the hydrogen compression process described for the second working cylinder (3).
[0023] Pabeidzot saspiestā ūdeņraža sūknēšanu no otrā darba cilindra (3) uz buferšķīduma tvertni (26), tiek atvērti vārsti (7 un 21). Ūdeņraža padeves blokā (9) esošā spiediena ietekmē darba šķidrums (24) plūst caur cauruli (19) un šķidruma plūsmas sensoru (30) tvertnē (27). Informācija no sensora (30) izejas nonāk kontrolierī (1), kas dod komandu aizvērt vārstus (7) un (21).[0023] Upon completion of the pumping of compressed hydrogen from the second working cylinder (3) to the buffer tank (26), the valves (7 and 21) are opened. Under the influence of the pressure in the hydrogen supply unit (9), the working fluid (24) flows through the pipe (19) and the fluid flow sensor (30) into the tank (27). Information from the output of the sensor (30) goes to the controller (1), which gives the command to close the valves (7) and (21).
[0024] Kad tiek sasniegts pirmā darba cilindra (2) iepriekš iestatītais tvertnes piepildījuma līmenis, vārsts (14) tiek aizvērts un vārsts (15) tiek atvērts. Tajā pašā laikā atveras vārsts (22), caur kuru saspiestais ūdeņradis nonāk augstspiediena cauruļvadā (25) un tiek piegādāts buferšķīduma tvertnē (26). Vārsts (22) aizveras pēc aprēķināta laika, kura laikā spiediens pirmajā darba cilindrā (2) un buferšķīduma tvertne (26) izlīdzinās. Tajā pašā laikā otrais darba cilindrs (3) tiek piepildīts ar darba šķidrumu (24), un tajā notiek ūdeņraža kompresijas process. [0025] Katra cikla beigās ūdeņraža spiediens buferšķīduma tvertnē (26) palielinās. Pēc noteikta ūdeņraža kompresijas ciklu skaita pēc kontroliera (1) komandas tiek atvērts regulējamais vārsts (35), un saspiestais ūdeņradis no buferšķīduma tvertnes (26) nonāk ūdeņraža otrās kompresijas stadijas augstspiediena uzglabāšanas tvertnē (37). Pēc tam regulējamais vārsts (35) tiek aizvērts, un atkārtojas ūdeņraža kompresijas un iesūknēšanas cikls buferšķīduma tvertnē (26), līdz saspiestā ūdeņraža spiediena līmenis buferšķīduma tvertnē (26) sasniedz saspiestā ūdeņraža spiediena līmeni attiecīgajā darba cilindrā (2 vai 3). [0026] Pēc ūdeņraža otrās kompresijas stadijas augstspiediena uzglabāšanas tvertnes (37) piepildīšanas ar ūdeņradi ar spiedienu, kas sasniegts ūdeņraža kompresijas pirmā stadijas darba cilindros (2; 3), regulējamais vārsts (35) tiek aizvērts. Atveras vārsts (53), caur kuru tvertne (48) ūdeņraža kompresijas otrās pakāpes darba šķidruma (24) uzglabāšanai tiek piepildīta ar atmosfēras spiediena gaisu, un tiek ieslēgts ūdeņraža otrās kompresija stadijas šķidruma sūknis (41).[0024] When the pre-set tank filling level of the first working cylinder (2) is reached, the valve (14) is closed and the valve (15) is opened. At the same time, the valve (22) opens, through which the compressed hydrogen enters the high-pressure pipeline (25) and is supplied to the buffer tank (26). The valve (22) closes after a calculated time during which the pressure in the first working cylinder (2) and the buffer tank (26) equalize. At the same time, the second working cylinder (3) is filled with the working fluid (24) and the hydrogen compression process takes place in it. [0025] At the end of each cycle, the hydrogen pressure in the buffer tank (26) increases. After a certain number of hydrogen compression cycles, at the command of the controller (1), the adjustable valve (35) is opened, and the compressed hydrogen from the buffer tank (26) enters the high-pressure storage tank (37) of the second hydrogen compression stage. The control valve (35) is then closed and the cycle of hydrogen compression and injection into the buffer tank (26) is repeated until the compressed hydrogen pressure level in the buffer tank (26) reaches the compressed hydrogen pressure level in the corresponding working cylinder (2 or 3). [0026] After filling the high-pressure storage tank (37) of the second stage of hydrogen compression with hydrogen at the pressure reached in the working cylinders (2; 3) of the first stage of hydrogen compression, the control valve (35) is closed. The valve (53) opens, through which the tank (48) for storing the working liquid (24) of the second stage of hydrogen compression is filled with atmospheric pressure air, and the pump (41) of the liquid of the second stage of hydrogen compression is turned on.
[0027] Caur atvērto vārstu (39) no tvertnes (48) ūdeņraža otrās kompresijas stadijas uzglabāšanas tvertnē (37) tiek piegādāts darba šķidrums (24), kas saspiež ūdeņradi līdz augstākam spiediena līmenim, kurš atbilst ūdeņraža otrajai kompresijas stadijai iepriekš noteiktajam spiediena līmenim. Ūdeņraža kompresijas process tvertnē (37) tiek kontrolēts, izmantojot šķidruma plūsmas sensora (50) izejas informāciju.[0027] Through the open valve (39), a working fluid (24) is supplied from the tank (48) to the storage tank (37) of the second hydrogen compression stage, which compresses the hydrogen to a higher pressure level, which corresponds to the predetermined pressure level of the second hydrogen compression stage. The process of hydrogen compression in the tank (37) is controlled using the output information of the liquid flow sensor (50).
[0028] Pēc ūdeņraža kompresijas cikla pabeigšanas otrajā stadijā pēc no kontroliera (1) saņemtās komandas izejas vārsts (39) tiek aizvērts, vārsts (45) atveras, un ūdeņradis, kas ir tiek saspiests līdz otrās kompresijas stadijas spiediena līmenim, caur otrā regulējama vārsta (45) izeju (51) nonāk līdz patērētājam.[0028] After the completion of the hydrogen compression cycle in the second stage, after the command received from the controller (1), the output valve (39) is closed, the valve (45) opens, and the hydrogen that is compressed to the pressure level of the second compression stage through the second adjustable valve (45) output (51) reaches the consumer.
[0029] Pēc tam vārsts (45) aizveras un vārsts (44) atveras. Šķidrums no tvertnes (37) caur atvērto vārstu (44) tiek novadīts tvertnē (48), lai uzglabātu darba šķidrumu (24). Tas notiek laikā, kad tvertne (37) caur regulējamo vārstu (35) ir piepildīta ar ūdeņradi no buferšķīduma tvertnes (26). Lai kontrolētu regulējamos vārstus (35; 44), tiek izmantota informācija no otro šķidruma plūsmas sensoru (49; 50) izejas.[0029] Then valve (45) closes and valve (44) opens. The fluid from the tank (37) is directed through the open valve (44) to the tank (48) to store the working fluid (24). This happens when the tank (37) is filled with hydrogen from the buffer tank (26) through the adjustable valve (35). Information from the output of the second liquid flow sensors (49; 50) is used to control the adjustable valves (35; 44).
[0030] Spiedienu tvertnēs (27; 48) darba šķidruma uzglabāšanai kontrolē spiediena sensori (54; 55), savukārt spiediens augstspiediena cauruļvadā (25) un izejas caurulē (42) ūdeņraža kompresijas pirmajā un otrajā stadijā tiek kontrolēts ar spiediena sensoriem (56 un 57).[0030] The pressure in the tanks (27; 48) for storing the working fluid is controlled by the pressure sensors (54; 55), while the pressure in the high-pressure pipeline (25) and the outlet pipe (42) in the first and second stages of hydrogen compression is controlled by the pressure sensors (56 and 57 ).
[0031] Cauruļu (18; 19; 43) atrašanās vieta darba cilindru (2; 3) un tvertnes (37) apakšējā daļā nodrošina darba šķidruma (24) aizplūšanu un paātrina tā aizvadīšanas procesu uz tvertnēm (27; 48).[0031] The location of the pipes (18; 19; 43) in the lower part of the working cylinders (2; 3) and tank (37) ensures the outflow of the working fluid (24) and accelerates the process of its removal to the tanks (27; 48).
[0032] Tvertnes (27; 48) darba šķidruma (24) uzglabāšanai var savstarpēji savienot. Šajā gadījumā regulējamo vārstu (53) un spiediena sensoru (55) funkciju veiks regulējamais vārsts (52) un spiediena sensors (54).[0032] The tanks (27; 48) for storing the working fluid (24) can be interconnected. In this case, the function of adjustable valves (53) and pressure sensors (55) will be performed by adjustable valve (52) and pressure sensor (54).
[0033] Šķidruma plūsmas sensoru izmantošana ūdeņraža kompresijas procesa kontrolē ļauj kontrolēt ūdeņraža kompresijas pakāpi, pielāgojot darba šķidruma padeves tilpumu darba cilindros (2; 3). Tādējādi šī izgudrojuma ūdeņraža hidrauliskās kompresijas ierīcē, izmantojot šķidruma plūsmas sensorus un buferšķīduma tvertni saspiestā ūdeņraža uzkrāšanai, tiek panākts produktivitātes pieaugums, samazinot katra ūdeņraža kompresijas cikla laiku.[0033] The use of liquid flow sensors in the control of the hydrogen compression process allows controlling the degree of hydrogen compression by adjusting the supply volume of the working fluid in the working cylinders (2; 3). Thus, in the hydrogen hydraulic compression device of the present invention, by using liquid flow sensors and a buffer tank to store the compressed hydrogen, an increase in productivity is achieved by reducing the time of each hydrogen compression cycle.
[0034] Turklāt ūdeņraža hidrauliskās kompresijas ierīce palielina drošumu, jo korpusa sienās nav papildu caurumu un samazinās mērīšanas sensoru skaits.[0034] In addition, the hydrogen hydraulic compression device increases safety, as there are no additional holes in the housing walls and the number of measurement sensors is reduced.
Informācijas avotiSources of information
1. RU2736555, 2020-11-18, F04B35/02, F04B19/06.1. RU2736555, 2020-11-18, F04B35/02, F04B19/06.
2. CN105464927, 2015-12-31, F04B35 /02; F04B39 / 00; F04B39/12.2. CN105464927, 2015-12-31, F04B35 /02; F04B39 / 00; F04B39/12.
3. JP2016188675, 2015-03-30, H01M8/0606; C01B3/04; C25B1/04; F17C7/00; H01M8/00 (tuvākais tehnikas līmenis).3. JP2016188675, 2015-03-30, H01M8/0606; C01B3/04; C25B1/04; F17C7/00; H01M8/00 (nearest prior art).
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-21-47A LV15715B (en) | 2021-08-13 | 2021-08-13 | Hydrogen hydraulic compression device |
PCT/IB2021/058102 WO2023017306A1 (en) | 2021-08-13 | 2021-09-06 | Hydraulic hydrogen compression device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-21-47A LV15715B (en) | 2021-08-13 | 2021-08-13 | Hydrogen hydraulic compression device |
Publications (2)
Publication Number | Publication Date |
---|---|
LV15715A LV15715A (en) | 2023-02-20 |
LV15715B true LV15715B (en) | 2023-08-20 |
Family
ID=85199916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LVP-21-47A LV15715B (en) | 2021-08-13 | 2021-08-13 | Hydrogen hydraulic compression device |
Country Status (2)
Country | Link |
---|---|
LV (1) | LV15715B (en) |
WO (1) | WO2023017306A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003019016A1 (en) * | 2001-08-23 | 2003-03-06 | Neogas, Inc. | Method and apparatus for filling a storage vessel with compressed gas |
JP6528315B2 (en) * | 2015-03-30 | 2019-06-12 | 株式会社フォーエス | Hydrogen gas compression storage device and hydrogen gas compression storage method |
RU2622989C9 (en) * | 2015-12-16 | 2017-08-08 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева" | Gas booster device |
RU2725349C1 (en) * | 2019-12-16 | 2020-07-02 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный лесотехнический университет имени Г.Ф. Морозова" | Device for gas compression in double-acting cylinders with hydraulic control |
RU2736555C1 (en) * | 2020-04-09 | 2020-11-18 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" (ОмГТУ) | Operating method of hydropneumatic unit and device for its implementation |
-
2021
- 2021-08-13 LV LVP-21-47A patent/LV15715B/en unknown
- 2021-09-06 WO PCT/IB2021/058102 patent/WO2023017306A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2023017306A1 (en) | 2023-02-16 |
LV15715A (en) | 2023-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006326809B2 (en) | Apparatus and method for pumping a cryogenic fluid from a storage vessel and diagnosing cryogenic pump performance | |
CA2460734C (en) | Method and apparatus for pumping a cryogenic fluid from a storage tank | |
US6089837A (en) | Pump inlet stabilizer with a control unit for creating a positive pressure and a partial vacuum | |
US20100163135A1 (en) | Method for compressing gaseous fuel for fuelling vehicle and device for implementation thereof | |
US20130232999A1 (en) | Cryopump system, and method of operating the same, and compressor unit | |
RU2680014C1 (en) | Method of gas displacement from a section of gas pipeline that is being put to repair and system for its implementation | |
RU2002118695A (en) | INSTALLATION FOR STORAGE OF NATURAL GAS IN PIPES | |
LV15715B (en) | Hydrogen hydraulic compression device | |
LV15714B (en) | Hydrogen hydraulic compression device | |
US3844689A (en) | Time-sharing compression system | |
JP2024533481A (en) | Cryopumps | |
RU2565951C1 (en) | Operation of gas-fluid plant and device to this end | |
SU1707231A1 (en) | Piston compressor with hydraulic drive | |
WO2024194699A1 (en) | Hydraulic gas compressor | |
CN216589414U (en) | Secondary cooling low-temperature hydraulic oil source | |
CN220505130U (en) | Isothermal compressed air energy storage system based on PLC | |
US20080310973A1 (en) | Water pumping device by using pressure differential | |
RU37157U1 (en) | COMPRESSOR | |
SU260412A1 (en) | PISTON MULTI-CYLINDER PUMP | |
RU2241852C2 (en) | Vehicle gas supply compressor plant | |
SU1665791A1 (en) | Method of compression of gas | |
EP4352368A1 (en) | Hydrogen hydraulic compression device | |
SU1178941A1 (en) | Device for regulating capacity of piston compressor | |
UA156016U (en) | Arrowhead List;Diamond List;Endnote Text;Bullet List;Upper Roman List;Lower Roman List;Numbered List;Square List;Dashed List;Tick List;Heart List;Block Text;Upper Case List;Footnote;Hand List;Footnote Text;Normal;Lower Case List;Plain Text;Implies List;Box List;Star List;Triangle List;Endnote;THE WAY TO START AND OPERATE THE FREE ENGINE-HYDRONASOC | |
SU1617192A1 (en) | Method of compressing gas in compressor having liquid piston |