LV14948B - Flying sonar-buoy device - Google Patents

Flying sonar-buoy device Download PDF

Info

Publication number
LV14948B
LV14948B LVP-14-86A LV140086A LV14948B LV 14948 B LV14948 B LV 14948B LV 140086 A LV140086 A LV 140086A LV 14948 B LV14948 B LV 14948B
Authority
LV
Latvia
Prior art keywords
isbn
sonar
aerial vehicle
unmanned aerial
edition
Prior art date
Application number
LVP-14-86A
Other languages
Latvian (lv)
Other versions
LV14948A (en
Inventor
Andrejs Zvaigzne
Aleksandrs Pavlovičs
Vladimirs PETROVS
Original Assignee
Latvijas Jūras Akadēmija
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Latvijas Jūras Akadēmija filed Critical Latvijas Jūras Akadēmija
Priority to LVP-14-86A priority Critical patent/LV14948B/en
Publication of LV14948A publication Critical patent/LV14948A/en
Publication of LV14948B publication Critical patent/LV14948B/en

Links

Landscapes

  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The purpose of invention is to increase the determination efficiency of object coordinates under water that is achieved by location of searching sonar (5) in unmanned aerial vehicle (1) equipped with a winch (4) for lowering or lifting sonar antennas, system (2) for flight and sonar operation control, as well as with communication system including the radio transmitter (3) for data transmission from sonar buoy. The unmanned aerial vehicle (1) is launched from ships, aircraft or shore with its task to reflect rapidly the underwater situation.

Description

Izgudrojuma aprakstsDescription of the Invention

Izgudrojums atteicas uz fiziku, konkrēti - uz objekta koordinātu noteikšanu.The invention relates to physics, in particular to the determination of object coordinates.

Sonorus izmanto, lai noteiktu zemūdens objekta koordinātes un kustības parametrus. Sonorus uzstāda uz kuģiem un tie var tikt iebūvēti korpusā, būt nolaižami vai velkami [1, 2, 4], kā arī var būt uzstādīti uz helikopteriem, un tie var būt nolaižami, velkami [2] un/vai stacionāri nosēdināti uz grunts [4], Lidmašīnas un helikopteri izmanto vienreizējās akustiskās bojas. Pēdējos gados plaši attīstās bezpilota lidojoši aparāti [5, 6], kas dažādās nozarēs nodrošina dažādu uzdevumu izpildi no novērošanas līdz preces piegādei [7].Sonorus is used to determine the coordinates and motion parameters of an underwater object. Sonorus are installed on ships and can be mounted in the hull, be retractable or towed [1, 2, 4], and mounted on helicopters, and can be retractable, towed [2] and / or stationary on the ground [4 ], Aircraft and helicopters use disposable acoustic buoys. In recent years, unmanned aerial vehicles [5, 6] have been extensively developed, providing various tasks in various sectors from observation to delivery [7].

Ņemot vērā akustiskā signāla specifiku un ierobežotos izplatīšanās attālumus jūras vidē, lai nodrošinātu zemūdens objekta atklāšanu, kā arī noteiktu tā koordinātes un kustības elementus, sonoru neesošām platformām ir jāpārvar lieli attālumi. Kuģiem, kas kustas ar relatīvi nelielu ātrumu, tas prasa lielus enerģētisko, finansiālo un laika resursu ieguldījumus. Lidaparātu izmantošana zemūdens objektu meklēšanā padara operāciju daudz ātrāku, bet līdz ar to daudz dārgāku. Izmantojot vienreizējās akustiskās bojas, process būtiski sadārdzinās, jo vienas bojas cena ir no 50000 $ līdz 150000 $.Due to the specificity of the acoustic signal and the limited propagation distances in the marine environment, non-sonor platforms need to overcome long distances to provide detection of the underwater object, as well as its coordinates and motion elements. For vessels operating at relatively low speeds, this requires significant investment in energy, financial and time. Using aircraft to search for underwater objects makes the operation much quicker, but therefore more expensive. The cost of disposable acoustic buoys is significantly higher, as the cost of one buoy is between $ 50,000 and $ 150,000.

Izgudrojuma mērķis ir zemūdens objekta koordināttu noteikšanas procesa efektivitātes paaugstināšana, darbības paātrināšana, procesa izmaksu un vides piesārņojuma samazināšana. Tas ir sasniegts tādējādi, ka zemūdens objektu meklēšanas sonors tiek izvietots uz bezpilota lidojošā aparāta. Piedāvātā lidojošā sonorboja (Fig.l), kas izvietota uz bezpilota lidojoša aparāta ar koaksiālo propeleru (1), satur vadības sistēmu lidojuma un sonora darbības kontrolei (2), sistēmu raidītāja datu pārraidei (3), vinču sonora antenas nolaišanai/pacelšanai (4) un sonora (5 ).The object of the invention is to increase the efficiency of the process of determining the coordinates of an underwater object, to speed up its operation, to reduce the cost of the process and to reduce environmental pollution. This is achieved by placing the underwater object search sonor on an unmanned flying machine. The proposed flying sonorboy (Fig. 1), located on an unmanned flying apparatus with a coaxial propeller (1), includes a control system for flight and sonor control (2), a transmitter data transmission (3), a winch sonor antenna lowering / lifting (4). ) and sonora (5).

Piedāvātā lidojošā sonorbojas ierīce darbojas sekojoši: atlidojot līdz noteiktai vietai, ierice nolaiž sonoru uzstādītā dziļumā un veic ūdens slāņu apsekošanu. Pēc apsekošanas, atkarīgi no rezultāta vai taktiskā uzdevuma, ierīce turpina apsekošanu uzdotajā vietā vai pārlido uz jauno vietu un atkārto operāciju.The proposed flying sonorboy device works as follows: When it arrives at a specific location, the device lowers the sonor to the depth set and inspects the water layers. After the inspection, depending on the result or tactical task, the device continues the survey at the given location or flies to the new location and repeats the operation.

Šajā izgudrojumā piedāvātā ierice paaugstina zemūdens objekta koordinātu noteikšanas procesa efektivitāti, jo sonoram, kas izvietots uz bezpilota lidojoša aparāta, ir daudz mazāks sagatavošanas laiks darbībai, tas ir daudzkārt ekonomiskāks par lidmašīnu, helikopteru vai kuģi, ir ātrāks par kuģi, piesārņo dabu daudz mazāk nekā pārējie sonora nesēji un atšķirībā no vienreizējās lietošanas sonorbojām var tikt izmantota daudzreiz. Atsevišķos gadījumus lidojošā sonorboja var tikt palaista no krasta, tādējādi vispār neizmantojot kuģi vai pilotējamus lidaparātus kā sonora nesējplatformas.The device of the present invention enhances the efficiency of the underwater object coordinate determination process because sonor deployed on an unmanned aerial vehicle has much less time to operate, is much more economical than an airplane, helicopter or ship, is faster than a ship, pollutes nature less other sonora carriers and unlike single use sonorphs can be used multiple times. Occasionally, a flying sonoroy may be launched from the shore, thereby avoiding the use of a ship or manned aircraft at all as sonor carrier platforms.

Sonorbojas saskaņā ar izgudrojumu rūpnieciskai izmantošanai to palaiž no krasta, kuģiem vai lidaparātiem ātrai zemūdens situācijas atspoguļošanai. To var pielietot jūras spēki zemūdeņu, ūdenslīdēju vai mīnu meklēšanai, zvejnieki vai zvejniecības uzraudzības iestāžu darbinieki zivju meklēšanai vai zivju populācijas kontrolei, hidrogrāfijas dienesta speciālisti jūras gultnes apsekošanai un citas organizācijas, kam ir interese par zemūdens situāciju.Sonorboy is launched, according to the invention for industrial use, from the shore, ships or aircraft for a rapid reflection of the underwater situation. It can be used by naval forces to search for submarines, divers or mines, fishermen or fishery control officers for fish search or fish population control, hydrographic service specialists for seabed survey and other organizations with an interest in the underwater situation.

Claims (7)

Informācijas avoti:Sources of information: 1. Burdic, William S. “Underwater acoustic system analysis”(2nd edition); Publishing House: Englewood Cliffs, N.J.: Prentice Hall, 1991; ISBN: 0139476075,466p.1. Burdic, William S. "Underwater acoustic system analysis" (2nd edition); Publishing House: Englewood Cliffs, N.J .: Prentice Hall, 1991; ISBN: 0139476075,466p. 2. Atherton, Mark M. “ Echoes and Images, The Encyclopedia of SideScan and Scanning Sonar Operations” ISBN: 978-0-9869034-0-3 Publishing House: Oysterlnk Publications, Vancouver, BC, Canada2. Atherton, Mark M. "Echoes and Images, The Encyclopedia of SideScan and Scanning Sonar Operations" ISBN: 978-0-9869034-0-3 Publishing House: Oysterlnk Publications, Vancouver, BC, Canada 3. Urick, Robert J. “Title: Principles of undenvater sound Edition” 3rd edition,ISBN: 0070660875, Publishing House: McGraw-Hill, New York. 1983. (Peninsula Publishing) 423 p.3. Urick, Robert J. "Title: Principles of Undenvater Sound Edition" 3rd edition, ISBN: 0070660875, Publishing House: McGraw-Hill, New York. 1983. (Peninsula Publishing) 423 p. 4. Stefanick, Tom. “Strategic antisubmarine warfare and naval strategy” ISBN: 0669140155, Izdevniecība: Lexington, Mass. : Lexington Books, cl987. (Peninsula Publishing), 390 llp.4. Stefanick, Tom. Strategic antisubmarine warfare and naval strategy ISBN: 0669140155, Publisher: Lexington, Mass. : Lexington Books, cl987. (Peninsula Publishing), 390 llp. 5. Unmanned Aircraft Systems: UAVS Design, Development and Deployment. Reg Austiņ John Wiley & Sons, 2011,5. Unmanned Aircraft Systems: UAVS Design, Development and Deployment. Reg Headset John Wiley & Sons, 2011, 6. Design & Development of a UAV Autonomous Control System: UAV Remotely Operated Mobile Based Station with Configurable Capabilities Paperback July 15, 2014, by Muhammad Arslan Amin Dhoraiiwala (Author), Uzair Ahmed Chughtai (Author), Sagib Munawwar (Editor)6. Design & Development of a UAV Autonomous Control System: UAV Remotely Operated Mobile Based Station with Configurable Capabilities Paperback July 15, 2014, by Muhammad Arslan Amin Dhoraiiwala (Author), Uzair Ahmed Chughtai (Author), Sagib Munawwar (Editor) 7. Unmanned Aircraft Systems: Strengths and Weaknesses; Dāvid G. CasosNova Science Publishers, Incorporated, 20097. Unmanned Aircraft Systems: Strengths and Weaknesses; David G. CasosNova Science Publishers, Incorporated, 2009 PretenzijaClaim 1. Lidojoša sonorbojas ierīce, kas satur bezpilota lidojošu aparātu ar koaksiālu propelleru, sonoru un vinču, atšķirīga ar to, ka sonors, vinča un bezpilota lidojošais aparāts ar koaksiālo propelleru, vadības sistēmu un raidītāju ir apvienoti kopējā sistēmā, kas ļauj ātri un ekonomiski veikt zemūdens situācijas novērošanu.1. An airborne sonorboy device comprising an unmanned aerial vehicle with a coaxial propeller, sonor and winch, characterized in that the sonor, winch and unmanned aerial vehicle with a coaxial propeller, control system and transmitter are combined to provide a fast and economical operation. underwater monitoring.
LVP-14-86A 2014-11-04 2014-11-04 Flying sonar-buoy device LV14948B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-14-86A LV14948B (en) 2014-11-04 2014-11-04 Flying sonar-buoy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-14-86A LV14948B (en) 2014-11-04 2014-11-04 Flying sonar-buoy device

Publications (2)

Publication Number Publication Date
LV14948A LV14948A (en) 2015-01-20
LV14948B true LV14948B (en) 2015-03-20

Family

ID=52296892

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-14-86A LV14948B (en) 2014-11-04 2014-11-04 Flying sonar-buoy device

Country Status (1)

Country Link
LV (1) LV14948B (en)

Also Published As

Publication number Publication date
LV14948A (en) 2015-01-20

Similar Documents

Publication Publication Date Title
US10768299B2 (en) Vessel-towed multiple sensor systems and related methods
Verfuss et al. A review of unmanned vehicles for the detection and monitoring of marine fauna
Meyer Glider technology for ocean observations: A review
RU2710831C1 (en) Self-propelled hydroacoustic buoy-beacon and navigation equipment method of sea area
JP5354638B2 (en) Underwater object search system
KR20110108435A (en) The monitering system for a vessle using a uav
US20040065247A1 (en) Unmanned underwater vehicle for tracking and homing in on submarines
Packard et al. Hull inspection and confined area search capabilities of REMUS autonomous underwater vehicle
RU2013127618A (en) METHOD FOR DETECTING MARINE PURPOSES
Piskura et al. Development of a robust Line Capture, Line Recovery (LCLR) technology for autonomous docking of AUVs
US20090262600A1 (en) Methods and apparatus for surveillance sonar systems
RU2639000C1 (en) Mobile overwater multirobot system for handling operation on lighting and monitoring of aquatoria state
Johnston et al. Deployment of a passive acoustic monitoring (PAM) array from the AutoNaut wave-propelled unmanned surface vessel (USV)
Hayashi et al. Customizing an Autonomous Underwater Vehicle and developing a launch and recovery system
RU2709059C1 (en) Underwater situation illumination method and device for its implementation
Silber et al. Report of a workshop to identify and assess technologies to reduce ship strikes of large whales: providence, Rhode Island, 8-10 July 2008
CN106952554A (en) A kind of special civil-military inosculation fishing boat sonar system of teenager's research in defense-related science and technology
de Sousa et al. Experiments in multi-vehicle operations: the rapid environmental picture Atlantic exercise 2014
LV14948B (en) Flying sonar-buoy device
RU2650298C1 (en) Search underwater vehicle and method of its application
KR20100073958A (en) 3d forward looking sonar system for minimizing ship-strike and method thereof
Nakatani et al. Dives of cruising-AUV “JINBEI” to methane hydrate area on Joetsu knoll and Umitaka Spur
Murphy et al. The role of autonomous underwater vehicles for marine search and rescue operations
RU2210087C1 (en) Method of location of flying vehicle above water area from submarine ship
Bauk et al. Key features of the autonomous underwater vehicles for marine surveillance missions