LV15201A - The method for the preparation of ibrutinib intermediate - Google Patents
The method for the preparation of ibrutinib intermediate Download PDFInfo
- Publication number
- LV15201A LV15201A LVP-15-98A LV150098A LV15201A LV 15201 A LV15201 A LV 15201A LV 150098 A LV150098 A LV 150098A LV 15201 A LV15201 A LV 15201A
- Authority
- LV
- Latvia
- Prior art keywords
- boc
- pgi
- compound
- cbz
- reaction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
IZGUDROJUMA APRAKSTSDESCRIPTION OF THE INVENTION
Tehnikas nozareEngineering industry
Izgudrojums attiecas uz farmakoloģiski aktīvu vielu iegūšanas paņēmieniem.The invention relates to methods for obtaining pharmacologically active substances.
Konkrētāk, izgudrojums attiecas uz pretvēža preparāta ibrutiniba sintēzes izejvielas iegūšanas paņēmienu.In particular, the invention relates to a method for obtaining the raw material for the ibrutinib synthesis of a cancer preparation.
Tehnikas līmenisLevel of technique
Ibrutinibs ir savienojums ar formulu (I) [1], pretvēža preparāts, kuru lieto ļaundabīgo B-limfoproliferatīvo saslimšanu ārstēšanaiIbrutinib is a compound of formula (I) [1], an anticancer drug used to treat malignant B-lymphoproliferative diseases.
Izejviela jeb pēdējais starpprodukts ibrutiniba (I) sintēzē - savienojums (Π), kurš ietver ibrutiniba pamatstruktūru - pirazolo[3,4-d]pirimidīna biciklisko sistēmu ar (4-fenoksifenil)grupu 3. stāvoklī un N-neaizvietotu (piperidin-3-il)aizvietotāju pie slāpekļa atoma N-l. Ibrutiniba (I) iegūšana no savienojuma (II) notiek ar triviālām metodēm, acilējot to ar akrilskābi kondensējošo aģentu klātbūtnē vai ar akriloilhlorīdu. Savienojumu (II) iegūst no N(l')-aizsargāta starpprodukta (3), noņemot aizsarggrupu Pg ar zināmiem paņēmieniem.The starting material or the last intermediate in the synthesis of ibrutinib (I) - a compound (Π) that contains the basic structure of ibrutinib - the bicyclic system of pyrazolo [3,4-d] pyrimidine with the (4-phenoxyphenyl) group at the 3rd position and the N-unsubstituted (piperidine-3-) il) a substituent at the nitrogen atom N1. The preparation of Ibrutinib (I) from compound (II) is carried out by trivial methods, acylating it with acrylic acid in the presence of condensing agents or with acryloyl chloride. The compound (II) is obtained from N (l ') - a protected intermediate (3) by removing the protecting group Pg by known techniques.
Līdz šim aprakstītās starpprodukta (3) sintēzes metodes ar nelielām variācijām var sagrupēt divos ceļos: 1) Micunobu reakcija starp (3-aril-lH-pirazolo[3,4-d]pirimidin-4-il)amīnu (1) un N-aizsargātu 3-hidroksipiperidīnu (2) [1, 2]; 2) Suzuki reakcija starp (3-halogēn-lH-pirazolo[3,4-d]pirimidin-4-il)amīnu (4) un arilborskābes atvasinājumu (5) [3, 5].Methods of synthesis of intermediate (3) described so far with minor variations can be grouped in two ways: 1) Micunobes reaction between (3-aryl-1H-pyrazolo [3,4-d] pyrimidin-4-yl) amine (1) and N- protect 3-hydroxypiperidine (2) [1,2]; 2) Suzuki reaction between (3-halo-1H-pyrazolo [3,4-d] pyrimidin-4-yl) amine (4) and an arylboronic acid derivative (5) [3, 5].
Abos ibrutiniba izejvielas (II) sintēzes variantos izmanto Micunobu reakciju, kuras rezultātā mainās oglekļa atoma optiskā konfigurācija piperidīna fragmenta 3. pozīcijā. Tomēr literatūrā [11] ir ziņas par daļēju racemizāciju Micunobu reakcijas laikā, kas var pasliktināt produkta optisko tīrību.In both variants of ibrutinib starting material (II) synthesis, Micunobu reaction is used, resulting in a change in the optical configuration of the carbon atom in position 3 of the piperidine moiety. However, in the literature [11] there is information about partial racemization during the Micunobu reaction, which may impair the optical purity of the product.
Literatūrā [4] ir aprakstīts cits strapprodukta (3) sintēzes ceļš, kas neietver Micunobu reakciju. Tā pamatā ir savienojuma (6) reakcija ar (i?)-(piperidin-3-il)hidrazīnu (7) veidojot pirazolu (8), no kura reakcijā ar formamīdu iegūst pirazolo[3,4-d]pirimidīnu (3):In the literature [4] another synthesis pathway for the counter product (3), which does not include the Micunob reaction, is described. It is based on the reaction of the compound (6) with (II) - (piperidin-3-yl) hydrazine (7) to form the pyrazole (8) from which pyrazolo [3,4-d] pyrimidine (3) is obtained by reaction with formamide:
Izejvielu (6) iegūst no 4-fenoksibenzoskābes, pārvēršot to par hlorīdu, tad kondensējot ar malondinitrilu un metilējot (piem., ar dimetilsulfatu). Par optiski aktīvā hidrazīna (7) iegūšanas metodi patenta [4] autori nesniedz detalizētu informāciju.The raw material (6) is obtained from 4-phenoxybenzoic acid by conversion to chloride, then condensed with malondinitrile and methylation (e.g. dimethyl sulfate). The method for obtaining an optically active hydrazine (7) is not detailed in the patent [4].
Zināmām metodēm raksturīga sarežģītība un rūpniecībā neizdevīgu reaģentu izmantošana. Tā, Suzuki reakcija, ko izmanto aromātiska fragmenta ievadršanai starpsavienojuma (3) sintēzē, paredz nestabilas un dārgas arilborskābes izmantošanu, kā ari pirms tam pirazolo[3,4-djpirimidīha substrātā ir nepieciešams ievadīt halogēna atomu (Br vai I), kas prasa papildu stadiju un darbu ar specifiskiem, toksiskiem halogenēšanas reaģentiem. Divos no populārākiem ibrutiniba sintēzes ceļiem optiski aktīvā piperidīna fargmenta ievadīšanai izmanto Micunobu reakciju, kuras laikā var notikt daļēja racemizācija, kas var pasliktināt produkta kvalitāti. Cita metode, pēc kuras pirazola cikla veidošanai izmanto optiski aktīvo (piperidin-3-il)hidrazīna kondensāciju ar l,l-diciano-2-metoksi-2-(4-fenoksifenil)etilēnu, paredz samērā dārgas aizvietotās benzoskābes un toksisko reaģentu izmantošanu; arī optiski aktīvā (piperidin-3-il)hidrazma sintēze, ir sarežģīts process, jo tā detalizēts apraksts nav pieejams.Certain methods are characterized by complexity and the use of non-industrial reagents. Thus, the Suzuki reaction used to introduce an aromatic fragment into the synthesis of the interconnection (3) involves the use of unstable and expensive arylboronic acid, as well as prior to the addition of a halogen atom (Br or I) in the pyrazolo [3,4-d] pyrimidea substrate, which requires an additional step and work with specific, toxic halogenating reagents. Two of the most popular ibrutinib synthesis pathways for administering the optically active piperidine fumarate are Micunobu's reaction, which may result in partial racemization which may impair product quality. Another method of using the optically active (piperidin-3-yl) hydrazine condensation to form the pyrazole ring with 1,1-dicyano-2-methoxy-2- (4-phenoxyphenyl) ethylene involves the use of relatively expensive substituted benzoic acid and toxic reagents; also the synthesis of optically active (piperidin-3-yl) hydrazma is a complex process because its detailed description is not available.
Izgudrojuma kopsavilkums Tehniskā problēmaSummary of Invention Technical Problem
Tehnikas līmeņa novērtējums liecina, ka pastāv neapmierināta vajadzība pēc vienkāršāka un tehnoloģiski izdevīgāka alternatīva izejvielas (II) iegūšanas paņēmiena.Assessment of the state of the art shows that there is an unmet need for a simpler and more technologically advantageous alternative raw material extraction process (II).
Problēmas risinājumsSolution to the problem
Ibrutiniba izejvielas (II) sintēzē līdz šim netika pielietota tiešā pirazolpirimidīna C-arilēšana pirazola cikla 3. stāvoklī. Ir zināmi daži darbi, kuros parādīta iespēja tieši arilēt pirazola cikla C-3 atomu indazola gredzenā [7-10, 12, 13]. Nav zināma tādu indazolu arilēšana, kas benzola gredzenā satur aminogrupu. Tāpat nav zināma pirazolpirimidīnu arilēšana. Mūsu gadījumā problēmu sarežģī ne tikai potenciāli reaģētspējīgs C-6 atoms pirimidīna ciklā, bet arī aminogrupa 4-NH2. Mēs negaidīti atklājām, ka gan savienojums, kam aizsargāta NH un NH2 grupa (III, Pg2 φ H), gan savienojums ar neaizsargātu NH2 grupu (ΠΙ, Pg2 = H), reaģē ar l-brom-4-fenoksibenzolu pallādija katalizatora klātbūtnē (piemēram, Pd(OAc)2-l,10-fenantrolīna-Cs2CO3 sistēmā), veidojot savienojumu (IV), no kura pēc aizsarggrupu noņemšanas ar zināmām metodēm var viegli iegūt ibrutiniba izejvielu (Π). Piemēram, 4-(benziloksikarbonil)amino-l-[l-(benziloksikarbonil)piperidin-3-il]atvasinājums (III) (Pgi = Pg2 = Cbz) reaģē ar 1 -brom-4-fenoksibenzolu ar augstu konversiju, selektīvi veidojot savienojumu (IV) (Pgi = Pg2 = Cbz) ar labu iznākumu (76 %). Turpmākas hidrogenēšanas (H2, Pd/C, MeOH) rezultātā tiek noņemtas abas Cbz-aizsarggrupas, tādējādi iegūstot ibrutiniba izejvielu (II) ar brīvu NH2 grupu pirimidīna ciklā un brīvu NH-grupu piperidīna fragmentā, kas ar acilēšanas reakciju viegli pārvēršama par ibrutinibu (I).So far, the direct C-arylation of pyrazolpyrimidine at position 3 of the pyrazole cycle has not been used in the synthesis of Ibrutinib starting material (II). There are some works that show the possibility to directly arylate the C-3 atom of the pyrazole ring in the indazole ring [7-10, 12, 13]. The arylation of indazoles containing the amino group in the benzene ring is not known. Also, arylation of pyrazolpyrimidines is not known. In our case, the problem is complicated not only by the potentially reactive C-6 atom in the pyrimidine cycle, but also by the amino group 4-NH2. We unexpectedly discovered that both the compound protected by NH and NH2 (III, Pg2 φ H) and the compound with an unprotected NH2 group (ΠΙ, Pg2 = H) reacted with 1-bromo-4-phenoxybenzene in the presence of a palladium catalyst (e.g. , Pd (OAc) 2 -10-phenanthroline-Cs2CO3 system) to form compound (IV), from which after removal of the protecting groups by known methods it is easy to obtain ibrutinib starting material (Π). For example, 4- (benzyloxycarbonyl) amino-1- [1- (benzyloxycarbonyl) piperidin-3-yl] derivative (III) (Pgi = Pg2 = Cbz) reacts with 1-brom-4-phenoxybenzene with high conversion, selectively forming a compound (IV) (Pgi = Pg2 = Cbz) with good result (76%). Further hydrogenation (H2, Pd / C, MeOH) results in the removal of both Cbz-protecting groups, thereby obtaining ibrutinib feedstock (II) with free NH2 group in the pyrimidine cycle and free NH-group in the piperidine moiety, which is easily converted to ibrutinib by the acylation reaction (I ).
Turpinot tiešās C-arilēšanas reakcijas izpēti mēs pārsteidzoši atklājām, ka arī savienojums (III) ar neaizsargātu 4-NH2 grupu (Pgi = Boc, Pg2 = H) reaģē ar l-brom-4-fenoksibenzoluContinuing the study of direct C-arylation reaction, we surprisingly discovered that compound (III) with an unprotected 4-NH 2 group (Pgi = Boc, Pg 2 = H) reacts with 1-bromo-4-phenoxybenzene.
pallādija katalizatora klātbūtnē, veidojot savienojumu (IV) (Pgi - Boc, Pg2 = H) ar labu iznākumu (65 % un vairāk). Tomēr savienojuma (ΙΠ) arilēšanai, kaut arī tā iegūšanai jāievada 2 aizsarggrupas, ir preparatīvas priekšrocības, jo produkts (IV) ar divām aizsarggrupām ir vieglāk izolējams un attīrāms, un reakcijai ir labāks iznākums.Palladium in the presence of a catalyst to form compound (IV) (Pgi-Boc, Pg2 = H) with good yield (65% and more). However, arylation of the compound (ΙΠ), although it requires the introduction of 2 protecting groups, has a preparatory advantage as the product (IV) with the two protecting groups is easier to isolate and purify, and the reaction has a better outcome.
Salīdzinot šajos tiešās arilēšanas procesos iegūtā savienojuma (II) fizikāli-ķīmiskās īpašības un KMR spektrus ar attiecīgiem standarta parauga raksturojumiem, mēs konstatējām, ka šie savienojumi ir identiski. Tātad, neskatoties arī uz neaizsargātas 4-NH2-grupas klātbūtni, savienojuma (III) arilēšana pārsteidzoši notiek ar vēlamo reģioselektivitāti, kā pamatprodukts rodas tieši 3-arilatvasinājums (IV) (Pg2 = H), nevis iespējamie 4-arilamino- vai 6-arilizomēri. Savienojumi (ΙΠ) ar aizsargāto 4-NH2-grupu (piemēram, ar Boc- vai Cbz-aizsardzību) reaģē ar l-brom-4-fenoksibenzolu vēl vieglāk, reakcija notiek ātrāk un pie zemākas temperatūras. Šajā gadījumā novēro arī mazāku blakusproduktu saturu reakcijas maisījumā.By comparing the physico-chemical properties and NMR spectra of the compound (II) obtained in these direct arylation processes with the corresponding standard sample characteristics, we found that these compounds were identical. Thus, despite the presence of an unprotected 4-NH2-group, the arylation of compound (III) is surprisingly with the desired regioselectivity as the 3-aryl derivative (IV) (Pg2 = H), rather than the possible 4-arylamino or 6-aryl aromers as the main product. . Compounds (ΙΠ) with a protected 4-NH 2 group (e.g., with Boc- or Cbz-protection) react more easily with 1-bromo-4-phenoxybenzene, the reaction is faster and at a lower temperature. In this case, the lower content of the by-products in the reaction mixture is also observed.
Acilējot starpproduktu (II) ar akriloilhlorīdu zināmos apstākļos [1], iegūst ibrutinibu, kas pēc savām īpašībām ir identisks standarta savienojumam.Acylation of the intermediate (II) with acryloyl chloride under known conditions [1] yields ibrutinib, which by its nature is identical to the standard compound.
Izgudrojuma priekšrocībasAdvantages of the invention
Piedāvātais paņēmiens ļauj iegūt ibrutiniba izejvielu (II) ar labu iznākumu tiešās arilēšanas ceļā no zināmā [6] l-(piperidin-3-il)pirazolo[3,4-d]pirimidīn-4-amīna aizsargātajiem atvasinājumiem, kas satur aizsarggrupu pie piperidīna slāpekļa atoma vai tā analoga ar papildu aizsargāto 4-NH2-grupu. Veicot ibrutiniba izejvielas (II) sintēzi pēc šajā izgudrojumā piedāvātās metodes nav jāstrādā ar nestabilu un dārgu arilborskābi vai tās atvasinājumiem, kā arī ar toksiskiem fosfīna ligandiem. Tiešās C-arilēšanas reakcijai piemērotākie ligandi ir slāpekli saturošie heterocikli, piemēram: 1,10-fenantrolīns,.......2,2'-bipiridila atvasinājumi utt., kas ir viegli pieejami, maztoksiski, stabili gaisā un mitrumā, un nepieciešamības gadījumā var tikt reģenerēti no reakcijas maisījuma. Pallādija(II) sāļi, ko izmanto kā katalizatoru C-arilēšanā, reakcijas laikā reducējas līdz amorfajam Pd(0), kas ir viegli atdalāms no reakcijas maisījuma. Nepieciešamības gadījumā, veicot rūpnieciska mēroga sintēzes, pallādiju var pārvērst atpakaļ par vajadzīgo Pd(II) sāli. Aprakstītajā C-3 atoma arilēšanas reakcijā netiek skarts hirālais centrs - piperidīna cikla C-3 atoms, kas pievienots pie pirazola cikla N-l atoma, tādējādi produkta optiskā tīrība nepasliktinās. Ērta metode arilgrupas ievadīšanai ibrutiniba sintēzes beigu posmā ļauj arī viegli iegūt ibrutiniba analogu bibliotēkas turpmākiem bioloģiskiem pētījumiem, variējot ar reakcijā izmantojamajiem arilhalogenīdiem.The proposed technique allows to obtain ibrutinib feedstock (II) with good yield through direct arylation from the known [6] 1- (piperidin-3-yl) pyrazolo [3,4-d] pyrimidine-4-amine protected derivatives containing the piperidine protecting group a nitrogen atom or an analog thereof with an additional protected 4-NH 2 group. The synthesis of ibrutinib raw material (II) according to the present invention does not need to work with unstable and expensive arylboronic acid or its derivatives, as well as with toxic phosphine ligands. The most suitable ligands for the direct C-arylation reaction are nitrogen-containing heterocycles, such as: 1,10-phenanthroline, ....... 2,2'-bipyridyl derivatives, etc., which are readily available, toxic, stable in air and humidity, and if necessary, it can be recovered from the reaction mixture. Palladium (II) salts used as catalyst in C-arylation are reduced during reaction to amorphous Pd (0), which is readily separable from the reaction mixture. If necessary, palladium can be converted back to the desired Pd (II) salt by industrial scale synthesis. The described arylation reaction of the C-3 atom does not affect the chiral center, the C-3 atom of the piperidine ring attached to the N-1 atom of the pyrazole ring, thus the optical purity of the product is not impaired. A convenient method of administering an aryl group at the end of ibrutinib synthesis also makes it easy to obtain ibrutinib analogue libraries for further biological studies by varying the aryl halides used in the reaction.
Izgudrojuma realizācijas variantu aprakstsDescription of embodiments of the invention
Piedāvāto paņēmienu var realizēt dažādos šķīdinātājos, piem., toluolā, ksilolā, dimetilacetamīdā, diglimā, dioksānā, 1,2-dimetoksietānā vai to maisījumos. Kā katalizatoru var izmantot pallādija kompleksus vai sāļus, piem., Pd(OAc)2, PdCh, Pd(CF3COO)2, u.c. Kā ligandus var izmantot dažādus kompleksus veidojošus savienojumus, vislabāk - slāpekli saturošos heterociklus (1,10-fenantrolīnu, 2,2'-bipiridila atvasinājumus u.tml.). Kā bāzi reakcijā var izmantot dažādus sārmu metālu karbonātus, fosfātus, alkoksīdus, piem., CS2CO3, r-BuOK, u.c. Reakcijas temperatūra, atkarībā no atlasītajiem reaģentiem un šķīdinātāja, ir no 80 līdz 180 °C, reakcijas ilgums 4-48 stundas. Paņēmiena realizācijas piemēri sniegti tālāk.The proposed process can be carried out in a variety of solvents, such as toluene, xylene, dimethylacetamide, diglyme, dioxane, 1,2-dimethoxyethane or mixtures thereof. Palladium complexes or salts such as Pd (OAc) 2, PdCh, Pd (CF3COO) 2, etc. may be used as catalyst. Various complexing compounds, preferably nitrogen-containing heterocycles (1,10-phenanthroline, 2,2'-bipyridyl derivatives, etc.) can be used as ligands. A variety of alkali metal carbonates, phosphates, alkoxides such as CS2CO3, r-BuOK, etc. may be used as a base for the reaction. The reaction temperature, depending on the selected reagents and solvent, is between 80 and 180 ° C, the reaction time is 4-48 hours. Examples of how to implement the technique are given below.
PiemēriExamples
Boc-aizsargātais savienojums (III) (Pgi = Boc, Pg2 = H) un neaizsargātais analogs (Pgi = Pg2 = H) ir aprakstīti patentā [2]. No šīm izej vielām ar zināmām procedūrām sintezē arī N4,Nr-(Boc)2-aizsargāto savienojumu (III) (Pgi = Pg2 = Boc), kā arī N4,Nr-(Cbz)2-aizsargāto savienojumu (III) (Pgi = Pg2 = Cbz).Boc-protected compound (III) (Pgi = Boc, Pg2 = H) and unprotected analogue (Pgi = Pg2 = H) are described in the patent [2]. N4, N- (Boc) 2-protected compound (III) (Pgi = Pg2 = Boc) as well as N4, N- (Cbz) 2-protected compound (III) are also synthesized from these starting materials by known procedures Pg2 = Cbz).
1. piemērs. ierc-butil-(3i?)-3 - [4-amino-3 -(4-fenoksifenil)-1 H-pirazolo[3,4-d]pirimidin-1 -ilļpiperidīn-1 -karboksilāts) (IV, Pgi = Boc, Pg2 = H)Example 1: tert-butyl- (3 R) -3- [4-amino-3- (4-phenoxyphenyl) -1H-pyrazolo [3,4-d] pyrimidin-1-ylpiperidine-1-carboxylate) (IV, Pgi = Boc, Pg2 = H)
Reaktorā ievieto savienojumu (III) (Pgi = Boc, Pg2 = H) (318 mg, 1,00 mmol), Pd(OAc)2 (22 mg, 0,10 mmol), 1,10-fenantrolīnu (18 mg, 0,10 mmol), CS2CO3 (358 mg, 1,10 mmol), 1-brom-4-fenoksibenzolu (274 mg, 1,10 mmol) un ksilolu (5 ml). Ampulu aizpilda ar argonu, hermētiski noslēdz un silda pie 160 °C 24 h intensīvi maisot. Reakcijas beigās reaktoru atdzesē līdz istabas temperatūrai, uzmanīgi atver, reakcijas masu izlej EtOAc (20 ml), intensīvi maisa 5 min, filtrē caur celītu un ietvaicē vakuumā. Produktu attīra ar kolonasThe compound (III) (Pgi = Boc, Pg2 = H) (318 mg, 1.00 mmol), Pd (OAc) 2 (22 mg, 0.10 mmol), 1,10-phenanthroline (18 mg, 0 mg) is placed in the reactor. , 10 mmol), CS 2 CO 3 (358 mg, 1.10 mmol), 1-bromo-4-phenoxybenzene (274 mg, 1.10 mmol) and xylene (5 mL). The ampoule is filled with argon, sealed and heated at 160 ° C for 24 h with vigorous stirring. At the end of the reaction, the reactor is cooled to room temperature, carefully opened, the reaction mass poured into EtOAc (20 mL), stirred vigorously for 5 min, filtered through celite and evaporated in vacuo. The product is purified by columns
hromatogrāfījas palīdzību (eluents CHhCh-MeOH 20:1, produkta Rf — 0,5). Iznākums 234 mg (48 %), viskoza dzeltenīga eļļa. 2. piemērs. ferc-butil-(3i?)-3 -[4-amino-3 -(4-fenoksifenil)-1 H-pirazolo [3,4-d]pirimidin-l -ilļpiperidīn-1 -karboksilāts) (IV, Pgi = Boc, Pg2 = H)by chromatography (eluent CH2Cl2-MeOH 20: 1, product Rf-0.5). Yield: 234 mg (48%), viscous yellowish oil. Example 2: tert-butyl- (3 R) -3- [4-amino-3- (4-phenoxyphenyl) -1H-pyrazolo [3,4-d] pyrimidin-1-ylpiperidine-1-carboxylate) (IV, Pgi = Boc, Pg2 = H)
Reaktorā ievieto savienojumu (III) (Pgi = Boc, Pg2 = H) (636 mg, 2,00 mmol), Pd(OAc)2 (44 mg, 0,20 mmol), 1,10-fenantrolīnu (36 mg, 0,20 mmol), K2CO3 (304 mg, 2,20 mmol), 1-brom-4-fenoksibenzolu (548 mg, 2,20 mmol) un Ν,Ν-dimetilacetamīdu (DMA) (10 ml). Reaktoru aizpilda ar argonu, hermētiski noslēdz un silda pie 150 °C 16 h intensīvi maisot. Produktu izdala un attīra analoģiski aprakstītajam 1. piemērā. Iznākums 642 mg (66 %), viskoza dzeltenīga eļļa. Produkta analītiskie dati atbilst 1. piemērā iegūtā produkta datiem. 3. piemērs. ?erc-butil-(3i?)-3-[4-amino-3-(4-fenoksifenil)-l H-pirazolo [3,4-d]pirimidin-l -ilļpiperidīn-1 -karboksilāts) (IV, Pgi = Boc, Pg2 = H)The compound (III) (Pgi = Boc, Pg 2 = H) (636 mg, 2.00 mmol), Pd (OAc) 2 (44 mg, 0.20 mmol), 1,10-phenanthroline (36 mg, 0 mg) is placed in the reactor. , 20 mmol), K 2 CO 3 (304 mg, 2.20 mmol), 1-bromo-4-phenoxybenzene (548 mg, 2.20 mmol) and Ν, Ν-dimethylacetamide (DMA) (10 mL). The reactor is filled with argon, sealed and heated at 150 ° C for 16 h with vigorous stirring. The product is isolated and purified analogously to that described in Example 1. Yield: 642 mg (66%), viscous yellowish oil. The product analytical data corresponds to the product data of Example 1. Example 3: ? -butyl- (3?) - 3- [4-amino-3- (4-phenoxyphenyl) -1H-pyrazolo [3,4-d] pyrimidin-1-ylpiperidine-1-carboxylate) (IV, Pgi = Boc, Pg2 = H)
Reaktorā ievieto savienojumu (III) (Pgi = Boc, Pg2 = H) (636 mg, 2,00 mmol), Pd(OAc)2 (44 mg, 0,20 mmol), 4,4'-di(ferc-butil)-2,2'-bipiridīnu (54 mg, 0,20 mmol), K3PO4 (467 mg, 2,20 mmol), l-brom-4-fenoksibenzolu (548 mg, 2,20 mmol) un DMA (10 ml). Reaktoru aizpilda ar argonu, hermētiski noslēdz un silda pie 150 °C 48 h intensīvi maisot. Produktu izdala un attīra analoģiski aprakstītajam 1. piemērā. Iznākums 428 mg (44 %), viskoza dzeltenīga eļļa. Produkta analītiskie dati atbilst 1. piemērā iegūtā produkta datiem. 4. piemērs. .. ______In the reactor, compound (III) (Pgi = Boc, Pg2 = H) (636 mg, 2.00 mmol), Pd (OAc) 2 (44 mg, 0.20 mmol), 4,4'-di (tert-butyl) is added. ) -2,2'-bipyridine (54 mg, 0.20 mmol), K 3 PO 4 (467 mg, 2.20 mmol), 1-bromo-4-phenoxybenzene (548 mg, 2.20 mmol) and DMA (10 mL) ). The reactor is filled with argon, sealed and heated at 150 ° C for 48 h with vigorous stirring. The product is isolated and purified analogously to that described in Example 1. The yield was 428 mg (44%), a viscous yellowish oil. The product analytical data corresponds to the product data of Example 1. Example 4: .. ______
Benzil-(3i?)-3-[4-(benziloksikarbonilamino)-3-(4-fenoksifenil)-lH-pirazolo[3,4-d]pirimidin-l-il]piperidīn-l-karboksilāts) (IV, Pgi = Pg2 = Cbz)Benzyl- (3 R) -3- [4- (Benzyloxycarbonylamino) -3- (4-phenoxyphenyl) -1 H -pyrazolo [3,4-d] pyrimidin-1-yl] piperidine-1-carboxylate) (IV, Pgi = Pg2 = Cbz)
Reaktorā ievieto savienojumu (III) (Pgi = Pg2 = Cbz) (973 mg, 2,00 mmol), Pd(OAc)2 (44 mg, 0,20 mmol), 1,10-fenantrolīnu (54 mg, 0,20 mmol), CS2CO3 (716 mg, 2,20 mmol), 1-brom-4-fenoksibenzolu (548 mg, 2,20 mmol) un ksilolu (10 ml). Reaktoru aizpilda ar argonu, hermētiski noslēdz un silda pie 140 °C 16 h intensīvi maisot. Reakcijas beigās rektoru atdzesē līdz istabas temperatūrai, uzmanīgi atver, reakcijas masu izlej EtOAc (40 ml), intensīvi maisa 5 min, filtrē caur celītu un ietvaicē vakuumā. Produktu attīra ar kolonas hromatogrāfījas palīdzību (eluents EtOAc-heksāns 1:2, produkta Rf ~ 0,4). Iznākums 995 mg (76 %), balts amorfs pulveris. 5. piemērs. /erc-butil-(3i?)-3 - [4-(/erc-butoksikarbonilamino)-3 -(4-fenoksifenil)-1 H-pirazolo [3,4-d]pirimidin-l-il]piperidm-l-karboksilāts) (IV, Pgi = Pg2 = Boc)The compound (III) (Pgi = Pg2 = Cbz) (973 mg, 2.00 mmol), Pd (OAc) 2 (44 mg, 0.20 mmol), 1,10-phenanthroline (54 mg, 0.20 mg) is placed in the reactor. mmol), CS2CO3 (716 mg, 2.20 mmol), 1-bromo-4-phenoxybenzene (548 mg, 2.20 mmol) and xylene (10 mL). The reactor is filled with argon, sealed and heated at 140 ° C for 16 h with vigorous stirring. At the end of the reaction, the rector is cooled to room temperature, carefully opened, the reaction mass poured into EtOAc (40 mL), stirred vigorously for 5 min, filtered through celite and evaporated in vacuo. The product was purified by column chromatography (eluent EtOAc-hexane 1: 2, product Rf = 0.4). Yield: 995 mg (76%), white amorphous powder. Example 5: tert-Butyl- (3 R) -3- [4- (tert-Butoxycarbonylamino) -3- (4-phenoxyphenyl) -1H-pyrazolo [3,4-d] pyrimidin-1-yl] piperidine -carboxylate) (IV, Pgi = Pg2 = Boc)
Reaktorā ievieto savienojumu (III) (Pgi = Pg2 = Boc) (837 mg, 2,00 mmol), PdCh (35 mg, 0,20 mmol), 4,4'-di(/erc-butil)-2,2'-bipiridīnu (54 mg, 0,20 mmol), CS2CO3 (717 mg, 2,20 mmol), l-brom-4-fenoksibenzolu (548 mg, 2,20 mmol) un diglimu (10 ml). Reaktora aizpilda ar argonu, hermētiski noslēdz un silda pie 110 °C 20 h intensīvi maisot. Reakcijas beigās ampulu atdzesē līdz istabas temperatūrai, uzmanīgi atver, reakcijas masu izlej EtOAc (40 ml), intensīvi maisa 5 min, filtrē caur celītu un ietvaicē vakuumā. Produktu attīra ar kolonas hromatogrāfijas palīdzību (eluents EtOAc-heksāns 1:4, produkta Rf~ 0,3). Iznākums 727 mg (62 %), balts amorfs pulveris. 6. piemērs. 3-(4-fenoksifenil)-1 -[(3i?)-piperidin-3 -il]-1 H-pirazolo [3,4-d]pirimidīn-4-amīns (II) Savienojumu (IV) (Pgi = Pg2 = Boc) (2,93 g, 5,00 mmol) suspendē metanolā (15 ml). Pievieno 33 % HC1 (3 ml), reakcijas masu silda 4 h pie 50 °C intensīvi maisot (reakcijas laikā izdalās gāze!). Reakcijas beigās šķīdumu atdzesē un ietvaicē sausu (uzmanību! tvaiki satur HC1!). Atlikumam pievieno piesātināto Na2CC>3 šķīdumu (5 ml) un ekstraģē ar EtOAc (3x10 ml). Ekstraktu žāvē virs Na2S04 un ietvaicē vakuumā. Iznākums 1,89 g (98 %). Balta amorfa masa.Reactor (III) (Pgi = Pg 2 = Boc) (837 mg, 2.00 mmol), PdCl 2 (35 mg, 0.20 mmol), 4,4'-di (tert-butyl) -2,2 'bipyridine (54 mg, 0.20 mmol), CS 2 CO 3 (717 mg, 2.20 mmol), 1-bromo-4-phenoxybenzene (548 mg, 2.20 mmol) and diglyme (10 mL). The reactor is filled with argon, sealed and heated at 110 ° C for 20 h with vigorous stirring. At the end of the reaction, the ampoule was cooled to room temperature, carefully opened, the reaction mass poured into EtOAc (40 mL), stirred vigorously for 5 min, filtered through celite and evaporated in vacuo. The product was purified by column chromatography (eluent EtOAc-hexane 1: 4, product Rf = 0.3). Result: 727 mg (62%), white amorphous powder. Example 6. 3- (4-Phenoxyphenyl) -1 - [(3 R) -piperidin-3-yl] -1 H -pyrazolo [3,4-d] pyrimidine-4-amine (II) Compound (IV) (Pgi = Pg 2) = Boc) (2.93 g, 5.00 mmol) is suspended in methanol (15 mL). 33% HCl (3 ml) is added, the reaction mass is heated for 4 h at 50 ° C with vigorous stirring (gas is released during the reaction). At the end of the reaction, the solution is cooled and evaporated to dryness (the vapor contains HCl!). Saturated Na 2 CO 3 solution (5 mL) is added to the residue and extracted with EtOAc (3 x 10 mL). The extract is dried over Na2SO4 and evaporated in vacuo. Yield 1.89 g (98%). White amorphous mass.
No N4,N' -(Cbz)2-aizsargātā savienojuma (IV) (Pgi = Pg2 = Cbz) ar standarta hidrogenēšanas procedūru Pd/C katalizatora klātbūtnē ar 99 % iznākumu iegūst savienojumu (II), kas ir identisks augstāk iegūtajam no N4,N1'-(Boc)2-aizsargātā savienojuma (TV) (Pgi = Pg2 = Boc). Rūpnieciskā pielietojamībaFrom N4, N '- (Cbz) 2-protected compound (IV) (Pgi = Pg2 = Cbz) with a standard hydrogenation procedure in the presence of a Pd / C catalyst, 99% yield of compound (II) identical to that obtained from N4 above. N1 '- (Boc) 2-protected compound (TV) (Pgi = Pg2 = Boc). Industrial applicability
Paņēmiens ir realizējams farmaceitiskajā rūpniecībā izmantojamos apstākļos un aparatūrā. Tas ļauj iegūt produktu, kas attīrāms ar rutīnas metodēm līdz farmaceitiskai kvalitātei (>99 % pamatvielas saturs), viegli atdalāmiem piemaisījumiem un utilizējamiem atkritumiem.The technique is practicable in pharmaceutical industry conditions and apparatus. This allows a product to be purified by routine methods to pharmaceutical quality (> 99% base material content), readily separable impurities and waste for disposal.
LITERATŪRAS SARAKSTSLIST OF LITERATURE
Patentu literatūra [1] WO2008/121742.Patent Literature [1] WO2008 / 121742.
[2] US2008/007621.[2] US2008 / 007621.
[3] WO2012/158795.[3] WO2012 / 158795.
[4] WO2014/139970.[4] WO2014 / 139970.
[5] W02009/062118.[5] WO2009 / 062118.
[6] WO2012/058645. Pārējā literatūra [7] A. Ben-Yahia, M. Naas, S. E1 Kazzouli, E. M. Essassi, G. Guillaumet, Eur. J. Org. Chem., 7075 (2012).[6] WO2012 / 058645. Other Literature [7] A. Ben-Yahia, M. Naas, S. E1 Kazzouli, E. M. Essassi, G. Guillaumet, Eur. J. Org. Chem., 7075 (2012).
[8] M. Naas, S. E1 Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, J. Org. Chem., 79,7286 (2014).[8] M. Naas, S. E1 Kazzouli, E. M. Essassi, M. Bousmina, G. Guillaumet, J. Org. Chem., 79,7286 (2014).
[9] M. Ye, A. J. F. Edmunds, J. A. Morris, D. Sale, Y. Zhang, J.-Q. Yu, Chem. Sci., 4, 2374 (2013).[9] M. Ye, A.J.F. Edmunds, J.A. Morris, D. Sale, Y. Zhang, J.-Q. Yu, Chem. Sci., 4, 2374 (2013).
[10] A. Unsinn, P. Knochel, Chem. Commun., 48,2680 (2012).[10] A. Unsinn, P. Knochel, Chem. Commun., 48, 2680 (2012).
[11] T. S. Kaufman, Tetrahedron Lett., 37, 5329 (1996).[11] T. S. Kaufman, Tetrahedron Lett., 37, 5329 (1996).
[12] K. M. Engle, J.-Q. Yu, J. Org. Chem., 78, 8927 (2013).[12] M.M. Engle, J.-Q. Yu, J. Org. Chem., 78, 8927 (2013).
[13] M. Ye, G.-L. Gao, A. J. F. Edmunds, P. A. Worthington, J. A. Morris, J.-Q. Yu, J. Am. Chem. Soc., 133,19090 (2011).[13] M. Ye, G.-L. Gao, A.J. Edmunds, A.A. Worthington, J.A. Morris, J.-Q. Yu, J. Am. Chem. Soc., 133,19090 (2011).
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-15-98A LV15201B (en) | 2015-08-31 | 2015-08-31 | The method for the preparation of ibrutinib intermediate |
GB1800657.7A GB2556535B (en) | 2015-08-31 | 2015-11-13 | A method for preparation of ibrutinib precursor |
PCT/LV2015/000009 WO2017039425A1 (en) | 2015-08-31 | 2015-11-13 | A method for preparation of ibrutinib precursor |
CA2987708A CA2987708C (en) | 2015-08-31 | 2015-11-13 | A method for preparation of ibrutinib precursor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LVP-15-98A LV15201B (en) | 2015-08-31 | 2015-08-31 | The method for the preparation of ibrutinib intermediate |
Publications (2)
Publication Number | Publication Date |
---|---|
LV15201A true LV15201A (en) | 2017-03-20 |
LV15201B LV15201B (en) | 2017-07-20 |
Family
ID=54754721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LVP-15-98A LV15201B (en) | 2015-08-31 | 2015-08-31 | The method for the preparation of ibrutinib intermediate |
Country Status (4)
Country | Link |
---|---|
CA (1) | CA2987708C (en) |
GB (1) | GB2556535B (en) |
LV (1) | LV15201B (en) |
WO (1) | WO2017039425A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107674079B (en) * | 2017-09-27 | 2019-12-13 | 黑龙江珍宝岛药业股份有限公司 | Synthesis method of ibrutinib |
CN113200986A (en) * | 2021-04-29 | 2021-08-03 | 湖南华腾制药有限公司 | Preparation method of ibrutinib intermediate |
CN114940678B (en) * | 2021-09-26 | 2023-02-07 | 上海贵之言医药科技有限公司 | Pyrazolopyrimidine ester compound |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080007621A1 (en) | 2006-07-06 | 2008-01-10 | Sbc Knowledge Ventures, Lp | System and method of controlling access to an entrance |
EP2954900A1 (en) | 2007-03-28 | 2015-12-16 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EA201070572A1 (en) | 2007-11-07 | 2010-12-30 | Фолдркс Фармасьютикалз, Инк. | MODULATION OF TRANSPORT OF PROTEINS |
EP2632898A4 (en) | 2010-10-29 | 2014-04-02 | Biogen Idec Inc | Heterocyclic tyrosine kinase inhibitors |
US9376438B2 (en) * | 2011-05-17 | 2016-06-28 | Principia Biopharma, Inc. | Pyrazolopyrimidine derivatives as tyrosine kinase inhibitors |
PE20151652A1 (en) | 2013-03-15 | 2015-11-12 | Janssen Pharmaceutica Nv | PROCESS AND INTERMEDIATES TO PREPARE A MEDICINAL PRODUCT |
-
2015
- 2015-08-31 LV LVP-15-98A patent/LV15201B/en unknown
- 2015-11-13 GB GB1800657.7A patent/GB2556535B/en active Active
- 2015-11-13 WO PCT/LV2015/000009 patent/WO2017039425A1/en active Application Filing
- 2015-11-13 CA CA2987708A patent/CA2987708C/en active Active
Also Published As
Publication number | Publication date |
---|---|
GB2556535B (en) | 2020-10-14 |
CA2987708A1 (en) | 2017-03-09 |
CA2987708C (en) | 2022-08-02 |
GB201800657D0 (en) | 2018-02-28 |
LV15201B (en) | 2017-07-20 |
GB2556535A (en) | 2018-05-30 |
WO2017039425A1 (en) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7893103B2 (en) | Processes for the preparation of DPP IV inhibitors | |
CA2815506C (en) | Crystalline forms of 3-(imidazo[1,2-b]pyridazin-3-ylethynyl)-4-methyl-n-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide mono hydrochloride | |
EP3712140A1 (en) | Quaternary heteroatom containing compounds | |
CA3143490C (en) | Disubstituted pyrazole compounds as ketohexokinase inhibitors | |
Chang et al. | Parallel synthesis of natural product-like polyhydroxylated pyrrolidine and piperidine alkaloids | |
AU2010215524A1 (en) | Novel ortho-aminoamides for the treatment of cancer | |
LV15201A (en) | The method for the preparation of ibrutinib intermediate | |
KR101378260B1 (en) | Serotonin and norepinephrine reuptake inhibitor | |
BRPI0709220A2 (en) | coupling process for preparation of quinolone intermediates | |
Wei et al. | A new approach for the asymmetric syntheses of 2-epi-deoxoprosopinine and azasugar derivatives | |
Davies et al. | Asymmetric synthesis of 3, 4-anti-and 3, 4-syn-substituted aminopyrrolidines via lithium amide conjugate addition | |
Aga et al. | Natural (−)‐Vasicine as a Novel Source of Optically Pure 1‐Benzylpyrrolidin‐3‐ol | |
CN110914243B (en) | As AT 2 Carboxylic acid derivatives of R receptor antagonists | |
WO2023060362A1 (en) | Ras inhibitors, compositions and methods of use thereof | |
Chan et al. | Pyrrolidinones derived from (S)-pyroglutamic acid. Part 3. β-Aminopyrrolidinones | |
Weck et al. | Does the exception prove the rule? A comparative study of supramolecular synthons in a series of lactam esters | |
KR20110018370A (en) | Process for the preparation of rho-kinase inhibitor compounds | |
AU2018201013B2 (en) | Crystalline forms of 3-(imidazo[1,2-b]pyridazin-3-ylethynyl)-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide mono hydrochloride | |
KR101657616B1 (en) | Bicyclic derivatives containing pyrimidine ring and processes for the preparation thereof | |
Vargas-Caporali et al. | Synthesis of Diastereomeric Pyrrolidine Sulfamides via Anchimerically Assisted Nucleophilic Substitution Reactions | |
Smaliy et al. | Synthesis of CF3-bearing pyrrolidines by hydrogenation of trifluoroacetylated pyrrole derivatives | |
EA043635B1 (en) | DISubstituted pyrazole compounds as ketohexokinase inhibitors |