LV15084B - Composition of concrete coating for floors and method of its production - Google Patents

Composition of concrete coating for floors and method of its production Download PDF

Info

Publication number
LV15084B
LV15084B LVP-14-42A LV140042A LV15084B LV 15084 B LV15084 B LV 15084B LV 140042 A LV140042 A LV 140042A LV 15084 B LV15084 B LV 15084B
Authority
LV
Latvia
Prior art keywords
composition
production
gravel
mixture
water
Prior art date
Application number
LVP-14-42A
Other languages
Latvian (lv)
Other versions
LV15084A (en
Inventor
Pēteris Tukums
Dainis Kalnbunde
Uģis CĀBULIS
Original Assignee
Ritols, Sia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritols, Sia filed Critical Ritols, Sia
Priority to LVP-14-42A priority Critical patent/LV15084B/en
Publication of LV15084A publication Critical patent/LV15084A/en
Publication of LV15084B publication Critical patent/LV15084B/en

Links

Landscapes

  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

Izgudrojuma aprakstsDescription of the Invention

Piedāvātais izgudrojums attiecas uz celtniecību, konkrēti, uz grīdas pašizlīdzinošo maisījumu ražošanas tehnoloģijām jeb grīdas pārklājumu sastāviem un to iegūšanas paņēmieniem.The present invention relates to construction, in particular to technologies for the production of floor self-leveling compounds or floor coatings and methods of obtaining them.

Zināmais tehnikas līmenisKnown state of the art

Pašlaik pašizlīdzinošo grīdu ražošanā plaši izmanto dažādus plānos slāņus, kurus uzklāj uz svaiga vai nocietējuša betona slāņa. Bieži tiek pielietoti plānie slāņi uz poliuretāna bāzes (patenti US4273912, EP0677494, KR100732124, CN102167544, RU2139897). Mehāniskās izturības paaugstināšanai plāno slāņu sastāvā iekļauj smiltis vai oļus (GB2240977), taču tādu pārklājumu biezums nepārsniedz 1 līdz 5 mm, un tiem nav pietiekoša mehāniskā izturība un ilgizturība. Turklāt to uzklāšana uz svaigi ielieta betona ir tehnoloģiski sarežģīts uzdevums. Papildus jāatzīmē, ka tādi plānie slāņi nav izmantojami vecu betona grīdu remontam, jo tajās ir plaisas un bedres.Currently, various thin layers, which are applied on a fresh or hardened concrete layer, are widely used in the production of self-leveling floors. Thin layers based on polyurethane are often used (US4273912, EP0677494, KR100732124, CN102167544, RU2139897). Thin layers include sand or pebbles (GB2240977) to increase mechanical strength, but such coatings have a thickness not exceeding 1 to 5 mm and lack sufficient mechanical strength and durability. Moreover, applying them to freshly poured concrete is a technologically demanding task. In addition, it should be noted that such thin layers are not suitable for repairing old concrete floors because they have cracks and pits.

Grīdu pārklājumiem plaši izmanto arī poliuretāna bāzes betonu, kas ļauj iegūt no 10 līdz 12 mm biezus pārklājumus. Tādus sastāvus grīdām ražo, piemēram, šādas kompānijas: TROEGER GmbH, BASF AG, FLOWCRETE UK Ltd un RESDEV Ltd. No jau zināmajiem sastāviem vistuvākais pieteiktajam ir poliuretāna bāzes betona grīdas sastāvs, kas satur cementu, kvarca smiltis, granti, ūdeni, poliolu komponentu un poliizocianātu. Sastāva pagatavošanai cementu un smiltis samaisa ar poliolu, bet pēc tam pievieno poliizocianātu (Ohama Y. Perfomance of Building Materials using Polyurethane (Part 3). Annual Report of BRI (Kenchiku-Kenkyusho Nempo) April 1968-March 1969. 1969, pp. 605-619). Tādām grīdām piemīt augsta termiskā izturība pie temperatūrām diapazonā no -40 °C līdz +130 °C, augsta izturība pret ķīmisko vielu iedarbību, kā arī paaugstināta mehāniskā izturība.Polyurethane-based concrete is also widely used for floor coatings, which enables coatings with a thickness of 10 to 12 mm. Such flooring compositions are manufactured, for example, by TROEGER GmbH, BASF AG, FLOWCRETE UK Ltd and RESDEV Ltd. Of the known compositions, the closest to the application is a polyurethane-based concrete flooring composition containing cement, quartz sand, gravel, water, a polyol component and a polyisocyanate. For the composition, cement and sand are mixed with polyol and then polyisocyanate is added (Ohama Y. Perfomance of Building Materials Using Polyurethane (Part 3). Annual Report of BRI (Kenchiku-Kenkyusho Nempo) April 1968-March 1969. 1969, p. 605 -619). Such floors have high thermal resistance at temperatures from -40 ° C to +130 ° C, high chemical resistance and increased mechanical strength.

Par poliola komponentu izmanto naftas ķīmijas izejvielas, taču komponentiem, ko iegūst no naftas, piemēram, saliktajiem un vienkāršajiem poliesteru polioliem, ir vairāki trūkumi. Tādu salikto vai vienkāršo poliesteru poliolu izmantošana veicina naftas krājumu (neatjaunojamo resursu) izsīkšanu. Turklāt poliolu iegūšana ir ārkārtīgi energoietilpīga, ņemot vērā to, ka sākotnēji nafta ir jāiegūst (tātad jāveic urbumi), jāizpumpē un jātransportē uz naftas pārstrādes rūpnīcu, lai iegūtu destilētus un attīrītus ogļūdeņražus, kurus pēc tam pārvērš alkoksīdos un visbeidzot poliolos. Tā kā sabiedrība aizvien vairāk ir nobažījusies par šīs ražošanas ķēdes ietekmi uz vidi, tiek pieprasīta ekoloģiski tīrāku produktu ražošanas apjoma palielināšana. Lai samazinātu naftas rezervju izsīkšanu, vienlaikus apmierinot šo pieaugošo patērētāju pieprasījumu, no naftas iegūtos vienkāršos vai saliktos poliestera poliolus, ko izmanto poliuretānu elastomēru un putu ražošanā, būtu izdevīgi daļēji vai pilnībā aizstāt ar universālākiem atjaunojamiem un ekoloģiski pieņemamiem komponentiem (Саундерс Д., Фриш К. Химия полиуретанов. М.: Химия, 1968). Dabisko eļļu, kuras galvenokārt tiek izmantotas pārtikas rūpniecībā, izmantošana poliuretāna bāzes betona ražošanā palielina galaprodukta izmaksas. Turklāt arī dabisko eļļu resursi ir ierobežoti, un to izmantošanai nepieciešamas sarežģītas iepriekšējas sagatavošanas operācijas to attīrīšanas nolūkos.The polyol component uses petrochemical feedstocks, but there are several disadvantages to petroleum derived components, such as compound and simple polyester polyols. The use of such compound polyols or simple polyesters contributes to the depletion of oil (non-renewable) resources. In addition, the extraction of polyols is extremely energy intensive, considering that oil must first be extracted (and thus drilled), pumped and transported to a refinery for the production of distilled and purified hydrocarbons, which are subsequently converted into alkoxides and finally into polyols. As the public is increasingly concerned about the environmental impact of this production chain, there is a demand for increased production of eco-friendly products. To reduce oil depletion while meeting these increasing consumer demand, it would be advantageous to partially or fully replace oil-derived simple or compound polyester polyols used in the production of polyurethane elastomers and foams with more universal renewable and environmentally acceptable components (Saunders Д., Фриш Химия полиуретанов (M. Химия, 1968). The use of natural oils, which are mainly used in the food industry, in the production of polyurethane-based concrete increases the cost of the final product. In addition, natural oils have limited resources and require complex pre-treatment operations to purify them.

Izgudrojuma mērķis un būtībaPurpose and substance of the invention

Izgudrojuma mērķis ir paplašināt grīdas pašizlīdzinošo maisījumu izejvielu klāstu, vienlaikus ierobežojot poliolu, kas iegūti no augu izejvielām, izmantošanu, kā arī samazināt uz restaurējamās grīdas uzklātā maisījuma sastingšanas laiku.The object of the present invention is to expand the range of raw materials for floor self-leveling compounds, while limiting the use of polyols derived from vegetable raw materials, and to reduce the cure time of the mixture applied to the floor to be restored.

Mērķis tiek sasniegts tā, ka sastāvā, ko uzklāj kā pārklājumu uz betona grīdām ш kas satur cementu, dzēstos kaļķus, kvarca smiltis, granti, ūdeni, poliolu un poliizocianātu, par poliolu izmanto tallu eļļas estera un rīcineļļas maisījumu attiecībās no 1:4 līdz 1:6.The objective is achieved by using a mixture of tall oil ester and castor oil in a ratio of 1: 4 to 1 as the polyol in the composition applied as a coating on concrete floors ш containing cement, slaked lime, quartz sand, gravel, water, polyol and polyisocyanate. : 6.

Betona grīdu pārklājuma sastāvu iegūst ar ražošanas paņēmienu, kurš secīgi ietver pakāpenisku minerālo komponentu sajaukšanu un poliuretānu veidojošo komponentu pievienošanu un ir raksturīgs ar to, ka iepriekš tiek iegūts maisījums no rīcineļļas un tallu eļļas estera, no kura pēc tam iegūst emulsiju ūdenī. Minerālo komponentu grupu veido cements, kvarca smiltis, dzēstie kaļķi un grants ar daļiņu izmēru no 2 līdz 8 mm, bet poliuretānu veidojošie komponenti ir rīcineļļa, tallu eļļas esteris un poliizocianāts.The composition of the concrete floor coating is obtained by a manufacturing process which successively involves the mixing of the mineral components and the addition of the polyurethane-forming components and is characterized by the prior preparation of a mixture of castor oil and tall oil ester, which subsequently forms an emulsion in water. The mineral component group consists of cement, quartz sand, slaked lime and gravel with a particle size of 2 to 8 mm, while the polyurethane-forming components are castor oil, tall oil ester and polyisocyanate.

Tallu eļļa ir tumšas krāsas šķidrs organisks savienojums ar asu smaku, lielākoties nepiesātināto sveķskābju un taukskābju maisījums, ko iegūst kā blakusproduktu celulozes vārīšanā ar sulfāta paņēmienu.Tall oil is a dark-colored liquid organic compound with a pungent odor, mainly a mixture of unsaturated resin acids and fatty acids, obtained as a by-product of the sulphate process of cooking cellulose.

Tallu eļļas esteris ir šķidrums ar skābes skaitli no 2 līdz 5 mg KOH/g, ar hidroksilskaitli no 140 līdz 360 mg KOH/g un ar dinamisko viskozitāti no 160 līdz 200 cP.Tall oil ester is a liquid with an acid number of 2 to 5 mg KOH / g, a hydroxyl number of 140 to 360 mg KOH / g and a dynamic viscosity of 160 to 200 cP.

Izgudrojuma detalizēts izklāstsDETAILED DESCRIPTION OF THE INVENTION

Grīdas pašizlīdzinošā sastāva komponentu saturs masas % ir šāds:The content by weight of the components of the self-leveling screed is as follows:

• cements - no 10 līdz 14 %, • kvarca smiltis - no 30 līdz 35 %, • dzēstie kaļķi - no 4,5 līdz 6,0 %, • grants ar daļiņu izmēru no 2 līdz 8 mm - no 32 līdz 33 %, • rīcineļļa - no 4,6 līdz 7 %, • tallu eļļas esteris - no 0,8 līdz 1,5 %, • poliizocianāts - no 9 līdz 11 %, • ūdens - no 2,3 līdz 2,8 %.• cement - 10 to 14% • quartz sand - 30 to 35% • slaked lime - 4.5 to 6.0% • gravel with a particle size of 2 to 8 mm - 32 to 33%, • Castor oil - 4.6 to 7% • Tall oil ester - 0.8 to 1.5% • Polyisocyanate - 9 to 11% • Water - 2.3 to 2.8%.

Sastāvu betona grīdu pārklāšanai iegūst ar paņēmienu, kurš ietver šādus secīgus soļus: rīcineļļas un tallu eļļas estera maisījuma emulģēšanu ūdenī, iegūtās emulsijas samaisīšanu ar polizocianātu, iegūtā maisījuma iemaisīšanu iepriekš sagatavotā maisījumā no cementa, kvarca smiltīm un dzēstajiem kaļķiem, sastāva samaisīšanu. Iegūto sastāvu uzklāj uz grīdas 8 līdz 10 minūšu laikā, slāni izlīdzina pēc biežuma.The composition for coating concrete floors is obtained by a process comprising the following sequential steps: emulsifying a mixture of castor oil and tall oil ester in water, mixing the resulting emulsion with a polysocyanate, mixing the resulting mixture in a pre-prepared mixture of cement, quartz sand and slaked lime. The resulting composition is applied to the floor within 8 to 10 minutes, smoothed by frequency.

Zemāk 1. tabulā ir norādītas optimālās sastāvdaļu koncentrācijas trīs dažādiem sastāviem, bet 2. tabulā ir norādīti sastāvu raksturlielumi salīdzinājumā ar plaši pazīstamu analoģisku sastāvu, ko ražo kompānija FLOWCRETE UK Ltd (sastāviem ar robežkoncentrācijām ir pazemināti raksturlielumi).Table 1 below lists the optimum concentrations of the ingredients for the three different formulations, while Table 2 lists the composition characteristics as compared to the well-known analogue formulation manufactured by FLOWCRETE UK Ltd (for formulations with lower concentrations).

1. tabulaTable 1

Sastāvs, masas % Composition,% by weight 1. sastavs Composition 1 2. sastavs Composition 2 3. sastavs Composition 3 Cements Cement 11,1 11.1 13,1 13.1 11,0 11.0 Kvarca smiltis Quartz Sand 32,0 32.0 30,8 30.8 31,7 31.7 Dzēstie kaļķi Slaked lime 4,7 4.7 5,9 5.9 4,7 4.7 Grants ar daļiņu izmēru no 2 līdz 8 mm Gravel with a particle size of 2 to 8 mm 33,6 33.6 32,3 32.3 33,3 33.3 Rīcineļļa Castor oil 4,7 4.7 4,6 4.6 6,0 6.0 Tallu eļļas esteris Tall oil ester 1,0 1.0 0,9 0.9 1,5 1.5 Poliizocianāts Polyisocyanate 10,3 10.3 9,9 9.9 9,7 9.7 Ūdens Water 2,6 2.6 2,5 2.5 2,2 2.2

2. tabulaTable 2

Raksturlielums Characteristic 1. sastavs Composition 1 2. sastavs Composition 2 3. sastavs Composition 3 Flowcrete HF sastāvs Flowcrete HF The composition Laiks 20 °C temperatūrā, kura diapazonā materiāls jāizstrādā (pot life), min Time at 20 ° C (pot life) min 10 10th 10 10th 8 8th 15 15th Laiks 20 °C temperatūrā, pēc kura var staigāt pa materiāla virsmu, h Time at 20 ° C to walk on material surface, h 8 8th 8 8th 6 6th 24 24th Laiks 20 °C temperatūrā, pēc kura var braukt pa materiāla virsmu, h Time at 20 ° C to allow passage of material surface, h 24 24th 24 24th 16 16th 48 48 Stiprība spiedē, MPa Compressive strength, MPa 50,5 50.5 42,4 42.4 38,7 38.7 >50 > 50 Stiprība liecē, MPa Bending strength, MPa 12,6 12.6 14,6 14.6 10,8 10.8 12-20 12-20 Adhēzijas stiprība, MPa Adhesion strength, MPa >1,5 > 1.5 >1,5 > 1.5 >1,5 > 1.5 >1,5 > 1.5

Secināms, ka piedāvātā sastāva fizikālie raksturlielumi ir salīdzināmi ar plaši pielietoto kompānijas FLOWCRETE UK Ltd sastāvu, un, pateicoties tallu eļļas estera izmantošanai, sastāva sastingšanas laiks ir samazinājies 3 līdz 4 reizes.It can be concluded that the physical properties of the offered composition are comparable to the widely used composition of FLOWCRETE UK Ltd, and due to the use of tall oil ester, the composition hardening time has been reduced by 3 to 4 times.

Claims (4)

PretenzijasClaims 1. Betona grīdas pārklājuma sastāvs, kas ietver cementu, dzēstos kaļķus, kvarca smiltis, granti, ūdeni, poliolu un poliizocianātu un ir raksturīgs ar to, ka par poliolu tiek izmantots no rīcineļļas un tallu eļļas estera maisījums attiecībās no 4:1 līdz 6:1.Composition of a concrete floor covering comprising cement, slaked lime, quartz sand, gravel, water, polyol and polyisocyanate, characterized in that a mixture of castor oil and tall oil ester is used as polyol in a ratio of 4: 1 to 6: 1. 2. Sastāvs saskaņā ar 1. pretenziju, kas raksturīgs ar to, ka tā komponentu saturs masas % ir šāds:Composition according to claim 1, characterized in that its content by weight is as follows: • cements - no 10 līdz 14 %, • kvarca smiltis - no 30 līdz 35 %, • dzēstie kaļķi - no 4,5 līdz 6,0 %, • grants - no 32 līdz 33 %, • rīcineļļa - no 4,6 līdz 7 %, • tallu eļļas esteris - no 0,8 līdz 1,5 %, • poliizocianāts - no 9 līdz 11 %, • ūdens - no 2,3 līdz 2,8 %.• cement 10 to 14% • quartz sand 30 to 35% • slaked lime 4.5 to 6.0% • gravel 32 to 33% • castor oil 4.6 to 4% 7%, • Tall oil oil ester, 0.8 to 1.5%, • Polyisocyanate, 9 to 11%, • Water, 2.3 to 2.8%. 3. Sastāvs saskaņā ar 1. un 2. pretenziju, kas raksturīgs ar to, ka grants daļiņu izmērs ir no 2 līdz 8 mm.Composition according to claims 1 and 2, characterized in that the gravel particles have a size of 2 to 8 mm. 4. Betona grīdas pārklājuma sastāva saskaņā ar jebkuru no 1. līdz 3. pretenzijai iegūšanas paņēmiens, kas secīgi ietver pakāpenisku minerālo komponentu sajaukšanu un iepriekš iegūta poliuretānu veidojošo komponentu maisījuma pievienošanu minerālo komponentu maisījumam, raksturīgs ar to, ka poliuretānu veidojošo komponentu maisījuma iegūšanai tiek izmantota emulsija no ūdens, rīcineļļas un tallu eļļas estera.A process for preparing a concrete floor coating composition according to any one of claims 1 to 3, which comprises sequentially mixing the mineral components and adding a previously obtained mixture of polyurethane-forming components to the mixture of mineral components, characterized in that emulsion of water, castor oil and tall oil ester.
LVP-14-42A 2014-05-22 2014-05-22 Composition of concrete coating for floors and method of its production LV15084B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-14-42A LV15084B (en) 2014-05-22 2014-05-22 Composition of concrete coating for floors and method of its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-14-42A LV15084B (en) 2014-05-22 2014-05-22 Composition of concrete coating for floors and method of its production

Publications (2)

Publication Number Publication Date
LV15084A LV15084A (en) 2015-12-20
LV15084B true LV15084B (en) 2016-06-20

Family

ID=54846288

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-14-42A LV15084B (en) 2014-05-22 2014-05-22 Composition of concrete coating for floors and method of its production

Country Status (1)

Country Link
LV (1) LV15084B (en)

Also Published As

Publication number Publication date
LV15084A (en) 2015-12-20

Similar Documents

Publication Publication Date Title
DK3081599T3 (en) PLANT-BASED BINDING MATERIALS, COMPOSITIONS THEREOF AND PROCEDURE TO REDUCE THE QUANTITY OF OIL-BASED BITUM
EP2193107B1 (en) Method for producing mineral-bearing cover layers for floor coverings
MX2014006554A (en) Asphalt compositions having improved properties and related coatings and methods.
JP2010538954A5 (en)
EP3129332B1 (en) Polyurethane hybrid system combining high compressive strength and early water resistance
KR102303024B1 (en) A coating system
AU2015206268A1 (en) Cement compositions, structures, and methods of use
KR102188825B1 (en) Waterproof Asphalt Concrete Composition for Overlay Pavement Having Petroleum Resin Added Hydrogen, Stylene Isoprene Stylene and Aggregate-powder of Improved Grain Size and Constructing Methods Using Thereof
JP5938976B2 (en) Repair method for concrete structures
DK3081600T3 (en) PLANT ORIGIN OF THE PLANT ORIGIN, COMPOSITIONS INCLUDING THE SAME, AND PROCEDURE TO REDUCE THE QUANTITY OF THE OIL BITUM
Atmajayanti et al. The effect of recycled coarse aggregate (RCA) with surface treatment on concrete mechanical properties
KR101801833B1 (en) Inorganic-based Paint Composition for Spraying and Method for Preparing Floor Finish Structure Using the Same
EP2785667B1 (en) Repair method for road pavings, in particular for open-pore asphalts
EP2874969A2 (en) Dried, unfired material from at least one silicate-containing base material and a water-repelling agent, and method for producing same
US9221996B2 (en) Process for repairing road surfacing systems, in particular for open-pore asphalts
LV15084B (en) Composition of concrete coating for floors and method of its production
CN102816501A (en) Seam binding agent with modified fatty amine as epoxy curing agent resin
CN116102317A (en) Preparation method of weather-resistant decorative water-based polyurethane cool mortar color sand self-leveling floor material
KR101326532B1 (en) Liquid-phase polyurea-based composition having excellent perviousness
WO2010060881A1 (en) Recycling of road surfaces
EP3004250B1 (en) Method of preparing a curable bituminous binder, and method of preparing a surface layer containing the binder, and surface layer comprising the cured binder
KR101412771B1 (en) The composition for floor finishing material of construct and the preparation method thereof
KR102677336B1 (en) Mastic asphalt concrete composition used for building flooring and construction method of building floor using the same
KR102699815B1 (en) Liquid mixed flooring composition with excellent adhesion and crack resistance, manufacturing method, and construction method thereof
CN101880136B (en) Mortar for high sand rate ethylene sand injection and preparation method thereof