LV15328B - Loose-fill thermal insulation material made from lignocellulose and production method thereof - Google Patents

Loose-fill thermal insulation material made from lignocellulose and production method thereof Download PDF

Info

Publication number
LV15328B
LV15328B LVP-16-73A LV160073A LV15328B LV 15328 B LV15328 B LV 15328B LV 160073 A LV160073 A LV 160073A LV 15328 B LV15328 B LV 15328B
Authority
LV
Latvia
Prior art keywords
thermal insulation
insulation material
loose
lignocellulose
bar
Prior art date
Application number
LVP-16-73A
Other languages
Latvian (lv)
Other versions
LV15328A (en
Inventor
Mārtiņš ANDŽS
Jānis GRĀVĪTIS
Ramūnas TUPČIAUSKAS
Andris VĒVERIS
Original Assignee
Latvijas Valsts Koksnes ĶÄŗmijas Institåŗts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latvijas Valsts Koksnes ĶÄŗmijas Institåŗts filed Critical Latvijas Valsts Koksnes ĶÄŗmijas Institåŗts
Priority to LVP-16-73A priority Critical patent/LV15328B/en
Publication of LV15328A publication Critical patent/LV15328A/en
Publication of LV15328B publication Critical patent/LV15328B/en

Links

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)
  • Processing Of Solid Wastes (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Paper (AREA)

Description

[001] Izgudrojums attiecas uz būvniecības nozari, būvmateriālu apakšnozari un ir balstīts uz biomasas, kas ietver lignocelulozi, un tās atlieku pārstrādi, iegūstot produktu ar augstu pievienoto vērtību - beramo siltumizolācijas materiālu.The present invention relates to the building industry, the building materials sub-sector, and is based on the processing of biomass containing lignocellulose and its residues to produce a high added value product, bulk insulation material.

Zināmā tehnikas līmeņa analīze [002] Būvniecības nozarē no siltumizolācijas ir atkarīga ēkas energoefektivitāte, ekoloģiskums un komforta sajūta tajā [1, 2]. Pašlaik galvenie siltumizolācijas materiāli ietver minerālvates (stikla un akmens), putu polistirolus, putu poliuretānus un beramo celulozi. Siltumizolācijas materiāli mēdz būt dažāda veida: paklāja jeb ruļļveida (minerālvates), plākšņu (minerālvates, putu materiāli) un beramie (celuloze, minerālvates).Analysis of the Prior Art [002] In the construction industry, the thermal performance of a building depends on its energy efficiency, eco-friendliness and comfort [1, 2]. Currently, the main thermal insulation materials include mineral wool (glass and stone), polystyrene foam, polyurethane foam and cellulose in bulk. Thermal insulation materials can be of various types: carpet or roll (mineral wool), slab (mineral wool, foam) and loose (cellulose, mineral wool).

[003] Pastāv arī alternatīvie siltumizolācijas materiāli, tādi kā kokšķiedras un citu augu šķiedras, aitas vilna, korķa koka miza, perlīts un citi, kurus ražo ierobežoti, pārsvarā augstāku izmaksu dēļ [3]. Ir zināms, ka plaši izmantojamie minerālie siltumizolācijas materiāli ir ļoti energoietilpīgie, t.i., ar augstām ražošanas izmaksām vai arī ietekmi uz vidi, tāpēc arvien lielāku interesi izraisa videi draudzīgi siltumizolācijas materiāli no atjaunojamiem resursiem ar zemām ražošanas izmaksām [4, 5].Alternative heat-insulating materials, such as wood fibers and other plant fibers, sheep wool, cork bark, perlite and others, are also available, which are limited in production, mainly due to higher costs [3]. Widely used mineral thermal insulation materials are known to be very energy intensive, i.e. with high production costs or environmental impact, and therefore, there is increasing interest in environmentally friendly thermal insulation materials from low production costs [4, 5].

[004] Visus siltumizolācijas materiālus galvenokārt raksturo siltuma vadītspējas koeficients Л, kas tiek izteikts mērvienībā W/(m*K) un kam jābūt zemākam par 0,07, lai tas būtu raksturots kā siltumizolācijas materiāls [6, 7]. Celulozes šķiedru siltumizolācijas materiāli, kas ir analogs pašreizējam izgudrojumam, tiek iegūti defibrēšanas un rafinēšanas ceļā, līdzīgi kā papīrrūpniecībā, bet galvenokārt, pārstrādājot izmantoto papīru jeb makulatūru [8].[004] All thermal insulation materials are characterized mainly by a thermal conductivity coefficient Л expressed in W / (m * K), which must be lower than 0.07 to be described as a thermal insulation material [6, 7]. Cellulose fiber insulation materials, analogous to the present invention, are obtained by defibration and refining, similar to the papermaking industry, but mainly by recycling used paper or waste paper [8].

[005] Ir zināma lignocelulozi saturošas, attiecīgi, smalcinātas biomasas (šķeldas) apstrāde ar piesātinātu tvaiku, lai efektīvi atdalītu biomasas komponentus papīra, plastiku, etanola un citu ķīmikāliju ražošanai, akcentējot optimālo apstrādes laiku (200400 s) [9] un iegūstamo produktu augsto iznākumu ar daļējo enerģijas atgūšanu [10].[005] Treatment of lignocellulose-containing, respectively, pulverized biomass with saturated steam is known to efficiently remove the biomass components for the production of paper, plastics, ethanol and other chemicals, emphasizing the optimum processing time (200400 s) [9] and the high yield of the resulting products. with partial energy recovery [10].

[006] Ir patentēta metode un iekārta biomasas sadalīšanai atsevišķās frakcijās, veicot hidrolīzi tvaiku vidē 20 min pie spiediena 4-14 bar un izvadot hidrolizēto biomasu caur sprauslu uztvērējā ar samazinātu spiedienu līdz 1,2-2 bar, tādējādi īstenojot tvaika sprādzienu un biomasas sadalīšanu šķiedru masā, kas turpmāk tiek pakļauta ekstrakciju plūsmai [11].There is a patented method and apparatus for dividing the biomass into separate fractions by hydrolysis in a steam medium for 20 min at 4-14 bar and discharging the hydrolyzed biomass through a nozzle in a depressurized container to 1.2-2 bar, thereby performing steam explosion and biomass separation in the fiber mass which is subsequently subjected to the extraction stream [11].

[007] Ir zināms, ka siltumizolācijas materiāli no kokšķiedrām tiek ražoti, piejaucot klāt saistvielas, piemēram, bikomponenta polimērus (5-20 %) ar dažādām kušanas temperatūrām, izveidotam paklājam caurlaižot tvaiku (100 °C), kas veicina viena polimēra komponenta šķiedru kušanu, un presējot puscietas elastīgas plātnes ar blīvumu 30-200 kg/m3 [12].[007] It is known that heat insulating materials made from wood fibers are made by admixing binders, such as bicomponent polymers (5-20%) with different melting temperatures, created by carpet vapor permeability (100 ° C), which facilitates melting of fibers of one polymer component. , and extruding semi - rigid flexible sheets with a density of 30-200 kg / m 3 [12].

[008] Ir zināma arī ugunsizturīgā siltumizolācijas materiāla iegūšana no lauksaimniecības augu (cukurniedru bagasa) celulozes, iegūtas, smalcināto izejvielu mazgājot 60 °C temperatūrā, piejaucot klāt reciklētā kartona šķiedras ūdens šķīdumā ar uguns un bioloģiski izturīgām ķīmikālijām, iegūto substrātu neitralizējot un nosusinot [13]. Tā iegūto siltumizolācijas materiālu lieto plātņu veidā un beramā veidā ar tilpummasu 29 kg/m3.[008] It is also known to obtain refractory thermal insulation material from pulp of agricultural plants (sugarcane bagasse) obtained by washing the crushed raw material at 60 ° C, by mixing recycled cardboard fibers in aqueous solution with fire-resistant and biologically resistant chemicals, 13 ]. The heat-insulating material thus obtained is used in the form of panels and in bulk in a volume of 29 kg / m 3 .

[009] Ir piedāvāts izolācijas plātņu materiāls un tā izgatavošanas metode izmantošanai ēku celtniecībā, kas veidots no kaņepju šķiedru un spaļu maisījuma ar pielīmētu, piešūtu vai cauršūtu speciālo papīru no abām pusēm [14].[009] Insulating board material and a method of making it for use in the construction of buildings consisting of a mixture of hemp fibers and spatulas with glued, sewn or sewn specialty paper on both sides have been proposed [14].

[010] Ir piedāvāta metode, kas paredz šķiedraugu svaigi novāktus stiebrus sasmalcināt un šķirot, atdalot šķiedras no citām augu sastāvdaļām, lai izmantotu celtniecības materiālu, t.sk. siltumizolācijas materiālu, ar šķiedrām stiprinātu kompozītmateriālu ražošanā [15].[010] A method has been proposed for comminuting and sorting freshly harvested stems of fibrous plants by separating the fibers from other plant constituents in order to use a building material, incl. for the production of thermal insulation materials, fiber reinforced composites [15].

[011] Saskaņā ar izskatītās literatūras analīzi, piedāvātajam izgudrojumam nav līdzīgu prototipu, kas būtu iegūti no lignocelulozes materiāliem autohidrolīzē ar tvaika sprādziena metodi, siltumizolācijas materiālu izmantojot beramā veidā bez ražošanas atlikumiem.According to the analysis of the literature reviewed, the present invention does not have similar prototypes derived from lignocellulosic materials for autohydrolysis by steam blasting, using the heat-insulating material in bulk without production residues.

Tehniskās problēmas un tās risinājuma izklāsts [011] Piedāvātais izgudrojums ir balstīts uz biomasas, kas ietver lignocelulozi, un tās atlieku (konkrēti - bērza lēveru, kas ir saplākšņa rūpniecības atlikumi, baltalkšņa šķeldu un kaņepju spaļu) otrreizēju izmantošanu.SUMMARY OF THE TECHNICAL PROBLEM AND ITS SOLUTION The present invention is based on the reuse of biomass containing lignocellulose and its residues (in particular, birchwood, which is the residue of the plywood industry, white alder chips and hemp spp.).

[012] Veicot biomasas apstrādi ar piesātinātu tvaiku slēgtā reaktorā pie augstām temperatūrām (T >160 °C) un spiediena (p = 20-40 bar), notiek autohidrolīzē. Izbeidzot reakciju ar reaktora atvēršanu, notiek tvaika sprādziens, tiek izjaukta materiāla uzbūves struktūra, to sašķiedrojot dažādās frakcijās. Rezultātā, atkarībā no izejmateriāla, tilpummasa samazinās apmēram divas reizes (pēc veiktajiem mērījumiem vidēji kaņepju spaļiem - no 100 līdz 40-80 kg/m3; bērza lēveriem - no 200 līdz 95-110 kg/m3; baltalkšņa šķeldām - no 165 līdz 85-95 kg/m3), bet tā siltuma vadītspēja uzlabojas par 8-16 % (pēc veiktiem mērījumiem vidēji kaņepju spaļiem no 0,051 līdz 0,043-0,045 W/(mxK); bērza lēveriem - no 0,062 līdz 0,057 W/(m*K); baltalkšņa šķeldām - no 0,062 līdz 0,051-0,054 W/(mxK)). Piedāvātais paņēmiens ir energoefektīvs, jo, neskatoties uz augstām temperatūrām (200-235 °C), tvaika apstrādes ilgums (t) ir ne lielāks par 5 min.[012] The biomass treatment with saturated steam in a closed reactor at high temperatures (T> 160 ° C) and pressure (p = 20-40 bar) is carried out by autohydrolysis. Stopping the reaction with reactor opening causes a vapor explosion, disrupting the structure of the material by splitting it into different fractions. As a result, depending on the raw material, the bulk density decreases by about two times (measured from an average of 100 to 40-80 kg / m 3 for hemp shoots, from 200 to 95-110 kg / m 3 for birch flakes, and 165 to 100 for gray alder chips). 85-95 kg / m 3 ), but its thermal conductivity is improved by 8-16% (measured on average between 0.051 and 0.043-0.045 W / (mxK) for hemp spikes, and 0.062 to 0.057 W / (m * for birchwood) K); for white alder chips 0.062 to 0.051-0.054 W / (mxK)). The proposed process is energy efficient because, despite the high temperatures (200-235 ° C), the steam treatment time (t) does not exceed 5 minutes.

[013] Šādi iegūto materiālu nav nepieciešamības veidot paklājā vai plāksnēs, kas sadārdzina gala materiālu un rada atlikumus, bet beramā veidā var viegli iestrādāt ēkas konstrukcijās, tai nodrošinot nepieciešamo siltumizolāciju.[013] The material thus obtained does not need to be formed in carpet or slabs, which makes the final material more expensive and creates residues, but can be easily incorporated into the building structures in bulk, providing it with the necessary thermal insulation.

Izgudrojuma detalizēts izklāsts [014] īstenojot izgudrojumu, attiecīgi smalcinātu lignocelulozes izejmateriālu (piemēram, šķeldas, lēverus, šķiedraugu stublājus pēc šķiedru atdalīšanas) apstrādā ar piesātinātu tvaiku cieši noslēgtā reaktorā. No enerģijas patēriņa viedokļa, ieteicamais lignocelulozes izejmateriāla relatīvais mitrums ir 10-15 %.DETAILED DESCRIPTION OF THE INVENTION [014] In accordance with the present invention, the appropriately comminuted lignocellulosic feedstock (e.g., chips, mucous membranes, fiber stems after fiber separation) is treated with saturated steam in a sealed reactor. From a power consumption point of view, the recommended relative humidity of the lignocellulosic feedstock is 10-15%.

[015] Balstoties uz siltuma vadītspējas eksperimentālo mērījumu rezultātiem, atkarībā no izejmateriāla optimālie tvaika apstrādes parametri var atšķirties. Piemēram, kaņepju spaļiem, optimālie apstrādes parametri ir: T = 235 °C, p = 32 bar, t = 5 s, bērza lēveriem. T = 200 °C, p = 16 bar, t = 5 min; baltalkšņa šķeldām: T = 235 °C, p = 32 bar, t = 1 min.Based on the results of experimental measurements of thermal conductivity, the optimum vapor treatment parameters may vary depending on the starting material. For example, for hemp shoots, the optimum processing parameters are: T = 235 ° C, p = 32 bar, t = 5 s, for birchwood. T = 200 ° C, p = 16 bar, t = 5 min; for gray alder chips: T = 235 ° C, p = 32 bar, t = 1 min.

[016] Pēc noteikta laika (apstrādes ilguma) reaktoru atver vaļā, un strauji samazinātā spiediena dēļ apstrādātais izejmateriāls caur izejas sprauslu tiek “izšauts” uztvērējā un šī efekta dēļ vienlaikus arī sašķiedrots.[016] After a specified time (duration of treatment), the reactor is opened and, due to the rapidly reduced pressure, the treated feedstock is "fired" through the outlet nozzle and, due to this effect, is simultaneously fiberized.

[017] Turpmāk, lai apstrādātais izejmateriāls nesāktu pelēt un sasniegtu optimālo siltuma vadītspēju, to jāžāvē līdz 15-20 % mitruma saturam, un to var glabāt noliktavā vai arī uzreiz nogādāt uz vajadzīgu objektu siltumizolācijas ierīkošanai. Siltumizolācijas materiāls paredzēts ieklāšanai visās iespējamajās ēkas konstrukcijās ar sauso iepūšanas metodi.[017] Further, in order to prevent mold from starting and achieving optimum thermal conductivity, the treated feedstock must be dried to a moisture content of 15-20% and can be stored or immediately transported to a required site for thermal insulation. The thermal insulation material is intended for installation in all possible structures of the building by dry blowing.

Informācijas avoti [1] Eiropas Parlaments un Padome. (2010). Eiropas parlamenta un padomes direktīva 2010/31/ES (2010. gada 19. maijs) par ēku energoefektivitāti.Information sources [1] European Parliament and Council. (2010). Directive 2010/31 / EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings.

[2] Al-Homoud, M. S. (2005). “Performance characteristics and practical applications of common building thermal insulation materials,” Building and Environment, 40(3), 353-366.[2] Al-Homoud, M. S. (2005). "Performance characteristics and practical applications of common building thermal insulation materials," Building and Environment, 40 (3), 353-366.

[3] Kymalainen, H. R., and Sjoberg, A. M. (2008). “Flax and hemp fibres as raw materials for thermal insulations,” Building and Environment, 43(7), 1261-1269.[3] Kymalainen, H. R., and Sjoberg, A. M. (2008). "Flax and Hemp Fibers as Raw Materials for Thermal Insulations," Building and Environment, 43 (7), 1261-1269.

[4] Hroudova, J., and Zach, J. (2014). “Acoustic and Thermal Insulating Materials Based On Natural Fibres Used in Floor Construction,” International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 8(11), 1152— 1155.[4] Hroudova, J., and Zach, J. (2014). "Acoustic and Thermal Insulating Materials Based on Natural Fibers Used in Floor Construction," International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 8 (11), 1152-1155.

[5] Papadopoulos, A.M. (2005). “State of the art in thermal insulation materials and aims for future developments”, Energy and Buildings, 37, 77-86.[5] Papadopoulos, A.M. (2005). "State of the Art in Thermal Insulation Materials and Purposes for Future Developments," Energy and Buildings, 37, 77-86.

[6] Dikmen, N., and Ozkan, S T E. (2016). “Unconventional Insulation Materials”, In: Insulation Materials in Context of Sustainability, Intech. Chapter 1, 3-23.[6] Dikmen, N., and Ozkan, S T E. (2016). Unconventional Insulation Materials, In: Insulation Materials in Context of Sustainability, Intech. Chapter 1, 3-23.

[7] Asdrubali, F., D’Alessandro, F., and Schiavoni, S. (2015). “A review of unconventional sustainable building insulation materials”. Sustainable Materials and Technologies, 4, 1-17.[7] Asdrubali, F., D'Alessandro, F., and Schiavoni, S. (2015). “A review of unconventional sustainable building insulation materials”. Sustainable Materials and Technologies, 4, 1-17.

[8] Kosny, J., Yarbrough, D. W., Wilkes, K., Leuthold, D., and Syad, A. (2006). “PCM-Enhanced Cellulose Insulation - Thermal Mass in Lightweight Natural Fibres,” in: 2006 ECOSTOCK Conference IEA, DOE, Richard Stockton College of New Jersey, June 2006, 1-8.[8] Kosny, J., Yarbrough, D. W., Wilkes, K., Leuthold, D., and Syad, A. (2006). PCM-Enhanced Cellulose Insulation - Thermal Mass in Lightweight Natural Fibers, in: 2006 ECOSTOCK Conference IEA, DOE, Richard Stockton College of New Jersey, June 1-8, 2006.

[9] Foody, P. (1993). Method for obtaining superior yields of accessible cellulose and hemicellulose from lignocellulose material. Canadian Patent CA 1163058.[9] Foody, P. (1993). Method for obtaining superior yields of accessible cellulose and hemicellulose from lignocellulose material. Canadian Patent CA 1163058.

[10] Wingerson, R. C. (2002). Method of treating lignocellulosic biomass to produce cellulose. United States Patent US 6419788B1.[10] Wingerson, R. C. (2002). Method of treating lignocellulosic biomass to produce cellulose. United States Patent US 6,419,788B1.

[11] Nilsen, P. J., Solheim, О. E., Walley, P. (2014). Method and device for thermal hydrolysis and steam explosion of biomass. Unated States Patent US 8673112B2.[11] Nilsen, P.J., Solheim, О. E., Walley, P. (2014). Method and device for thermal hydrolysis and steam explosion of biomass. Unated States Patent US 8673112B2.

[12] Lempfer, K. (2013). Method for manufacturing wood fiber insulating boards. Unated States Patent US 8394303B2.[12] Lempfer, K. (2013). Method for manufacturing wood fiber insulating boards. Unated States Patent US 8394303B2.

[13] Prieto, J. J. (2002). Fire resistant cellulose insulation and method of production from sugar cane bagasse. Unated States Patent US 150758A1.[13] Prieto, J. J. (2002). Fire resistant cellulose insulation and method of production from sugar cane bagasse. Unated States Patent US 150758A1.

[14] Schillo, M. (2000). Insulation material for construction industry has hemp fiber filling. Germany Patent DE 19846704 A1.[14] Schillo, M. (2000). Insulation material for construction industry has hemp fiber filling. Germany Patent DE 19846704 A1.

[15] Fuerll, C., Idler., Pecenka, R., Linke, B. (2005). Method for processing natural fiber plants. W02005033380 A1.[15] Fuerll, C., Idler., Pecenka, R., Linke, B. (2005). Method for processing natural fiber plants. WO2005033380 A1.

Claims (9)

1. Paņēmiens beramā siltumizolācijas materiāla iegūšanai, kas ietver šādus secīgus soļus: lignocelulozes izejmateriāla smalcināšanu, frakcionēšanu, žāvēšanu līdz relatīvā mitruma satura 10-15 % sasniegšanai, papildu apstrādes soli, iegūto lignocelulozes šķiedru kūļu žāvēšanu līdz relatīvā mitruma satura 15-20 % sasniegšanai, kas raksturīgs ar to, ka minētais papildu apstrādes solis ir pakļaušana tvaika sprādziena metodei.A process for obtaining a bulk thermal insulation material comprising the following sequential steps: crushing, fractionating, drying the lignocellulosic feedstock to a relative moisture content of 10-15%, an additional processing step, drying the resulting lignocellulosic fiber bundles to a relative moisture content of 15-20%, characterized in that said additional processing step is exposure to a vapor explosion method. 2. Paņēmiens saskaņā ar 1. pretenziju, kas raksturīgs ar to, ka lignocelulozes izejmateriāls ir bērza lēveri un tvaika sprādziena apstrādes parametri ir šādi: temperatūra - 200 °C, spiediens - 16 bar, apstrādes ilgums - 5 min.A process according to claim 1, characterized in that the lignocellulose starting material is birch mucilage and the steam explosion treatment parameters are as follows: temperature - 200 ° C, pressure - 16 bar, treatment time - 5 min. 3. Paņēmiens saskaņā ar 1. pretenziju, kas raksturīgs ar to, ka lignocelulozes izejmateriāls ir baltalkšņa šķeldas un tvaika sprādziena apstrādes parametri ir šādi: temperatūra - 235 °C, spiediens - 32 bar, apstrādes ilgums - 1 min.The process according to claim 1, characterized in that the lignocellulose starting material is a white alder chips and a steam explosion treatment: temperature - 235 ° C, pressure - 32 bar, treatment time - 1 min. 4. Paņēmiens saskaņā ar 1. pretenziju, kas raksturīgs ar to, ka lignocelulozes izejmateriāls ir kaņepju spaļi un tvaika sprādziena apstrādes parametri ir šādi: temperatūra - 235 °C, spiediens - 32 bar, apstrādes ilgums -5 s.A process according to claim 1, characterized in that the lignocellulosic feedstock is hemp spatula and the steam explosion treatment parameters are as follows: temperature - 235 ° C, pressure - 32 bar, treatment time - 5 s. 5. Beramais siltumizolācijas materiāls, kas ir iegūts ar paņēmienu saskaņā ar 1. pretenziju.Bulk thermal insulation material obtained by the method of claim 1. 6. Beramais siltumizolācijas materiāls saskaņā ar 5. pretenziju, kas iegūts saskaņā ar 1. un 2. pretenziju un raksturīgs ar to, ka tā tilpummasa (ptiip) ir 95-110 kg/m3 un siltuma vadītspējas koeficients (A) 0,0569-0,0574 W/(mxK).The loose thermal insulation material according to claim 5, obtained according to claims 1 and 2, characterized in that it has a bulk density (ptiip) of 95-110 kg / m 3 and a thermal conductivity coefficient (A) of 0.0569. -0.0574 W / (mxK). 7. Beramais siltumizolācijas materiāls saskaņā ar 5. pretenziju, kas iegūts saskaņā ar 1. un 3. pretenziju un raksturīgs ar to, ka tā ptiip ir 85-95 kg/m3 un λ ir 0,0509-0,0542 W/(mxK).Bulk thermal insulation material according to claim 5, obtained according to claims 1 and 3, characterized in that it has a ptype of 85-95 kg / m 3 and λ of 0.0509-0.0542 W / ( mxK). 8. Beramais siltumizolācijas materiāls saskaņā ar 5. pretenziju, kas iegūts saskaņā ar 1. un 4. pretenziju un raksturīgs arto, ka tā ptiip ir40-80 kg/m3 un λ ir0,0430,045 W/(mxK).The loose thermal insulation material according to claim 5, obtained according to claims 1 and 4, characterized in that it has a ptype of 40-80 kg / m 3 and a λ of 0.0430.045 W / (mxK). 9. Beramā siltumizolācijas materiāla saskaņā ar jebkuru no 5. līdz9. The loose thermal insulation material of any one of claims 5 to 8 8. pretenzijai izmantošana ēku konstrukciju siltināšanai.The use of Claim 8 for insulation of building structures.
LVP-16-73A 2016-10-21 2016-10-21 Loose-fill thermal insulation material made from lignocellulose and production method thereof LV15328B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-16-73A LV15328B (en) 2016-10-21 2016-10-21 Loose-fill thermal insulation material made from lignocellulose and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-16-73A LV15328B (en) 2016-10-21 2016-10-21 Loose-fill thermal insulation material made from lignocellulose and production method thereof

Publications (2)

Publication Number Publication Date
LV15328A LV15328A (en) 2018-05-20
LV15328B true LV15328B (en) 2019-07-20

Family

ID=62134779

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-16-73A LV15328B (en) 2016-10-21 2016-10-21 Loose-fill thermal insulation material made from lignocellulose and production method thereof

Country Status (1)

Country Link
LV (1) LV15328B (en)

Also Published As

Publication number Publication date
LV15328A (en) 2018-05-20

Similar Documents

Publication Publication Date Title
Fonseca et al. Jute fibers and micro/nanofibrils as reinforcement in extruded fiber-cement composites
Kochova et al. Using alternative waste coir fibres as a reinforcement in cement-fibre composites
Liu et al. Controlled retting of hemp fibres: effect of hydrothermal pre-treatment and enzymatic retting on the mechanical properties of unidirectional hemp/epoxy composites
Zhou et al. An environment-friendly thermal insulation material from cotton stalk fibers
Bozsaky Nature-based thermal insulation materials from renewable resources–A state-of-the-art review
Lima et al. Characterization and treatment of sisal fiber residues for cement-based composite application
Hasan et al. Semi-dry technology-mediated coir fiber and Scots pine particle-reinforced sustainable cementitious composite panels
Paredes et al. Influence of hot water extraction on the physical and mechanical behavior of OSB
Arsène et al. Treatments for viable utilization of vegetable fibers in inorganic-based composites
Essid et al. Comparison of the properties of flax shives based particleboards prepared using binders of bio-based lignin and partially bio-based epoxy resin
EP3946858A1 (en) Composite panel, method for the production thereof and uses thereof
CN103924471A (en) Preparation of modified lignocellulose, and product thereof
Aminudin et al. Utilization of baggase waste based materials as improvement for thermal insulation of cement brick
CN114938637A (en) Method for recycling insulation wool, apparatus for processing insulation wool, fiber-reinforced foam, fire-resistant wood material and method for producing fire-resistant wood material
Prosvirnikov et al. Evaluation of the influence of the conditions of catalytic continuous steam explosive activation of wood on the physical and operational properties of wooded composite materials based on activated fibers
Akasah et al. Physical and mechanical properties of empty fruit bunch fibre-cement bonded fibreboard for sustainable retrofit building
LV15328B (en) Loose-fill thermal insulation material made from lignocellulose and production method thereof
OLORUNNISOLA et al. EFFECTS OF NaOH CONCENTRATION AND FIBRE CONTENT ON PHYSICOMECHANICAL PROPERTIES OF CEMENT-BONDED RATTAN FIBRE COMPOSITES.
DE102019107982A1 (en) Flame, fire and glow-protected natural fiber insulation materials and their production and use, in particular for natural fiber insulation products
CN101405461B (en) Grass(herbaceous plant) fiber
Bērziņš et al. Potential of Some Latvian Industrial Crops Residuals for Conversion to Bio-Based Thermal Insulation Material
Smirnova et al. Research of pressed thermal insulation materials, based on organic waste
KR100510173B1 (en) Fiber boards and composite fiber boards derived from straw and producing methods thereof
DE19653243A1 (en) Paper insulation or noise=damping material(s) preparation method
Mayer et al. Basalt grid reinforcement of cement-bonded particleboards