LV13870B - Method for increasing stability of biodiesel against their oxidation during storage - Google Patents

Method for increasing stability of biodiesel against their oxidation during storage Download PDF

Info

Publication number
LV13870B
LV13870B LVP-08-204A LV080204A LV13870B LV 13870 B LV13870 B LV 13870B LV 080204 A LV080204 A LV 080204A LV 13870 B LV13870 B LV 13870B
Authority
LV
Latvia
Prior art keywords
biodiesel
diesel
bio
working solution
antioxidant
Prior art date
Application number
LVP-08-204A
Other languages
Latvian (lv)
Other versions
LV13870A (en
Inventor
Valdis Kampars
Ruta Kampare
Jana Kreicberga
Original Assignee
Univ Rigas Tehniska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Rigas Tehniska filed Critical Univ Rigas Tehniska
Priority to LVP-08-204A priority Critical patent/LV13870B/en
Publication of LV13870A publication Critical patent/LV13870A/en
Publication of LV13870B publication Critical patent/LV13870B/en

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Abstract

The present invention relates to the production and application of fuels for unmodified diesel engine, more particularly to the production and application of bio-diesel (fatty acid alkyl esters, obtained from vegetable oils, animal fats, algae or from food industry utilizable refuse-fats) alone or blended with conventional petrol-diesel. The high content of unsaturated fatty acid esters in bio-diesel causes addition of anti-oxidant additives. With a purpose to increase stability of bio-diesel against their oxidation during storage as well to prolong storage-time, up to now there are used anti-oxidants from oil- or coal-processing products. The worked out method for increasing stability of bio-diesel is based on uses of anti-oxidants in form of working solution that are obtained from fast-pyrolysis products of lignocellulosic materials. The working solution is obtained by dissolving anti-oxidant in methyl-tert-butylether or mixture of methyl-tert-butylether/acetone. The obtained working solution containing anti-oxidant with concentration 8 to 19 weight-percent is added to bio-diesel in the way that provides change of anti-oxidant concentration range from 0.01 to 0.1 weight-percent. The method allows both effective increasing stability of bio-diesel and obtaining fuel under the Standard EN 14214 without uses of fossil sources.

Description

Izgudrojums attiecas uz iekšdedzes dzinēju degvielu ražošanas un izmantošanas nozari, konkrēti uz biodīzeļa (augu eļļu, aļģu eļļu, dzīvnieku tauku un atkritumu eļļu alkilesteru) ražošanu un izmantošanu. Tas nodrošina biodīzeļa un jauktu degvielu stabilitāti atbilstoši standartu EN 590 un EN 14214 prasībām, izmantojot no biomasas iegūtu antioksidantu.The invention relates to the production and use of internal combustion engine fuels, in particular to the production and use of biodiesel (alkyl esters of vegetable oils, algae oils, animal fats and waste oils). It provides stability for biodiesel and blended fuels in accordance with the requirements of EN 590 and EN 14214, using an antioxidant derived from biomass.

Tehnikas līmeņa, analogu un prototipa analīzeAnalysis of state of the art, analogs and prototype

Biodīzelis ir taukskābju alkilesteru (parasti metilesteru, FAME) maisījums, ko iegūst no augu eļļas vai dzīvnieku taukiem, vai arī pārtikas rūpniecībā izmantoto taukvielu atlikumiem reakcijā ar attiecīgo spirtu katalizatora klātbūtnē. Biodīzelis ir pašreiz nozīmīgākā 1. paaudzes biodegviela Eiropā un tā izmantošanas apjoms galvenokārt jauktu degvielu veidā palielinās, pozitīvais efekts saistās ar siltumnīcas gāzes un citu kaitīgo izmešu samazināšanos. Salīdzinot biodīzeļa un naftas dīzeļa ekspluatācijas īpašības jāatzīst, ka tam ir arī tādas īpašības, kuras nepieciešams uzlabot ar speciālu piedevu palīdzību. Viena no tām ir relatīvi augsta nestabilitāte attiecībā pret oksidēšanos ar gaisa skābekli, kas samazina biodīzeļa uzglabāšanas laiku un var izraisīt nopietnas problēmas iekšdedzes dzinēju normālai darbībai. Oksidēšanās stabilitātes paaugstināšana biodīzelim ir problēma, bez kuras atrisināšanas šī biodegviela nevar ieņemt tai plānoto nozīmīgo vietu citu degvielu tirgū. Minētā nestabilitāte ir saistīta ar lielu nepiesātināto taukskābju īpatsvaru no rapšu, saulespuķu vai sojas eļļas iegūtajā biodīzelī un ir novēršama tikai izmantojot antioksidantus [1,2]. Konkrētas prasības biodīzeļa oksidēšanās stabilitātei (standarts LVS ΕΝ 14214)[3] un attiecīgo raksturojumu noteikšanas metode (standarts EN 14112) [4] ir izstrādātas un ieguvušas EN standartu statusu. Bez antioksidantu pievienošanas no rapšu eļļas sintezētajam biodīzelim standartā EN14214 definētās prasības izpildīt praktiski nav iespējams, tādēļ antioksidantu izmantošana biodīzeļa sastāvā praksē tiek plaši realizēta. Patentos DE10252714, [5] DE10252715 [6] un US 2004139649 [7] biodīzeļa stabilizēšanai izstrādāts paņēmiens, kurš balstās uz populārā un labi zināmā sintētiskā antioksidanta - 2,6-di-terc-butil-4hidroksitoluola izmantošanu koncentrācijās no 0,001 līdz 2 masas % (5 m/m). Šajos patentos izstrādāta arī antioksidanta darba šķīdumu sagatavošana, gatavojot koncentrētus šķīdumus biodīzelī, kurus pēc tam vajadzīgajā daudzumā pievieno gala produktam. Šajos patentos aprakstītā metode ir vienīgā praksē plaši lietotā metode, kura pazīstama kā piedevas Baynox izmantošana un ir uzskatāma par izstrādātā paņēmiena prototipu. Sintētisku mono- un dialkilhidroksitoluolu un fenolu maisījumu ar zemu kušanas temperatūru izmantošana koncentrācijās no 0,001 līdz 2 % m/m izstrādāta patentos DE 10252714 un DE 102005015474 AI [8]. Visi minētie patenti ir izstrādātā paņēmiena analogi, jo tajos atspoguļotā biodīzeļa stabilitātes paaugstināšana tiek panākta ar antioksidanta piedevu palīdzību. Visos minētajos gadījumos antioksidanta iegūšanas izejviela ir fosilais kurināmais, kura ieguve un izmantošana saistīta ar siltumnīcas gāzes emisiju, kuras samazināšana ir viens no svarīgākajiem šodienas tehniskajiem uzdevumiem. Minēto patentēto paņēmienu izmantošana nedod iespēju iegūt degvielu, kura pilnā apjomā būtu iegūta no biomasas un būtu 100% atjaunojama.Biodiesel is a mixture of alkyl esters of fatty acids (usually methyl esters, FAME) obtained from vegetable oils or animal fats or residues of the fats used in the food industry in the presence of a catalyst. Biodiesel is currently the most important 1st generation biofuel in Europe, and its use is mainly in the form of blended fuels, with the positive effect of reducing greenhouse gases and other harmful emissions. Comparing the performance of biodiesel and petroleum diesel, it should be noted that it also has properties that need to be improved with special additives. One is the relatively high instability of oxidation with oxygen in the air, which reduces the shelf life of biodiesel and can cause serious problems with the normal operation of internal combustion engines. Increasing the stability of oxidation to biodiesel is a problem without which it will not be able to occupy its intended significant position in the market for other fuels. This instability is due to the high proportion of unsaturated fatty acids in rapeseed, sunflower or soybean oil biodiesel and can only be eliminated by using antioxidants [1,2]. The specific requirements for the oxidation stability of biodiesel (standard LVS ΕΝ 14214) [3] and the method for the determination of the relevant characteristics (standard EN 14112) [4] have been developed and obtained the status of EN standards. Without the addition of antioxidants to rapeseed oil synthesized biodiesel, the requirements defined in standard EN14214 are virtually impossible to meet, so the use of antioxidants in biodiesel is widely practiced. DE10252714, [5] DE10252715 [6] and US 2004139649 [7] developed a process for stabilizing biodiesel based on the use of the popular and well-known synthetic antioxidant - 2,6-di-tert-butyl-4-hydroxytoluene at concentrations of 0.001 to 2% by weight. (5 m / m). These patents also develop the preparation of antioxidant working solutions by preparing concentrated solutions in biodiesel which are then added to the final product in the required amounts. The method described in these patents is the only method widely used in practice known as the Baynox additive and is considered a prototype of the technique developed. The use of low melting mixtures of synthetic mono- and dialkylhydroxytoluenes and phenols at concentrations of 0.001 to 2% w / w has been developed in DE 10252714 and DE 102005015474 AI [8]. All of these patents are analogues of the invented process, as they increase the stability of the biodiesel represented by antioxidant additives. In all these cases, the source of the antioxidant is fossil fuels, the extraction and use of which is associated with greenhouse gas emissions, the reduction of which is one of the most important technical challenges today. The use of these proprietary techniques does not make it possible to obtain fuel that is entirely biomass-based and 100% renewable.

Šī izgudrojuma mērķis ir izstrādāt paņēmienu, kurš būtu vismaz tik pat efektīvs kā piedevas Baynox izmantošana (nevajadzētu lietot augstākas antioksidanta koncentrācijas kā Baynox gadījumā) un nodrošinātu standartos EN 590 un EN 14214 minētās vai augstākas prasības attiecībā uz biodīzeļa un jauktu degvielu oksidēšanās stabilitāti, izmantojot no biomasas iegūtus antioksidantus un tādējādi nodrošinot 100% atjaunojama biodīzeļa iegūšanas iespēju.The object of the present invention is to provide a method which is at least as effective as Baynox additive (should not use higher antioxidant concentrations than Baynox) and provides the requirements of EN 590 and EN 14214 for oxidation stability of biodiesel and blended fuels from antioxidants derived from biomass and thus provide 100% renewable biodiesel.

Lai izvirzīto mērķi sasniegtu, oksidēšanās stabilitātes uzlabošanai kā antioksidantu izmanto no biomasas (lignocelulozes) pirolīzes eļļas izdalītu fenolu maisījumu, kuru izmanto darba šķīduma metil-terc-butilēterī vai metil-ferc-butilētera acetona maisījuma ar koncentrāciju no 8 līdz 19 masas % (% m/m) pagatavošanai, kuru pievieno biodīzelim daudzumos, kas nodrošina antioksidanta koncentrāciju no 0,001 līdz 2,0 % m/m, bet praktiski pievieno biodīzelim tādos daudzumos, kas nodrošina antioksidanta koncentrāciju no 0,01 līdz 0,1 % m/m. Antioksidanta koncentrācija diapazonā no 0,01 līdz 0,1 % m/m nodrošinātu tādu biodīzeļa stabilitāti, kura atbilst standarta EN 14214 prasībām un kuru raksturo saskaņā ar EN 14112 testu noteikts indukcijas periods virs 6 stundām. Augstāka antioksidanta koncentrācija ļauj paaugstināt indukcijas periodu virs 20 stundām. Biodīzelis, kura stabilitāti paaugstina izstrādātā paņēmiena izmantošanas rezultātā var tikt sintezēts no augu vai aļģu eļļām, dzīvnieku taukiem vai pārtikas rūpniecībā izmantotu taukvielu otrreizējām izejvielām.In order to achieve this goal, a mixture of phenols isolated from biomass (lignocellulose) pyrolysis oil is used as antioxidant in methyl tert-butyl ether or a mixture of methyl tert-butyl ether in acetone at a concentration of 8 to 19% (w / w) as an antioxidant. / m) for the preparation which is added to the biodiesel in amounts sufficient to provide an antioxidant concentration of 0.001 to 2.0% w / w, but practically added to the biodiesel in amounts providing an antioxidant concentration of 0.01 to 0.1% w / w. Antioxidant concentrations in the range of 0.01 to 0.1% w / w would provide biodiesel stability that meets the requirements of standard EN 14214 and is characterized by an induction period of over 6 hours in accordance with EN 14112. Higher concentration of antioxidant allows to increase the induction period over 20 hours. Biodiesel, the stability of which is improved by the application of the process, can be synthesized from vegetable or algae oils, animal fats or secondary raw materials used in the food industry.

Pievienoto tabulu aprakstsDescription of attached tables

Tabulā 1 apkopoti saskaņā ar standartu EN 14112 veiktie testēšanas rezultāti (tā saucamie Rancimat testu rezultāti) no augu eļļām un pārtikas rūpniecības otrreizējām izejvielām sintezētiem biodīzeļiem (taukskābju metilesteriem, FAME). Izstrādātais paņēmiens ar no lignocelulozes materiālu ātrās pirolīzes eļļas iegūto fenolu piedevām salīdzināts ar piedevas Baynox izmantošanas rezultātiem, lietojot vienus un tos pašus antioksidantu daudzumus. Redzams, ka izstrādātā paņēmiena efektivitāte ir vienāda vai augstāka par prototipa efektivitāti.Table 1 summarizes the test results according to EN 14112 (so called Rancimat test results) for biodiesel (fatty acid methyl esters, FAME) synthesized from vegetable oils and secondary raw materials for the food industry. The developed method with phenol additives obtained from lignocellulosic material fast pyrolysis oil was compared with the results of using Baynox additive using the same amounts of antioxidants. It can be seen that the efficiency of the developed technique is equal to or higher than the efficiency of the prototype.

Tabulā 2 apkopoti dati par darba šķīduma sagatavošanas veidiem un iegūto darba šķīdumu izmantošanu. Dotajās robežās (no lignocelulozes materiālu ātrās pirolīzes eļļas iegūto fenolu saturs 8-19 % m/m, acetona saturs 0-20% v/v) izmainītais darba šķīduma sastāvs praktiski neietekmē izstrādātā paņēmiena raksturojumus, kuri ir atkarīgi tikai no antioksidanta koncentrācijas gala produktā - biodīzelī.Table 2 summarizes the working solution preparation and use of the resulting working solutions. Within the given limits (phenol content of lignocellulosic material rapid pyrolysis oil content 8-19% w / w, acetone content 0-20% v / v), the composition of the working solution has practically no effect on the characteristics of the developed method, which depend only on the concentration of antioxidant in the final product. biodiesel.

No lignocelulozes materiālu atras pirolīzes eļļas iegūto fenolu piedevu izmantošana biodīzeļa stabilitātes paaugstināšanaiUse of phenolic additives derived from lignocellulosic material pyrolysis oil to increase biodiesel stability

Tabula 1Table 1

N.p. k. N.p. k. Biodizelis Biodiesel Indukcijas periods bez piedevas, h Induction period without additives, h Antioksidanta daudzums degvielā un degvielas raksturojums Amount of antioxidant in the fuel and characteristics of the fuel Indukcijas periods ar tāda paša daudzuma Baynox piedevu, h Induction period with the same amount of Baynox additive, h Daudzums, % m/m Quantity,% w / w Indukcijas periods, h Induction period, h No rapša eļļas Of rapeseed oil 5,8 5.8 0,001 0.001 5,8 5.8 5,8 5.8 5,8 5.8 0,01 0.01 6,0 6.0 6,0 6.0 5,8 5.8 0,02 0.02 6,3 6.3 6,2 6.2 5,1 5.1 0,05 0.05 7,2 7.2 7,2 7.2 5,0 5.0 0,1 0.1 7,7 7.7 7,6 7.6 5,0 5.0 0,5 0.5 16,5 16.5 16,5 16.5 5,0 5.0 1,0 1.0 21,2 21.2 21,0 21.0 5,4 5.4 2,0 2.0 27,5 27.5 27,5 27.5 4,6 4.6 0,05 0.05 6,1 6.1 - - 4,6 4.6 0,065 0.065 6,8 6.8 - - 4,6 4.6 0,1 0.1 8,0 8.0 - - 4,6 4.6 0,2 0.2 10,8 10.8 10,8 10.8 4,6 4.6 0,33 0.33 12,8 12.8 - - 4,6 4.6 0,65 0.65 17,5 17.5 - - 4,6 4.6 1,0 1.0 21,3 21.3 - - 4,4 4.4 0,05 0.05 5,9 5.9 - - 4,4 4.4 0,1 0.1 7,3 7.3 - - 4,4 4.4 0,2 0.2 9,7 9.7 - - No saulespuķu eļļas Of sunflower oil 4,1 4.1 0,1 0.1 6,8 6.8 6,6 6.6 4,1 4.1 0,2 0.2 8,7 8.7 8,6 8.6 No otrreizējām izejvielām From secondary raw materials 4,1 4.1 0,1 0.1 7,1 7.1 7,0 7.0 4,0 4.0 0,2 0.2 10,0 10.0 10,0 10.0

Darba šķīdumu pagatavošanas veidiWays of preparing working solutions

Tabula 2Table 2

N.p. k. N.p. k. Indukcijas periods bez piedevas Induction period without additive Darba šķīduma raksturojumi Characteristics of the working solution No Iignocelulozes materiālu ātrās pirolīzes eļļas iegūto fenolu piedevas daudzums degvielā un degvielas raksturojums Amount of phenolic additive in fuel and characteristics of high pyrolysis oil from pyrolysis of Iignocellulosic materials Pirofenolu saturs, % m/m Pyrophenol content,% m / m *Metil-/ercbutil ētera daudzums, % v/v * Amount of methyl / ercbutyl ether, % v / v Acetona daudzums, % v/v Acetone content,% v / v Daudzums, % m/m Quantity,% w / w Indukcijas periods, h Induction period, h 1 1 4,6 4.6 8 8th 100 100 0 0 0,1 0.1 8 8th 2 2 4,1 4.1 19 19th 80 80 20 20th 0,1 0.1 7,0 7.0 3 3 4,5 4.5 12 12th 90 90 10 10th 0,1 0.1 7,3 7.3 4 4 4,0 4.0 8 8th 100 100 0 0 0,05 0.05 6,1 6.1 5 5 4,0 4.0 8 8th 80 80 20 20th 0,05 0.05 6,2 6.2 6 6th 4,0 4.0 19 19th 80 80 20 20th 0,05 0.05 6,1 6.1 7 7th 4,0 4.0 15 15th 90 90 10 10th 0,05 0.05 6,2 6.2

* % v/v - tilpuma procenti*% v / v - Volume percent

Izgudrojuma detalizēts iztirzājumsDETAILED DESCRIPTION OF THE INVENTION

Izgudrojumu realizē veicot sekojošas darbības un ievērojot sekojošus noteikumus.The invention is accomplished by the following operations and the following rules.

1. No Iignocelulozes materiālu ātrās pirolīzes eļļas iegūto antioksidantu izmanto darba šķīduma pagatavošanai. Darba šķīdumu gatavo reaktorā ar atteces dzesinātāju, šķīdinot no Iignocelulozes materiālu ātrās pirolīzes eļļas iegūtos fenolus līdz 20-40 °C uzsildītā metil-Zerc-butilēterī vai metil-Zerc-butilētera acetona maisījumā. Šķīdinātāju maisījumā acetona koncentrācija nepārsniedz 20%, bet no Iignocelulozes materiālu ātrās pirolīzes eļļas iegūto fenolu saturs darba šķīdumā mainās no 8 līdz 19 % m/m.1. An antioxidant derived from rapid pyrolysis oil of lignocellulosic materials is used to prepare a working solution. The working solution is prepared in a reactor with a reflux condenser by dissolving phenols derived from lignocellulosic material rapid pyrolysis oil in methyl-tert-butyl ether or methyl-tert-butyl ether in acetone, heated to 20-40 ° C. The concentration of acetone in the solvent mixture does not exceed 20%, but the content of phenols obtained from the fast pyrolysis oil of lignocellulosic materials varies from 8 to 19% w / w in the working solution.

2. Izvēlēto darba šķīduma tilpumu sajauc ar izvēlēto biodīzeļa tilpumu, iegūstot stabilizētu 100% atjaunojamu (no biomasas iegūtu) biodīzeli ar noteiktu pirofenolu saturu un standartam EN 14214 vai citām izvirzītajām prasībām atbilstošu oksidēšanās indukcijas periodu. No Iignocelulozes materiālu ātrās pirolīzes eļļas iegūto fenolu aktivitāte ir salīdzināma vai nedaudz augstāka par Baynox (prototips) aktivitāti (tabulai) un ir atkarīga tikai no Iignocelulozes materiālu ātrās pirolīzes eļļas iegūto fenolu koncentrācijas biodīzelī (tabula 2). Lai nodrošinātu tādu biodīzeļa stabilitāti, kura atbilst standarta EN 14214 prasībām un kuru raksturo saskaņā ar EN 14112 testu noteikts indukcijas periods virs 6 stundām, atkarībā no biodīzeļa sākotnējās stabilitātes nepieciešams pievienot pirofenolus koncentrāciju robežās no 0,01 līdz 0,1 % m/m (tabulas 1 un 2). Lielākas no Iignocelulozes materiālu ātrās pirolīzes eļļas iegūtu fenolu koncentrācijas ļauj paaugstināt indukcijas periodu virs 20 stundām, kas vairāk nekā 3 reizes pārsniedz standarta EN 14214 prasīto.2. The selected volume of working solution is mixed with the selected volume of biodiesel to produce a stabilized 100% renewable (biomass) biodiesel with a defined pyrophenol content and an oxidation induction period in accordance with EN 14214 or other requirements. The activity of phenols obtained from the fast pyrolysis oil of lignocellulosic materials is comparable to or slightly higher than that of the Baynox (prototype) (Table) and depends only on the concentration of phenols obtained from the lignolous pyrolysis oil of lignocellulosic materials in biodiesel (Table 2). Depending on the initial stability of the biodiesel, it is necessary to add pyrophenols in the concentration range of 0.01 to 0.1% w / w to ensure the stability of biodiesel meeting the requirements of EN 14214 and characterized by an induction period of over 6 hours according to EN 14112. Tables 1 and 2). Higher concentrations of phenols derived from lignocellulosic material fast pyrolysis oils allow an increase in the induction period of over 20 hours, more than 3 times the amount required by standard EN 14214.

Izgudrojuma realizācijas piemēri.Examples of realization of the invention.

1. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 5,8 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar no lignocelulozes materiālu ātrās pirolīzes eļjas iegūto fenolu (pirofenolu) saturu 0,001 % m/m un1. Using the rapeseed oil biodiesel with an induction period of 5.8 h according to EN 14112 test, 2 new test samples shall be prepared: 1. phenol (pyrophenol) content of lignocellulosic material fast pyrolysis oil of 0.001% w / w and

2. ar 2,6-di-/erc-butil-4-hidroksitoluola saturu 0,001 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1.-5,8 h; 2. 5,8 h.2. having a content of 0.001% w / w of 2,6-di- tert -butyl-4-hydroxytoluene. The prepared samples shall be tested according to EN 14112. Results obtained: 1.-5.8 h; 2. 5.8 h.

2. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 5,8 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,01 % m/m un 2. ar 2,6-di-/erc-butil-4-hidroksitoluola saturu 0,01 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1.6,0 h; 2. - 6,0 h.2. Using a rapeseed oil biodiesel with an induction period of 5.8 h according to EN 14112 test, 2 new test samples shall be prepared: 1. with a content of pyrophenols of 0.01% w / w and 2. with 2,6-di- / tert-butyl 4-hydroxytoluene content of 0.01% w / w. The samples prepared shall be tested in accordance with EN 14112. Results obtained: 1.6,0 h; 2. - 6.0 h.

3. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 5,8 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,02 % m/m un 2. ar 2,6-di-/erc-butiI-4-hidroksitoluola saturu 0,02 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1. 6,3 h; 2. - 6,2 h.3. Using a rapeseed oil biodiesel with an induction period of 5.8 h according to EN 14112 test, 2 new test samples shall be prepared: 1. with a content of pyrophenols of 0.02% w / w and 2. with 2,6-di- / erc-butyl-4-hydroxytoluene content of 0.02% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1. 6.3 h; 2 - 6.2 h.

4. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 5,1 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,05 % m/m un 2. ar 2,6-di-/erc-butil-4-hidroksitoluola saturu 0,05 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1. 7.2 h; 2. - 7,2 h.4. Using the rapeseed oil biodiesel with an induction period of 5.1 hours according to EN 14112 test, 2 new test samples shall be prepared: 1. with a content of pyrophenols of 0.05% w / w and 2. with 2,6-di- / content of tert-butyl 4-hydroxytoluene 0.05% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1. 7.2 h; 2 - 7.2 h.

5. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 5,0 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,1 % m/m un 2. ar 2,6-di-/erc-butil-4-hidroksitoluola saturu 0,1 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1. 7,7 h; 2. - 7,6 h.5. Using new rapeseed oil biodiesel with an induction period of 5.0 h after EN 14112 test, prepare 2 new test samples: 1. with pyrophenol content 0.1% w / w and 2. with 2,6-di- / tert-butyl 4-hydroxytoluene content of 0.1% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1. 7,7 h; 2nd - 7.6 h.

6. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 5,0 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,5 % m/m un 2. ar 2,6-di-/erc-butil-4-hidroksitoluoIa saturu 0,5 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1. 16.5 h; 2,-16,5 h.6. Using the rapeseed oil biodiesel with an induction period of 5.0 h after EN 14112 test, prepare 2 new test samples: 1. with pyrophenol content 0.5% w / w and 2. with 2,6-di- / tert-butyl 4-hydroxytoluene content of 0.5% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1. 16.5 h; 2, -16.5 h.

7. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 5,0 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 1,0 % m/m un 2. ar 2,6-di-/erc-butil-4-hidroksitoluola saturu 1,0 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1. 21.2 h; 2,-21,2 h.7. Using a rapeseed oil biodiesel with an induction period of 5.0 h after EN 14112 test, prepare 2 new test samples: 1. with pyrophenol content 1.0% w / w and 2. with 2,6-di- / tert-butyl 4-hydroxytoluene content 1.0% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1. 21.2 h; 2, -21.2 h.

8. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 5,4 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 2,0 % m/m un 2. ar 2,6-di-/erc-butil-4-hidroksitoluola saturu 2,0 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1. 27.5 h; 2,-27,5 h.8. Using the rapeseed oil biodiesel with an induction period of 5.4 hours according to EN 14112 test, 2 new test samples shall be prepared: 1. with pyrophenol content 2.0% w / w and 2. with 2,6-di- / tert-butyl 4-hydroxytoluene content of 2.0% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1. 27.5 h; 2, -27.5 h.

9. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,6 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,05 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts: 6,1 h.9. Using a rapeseed oil biodiesel with an induction period of 4.6 h after EN 14112 test, prepare a new test sample containing 0.05% w / w pyrophenol. The prepared sample shall be tested in accordance with EN 14112. Result: 6.1 h.

10. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,6 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,065 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts: 6,8 h.10. Using a rapeseed oil biodiesel with an induction period of 4.6 h after EN 14112 test, prepare a new test sample containing 0.065% w / w pyrophenol. The prepared sample shall be tested in accordance with EN 14112. Result: 6,8 h.

11. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,6 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,1 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts: 8,0 h.11. Using a rapeseed oil biodiesel with an induction period of 4.6 h after EN 14112 test, prepare a new test sample containing 0.1% m / m pyrophenol. The prepared sample shall be tested in accordance with EN 14112. Result: 8.0 h.

12. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,6 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,2 % m/m un 2. ar 2,6-di-/erc-butil-4-hidroksitoluola saturu 0,2 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1. 10,8 h; 2,-10,8 h.12. Using the rapeseed oil biodiesel with an induction period of 4.6 h after EN 14112 test, two new test samples shall be prepared: 1. with a pyrophenol content of 0.2% w / w and 2. with a 2,6-di- / tert-butyl 4-hydroxytoluene content of 0.2% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1. 10.8 h; 2, -10.8 h.

13. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,6 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,33 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts: 12,8 h.13. Using a rapeseed oil biodiesel with an induction period of 4.6 h after EN 14112 test, prepare a new test sample containing 0.33% w / w pyrophenol. The prepared sample shall be tested in accordance with EN 14112. Result: 12,8 h.

14. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,6 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,65 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu ΕΝ 14112. Iegūtais rezultāts: 17,5 h.14. Using a rapeseed oil biodiesel with an induction period of 4.6 h after EN 14112 test, prepare a new test sample containing 0.65% m / m pyrophenol. Perform the test on the prepared sample in accordance with standard ΕΝ 14112. Result: 17,5 h.

15. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,6 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 1,0 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts: 21,3 h.15. Using a rapeseed oil biodiesel with an induction period of 4.6 h after EN 14112 test, prepare a new test sample containing 1.0% w / w pyrophenol. The prepared sample shall be tested in accordance with EN 14112. Result: 21.3 h.

16. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,4 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,05 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts: 5,9 h.16. Using a rapeseed oil biodiesel with an induction period of 4.4 hours after the EN 14112 test, a new test sample containing 0.05% w / w pyrophenol is prepared. The prepared sample shall be tested in accordance with EN 14112. Result: 5,9 h.

17. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,4 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,1 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts: 7,3 h.17. Using a rapeseed oil biodiesel with an induction period of 4.4 hours after the EN 14112 test, prepare a new test sample containing 0.1% m / m pyrophenol. The prepared sample shall be tested in accordance with EN 14112. Result: 7.3 h.

18. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,4 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,2 % m/m. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts: 9,7 h.18. Using a rapeseed oil biodiesel with an induction period of 4.4 hours after the EN 14112 test, a new test sample containing 0.2% m / m pyrophenol is prepared. The prepared sample shall be tested in accordance with EN 14112. Result: 9,7 h.

19. Izmantojot no saulespuķu eļļas iegūtu biodīzeli ar 4,1 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,1 % m/m un 2. ar 2,6-di-/erc-butil-4-hidroksitoluola saturu 0,1 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1.-6,8 h; 2. - 6,6 h.19. Using sunflower oil biodiesel with an induction period of 4.1 hours according to EN 14112 test, 2 new test samples shall be prepared: 1. with pyrophenol content 0.1% w / w and 2. with 2,6-di- / tert-butyl 4-hydroxytoluene content of 0.1% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1.-6.8 h; 2-6,6 h.

20. Izmantojot no saulespuķu eļļas iegūtu biodīzeli ar 4,1 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,2 % m/m un 2. ar 2,6-di-Zere-butiI-4-hidroksitoluola saturu 0,2 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1.-8,7 h; 2. - 8,6 h.20. Using sunflower oil biodiesel with an induction period of 4.1 h according to EN 14112 test, 2 new test samples shall be prepared: 1. with pyrophenol content 0.2% w / w and 2. with 2,6-di-Zere -butyl-4-hydroxytoluene content of 0.2% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1.-8.7 h; 2 - 8.6 h.

21. Izmantojot no pārtikas rūpniecībā izmantotu taukvielu (otrreizējām izejvielām) iegūtu biodīzeli ar 4,1 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,1 % m/m un 2. ar 2,6-diterc-Z>w/z7-4-hidroksitoluola saturu 0,1 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1.-7,1 h; 2. - 7,0 h.21. Using the biodiesel obtained from food grade fats (secondary raw materials) with an induction period of 4.1 hours according to EN 14112 test, 2 new test samples shall be prepared: 1. with pyrophenol content 0.1% w / w and 2. with 2 , 6-ditert-Z> w / z 7-4-hydroxytoluene content 0.1% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1.-7.1 h; 2nd - 7.0 h.

22. Izmantojot no pārtikas rūpniecībā izmantotu taukvielu (otrreizējām izejvielām) iegūtu biodīzeli ar 4,1 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo 2 jaunus testēšanas paraugus: 1. ar pirofenolu saturu 0,2 % m/m un 2. ar 2,6-diZerc-butil-4-hidroksitoluola saturu 0,2 % m/m. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtie rezultāti: 1,- 10,0 h; 2.-10,0 h.22. Using the biodiesel obtained from food grade fats (secondary raw materials) with an induction period of 4.1 hours according to EN 14112 test, 2 new test samples shall be prepared: 1. with 0.2% m / m pyrophenol content and 2. with 2 , 6-di-tert-butyl-4-hydroxytoluene content of 0.2% w / w. The prepared samples shall be tested in accordance with EN 14112. Results obtained: 1, - 10.0 h; 2-10.0 h.

23. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,6 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,1 % m/m. Paraugu sagatavo, izmantojot antioksidanta darba šķīdumu ar 8 % m/m lielu pirofenolu saturu metil-terc-butilēterī. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts 8,0 h.23. Using a rapeseed oil biodiesel with an induction period of 4.6 h after EN 14112 test, a new test sample containing 0.1% w / w pyrophenol is prepared. The sample is prepared using an antioxidant working solution containing 8% m / m pyrophenols in methyl tert-butyl ether. The prepared samples shall be tested in accordance with EN 14112. Result 8.0 h.

24. Izmantojot no saulespuķu eļļas iegūtu biodīzeli ar 4,1 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,1 % m/m. Paraugu sagatavo, izmantojot antioksidanta darba šķīdumu ar 19 % m/m lielu pirofenolu saturu 80% v/v metil-terc-butilētera un 20% v/v acetona maisījumā. Veic sagatavotā parauga testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts 7,0 h.24. Using sunflower oil biodiesel with an induction period of 4.1 h after EN 14112 test, prepare a new test sample containing 0.1% m / m pyrophenol. The sample is prepared using an antioxidant working solution containing 19% m / m pyrophenols in a mixture of 80% v / v methyl tert-butyl ether and 20% v / v acetone. The prepared sample shall be tested in accordance with EN 14112. Result 7,0 h.

25. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,5 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,1 % m/m. Paraugu sagatavo, izmantojot antioksidanta darba šķīdumu ar 12 % m/m lielu pirofenolu saturu 90% v/v metil-Zerc-butilētera un 10% v/v acetona maisījumā. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts 7,3 h.25. Using a rapeseed oil biodiesel with an induction period of 4.5 hours after the EN 14112 test, a new test sample containing 0.1% w / w pyrophenol is prepared. The sample is prepared using an antioxidant working solution containing 12% m / m pyrophenol in a mixture of 90% v / v methyl tert-butyl ether and 10% v / v acetone. The prepared samples shall be tested in accordance with EN 14112. The result obtained shall be 7.3 h.

26. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,0 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,05 % m/m. Paraugu sagatavo, izmantojot antioksidanta darba šķīdumu ar 8 % m/m lielu pirofenolu saturu metil-terc-butilēterī. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts 6,1 h.26. Using a rapeseed oil biodiesel with an induction period of 4.0 h after EN 14112 test, prepare a new test sample containing 0.05% w / w pyrophenol. The sample is prepared using an antioxidant working solution containing 8% m / m pyrophenols in methyl tert-butyl ether. The prepared samples shall be tested in accordance with EN 14112. Result 6.1 h.

27. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,0 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,05 % m/m. Paraugu sagatavo, izmantojot antioksidanta darba šķīdumu ar 8 % m/m lielu pirofenolu saturu 80% v/v metil-zerc-butilētera un 20% v/v acetona maisījumā. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts 6,2 h.27. Using a rapeseed oil biodiesel with an induction period of 4.0 h after EN 14112 test, prepare a new test sample containing 0.05% w / w pyrophenol. The sample is prepared using an antioxidant working solution containing 8% m / m pyrophenols in a mixture of 80% v / v methyl tert-butyl ether and 20% v / v acetone. The prepared samples shall be tested in accordance with EN 14112. Result 6.2 h.

28. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,0 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,05 % m/m. Paraugu sagatavo, izmantojot antioksidanta darba šķīdumu ar 19 % m/m lielu pirofenolu saturu 80% v/v metil-Zerc-butilētera un 20% v/v acetona maisījumā. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14112. Iegūtais rezultāts 6,1 h.28. Using a rapeseed oil biodiesel with an induction period of 4.0 h after EN 14112 test, prepare a new test sample containing 0.05% w / w pyrophenol. The sample is prepared using an antioxidant working solution containing 19% m / m pyrophenols in a mixture of 80% v / v methyl tert-butyl ether and 20% v / v acetone. The prepared samples shall be tested in accordance with EN 14112. Result 6.1 h.

29. Izmantojot no rapšu eļļas iegūtu biodīzeli ar 4,0 h lielu indukcijas periodu pēc EN 14112 testa, sagatavo jaunu testēšanas paraugu ar pirofenolu saturu 0,05 % m/m. Paraugu sagatavo, izmantojot antioksidanta darba šķīdumu ar 15 % m/m lielu pirofenolu saturu 90% v/v metil-/erc-butilētera un 10% v/v acetona maisījumā. Veic sagatavoto paraugu testēšanu saskaņā ar standartu EN 14312. Iegūtais rezultāts 6,2 h.29. Using a rapeseed oil biodiesel with an induction period of 4.0 h after EN 14112 test, prepare a new test sample containing 0.05% w / w pyrophenol. The sample is prepared using an antioxidant working solution containing 15% w / w pyrophenols in a mixture of 90% v / v methyl-tert-butyl ether and 10% v / v acetone. The prepared samples shall be tested in accordance with EN 14312. Result 6.2 h.

Izgudrojuma rūpnieciskas izmantošanas pamatojums Izgudrojums izmantojams degvielu ražošanas un izmantošanas nozarē, konkrēti, biodīzeļa (augu, aļģu un atkrituma eļļu un dzīvnieku tauku alkilesteru) ražošanā un izmantošanā iekšdedzes dzinējos tīrā vai jauktu degvielu veidā ar no naftas iegūtajiem produktiem. Izgudrojums nodrošina biodīzeļa un jauktu degvielu stabilitāti atbilstoši standartu EN 590 un EN 14214 prasībām, izmantojot nevis no naftas vai akmeņoglēm, bet no biomasas iegūtu antioksidantu.BACKGROUND OF THE INVENTION The invention relates to the production and use of fuels, in particular to the production and use of biodiesel (alkyl esters of vegetable, algae and waste oils and animal fats) in internal combustion engines in the form of pure or blended fuels with petroleum products. The invention provides the stability of biodiesel and blended fuels in accordance with the requirements of EN 590 and EN 14214 by using an antioxidant derived from biomass rather than from petroleum or coal.

Informācijas avoti:Sources of information:

[1] G.Knothe, RO.Dunn in Oleochemical Manufacture and Applications, 2001, SAC, pp.128-149.[1] G.Knothe, RO.Dunn in Oleochemical Manufacture and Applications, 2001, SAC, pp.128-149.

[2] G.Knothe. European Journal of Lipid Science and Technology, 2006, vol.l08,pp.493500.[2] G. Knothe. European Journal of Lipid Science and Technology, 2006, vol.108, pp.493500.

[3] Standarts EN 14214 [4] Standarts EN 14112 [5] Patents DE 10252714 [6] Patents DE10252715 (prototips) [7] US patents 2004139649 [8] Patents DE102005015474 Al[3] Standard EN 14214 [4] Standard EN 14112 [5] Patent DE 10252714 [6] Patent DE10252715 (prototype) [7] US Patent 2004139649 [8] Patent DE102005015474 A1

Claims (4)

1. Paņēmiens biodīzeļa oksidēšanās stabilitātes paaugstināšanai ar antioksidantu piedevu palīdzību, atšķirīgs ar to, biodīzelim pievienojo antioksidanta darba šķīdumu, kurš satur no lignocelulozes ātrās pirolīzes eļļām izdalītu fenolu maisījumu (antioksidantu), kas iegūts no lignocelulozes ātrās pirolīzes eļļas.A process for increasing the oxidation stability of biodiesel by means of antioxidant additives, characterized in that an antioxidant working solution is added to the biodiesel, which contains a phenolic mixture (antioxidant) isolated from lignocellulose rapid pyrolysis oil. 2. Paņēmiens saskaņā ar punktu 1, atšķirīgs ar to, ka darba šķīdumu pagatavo temperatūru intervālā no 20 līdz 40 °C reaktorā ar atteces dzesinātāju šķīdinot antioksidantu metil-ierc-butilēterī vai metil-ferc-butilētera/acetona maisījumā ar acetona saturu līdz 20 tilpuma procentiem, sasniedzot antioksidanta koncentrācijas darba šķīdumā no 8 līdz 19 svara procentiem.Process according to claim 1, characterized in that the working solution is prepared by dissolving the antioxidant in methyl tert-butyl ether or in a methyl tert-butyl ether / acetone mixture up to 20 volumes in a temperature ranging from 20 to 40 ° C in a reactor under reflux. percent, reaching concentrations of antioxidant in working solution of 8 to 19 percent by weight. 3. Paņēmiens saskaņā ar punktu 1, atšķirīgs ar to, ka stabilizētais biodīzelis satur no lignocelulozes ātrās pirolīzes eļļām iegūtu antioksidantu daudzumos no 0,01 līdz 1,0 svara procentiem.3. A process according to claim 1, wherein the stabilized biodiesel contains from 0.01 to 1.0% by weight of antioxidants derived from lignocellulose rapid pyrolysis oils. 4. Paņēmiens saskaņā ar punktu 1, atšķirīgs ar to, ka atbilstību EN 14214 prasībām panāk, pievienojot darba šķīdumu tādos daudzumos, lai no lignocelulozes biomasas ātrās pirolīzes eļļām iegūtais antioksidanta saturs būtu robežās no 0,01 līdz 0,1 svara procenti.4. A process according to claim 1, wherein compliance with EN 14214 is achieved by adding a working solution in an amount such that the antioxidant content of the lignocellulosic biomass rapid pyrolysis oils is between 0.01 and 0.1% by weight.
LVP-08-204A 2008-12-04 2008-12-04 Method for increasing stability of biodiesel against their oxidation during storage LV13870B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LVP-08-204A LV13870B (en) 2008-12-04 2008-12-04 Method for increasing stability of biodiesel against their oxidation during storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LVP-08-204A LV13870B (en) 2008-12-04 2008-12-04 Method for increasing stability of biodiesel against their oxidation during storage

Publications (2)

Publication Number Publication Date
LV13870A LV13870A (en) 2009-02-20
LV13870B true LV13870B (en) 2009-06-20

Family

ID=40775124

Family Applications (1)

Application Number Title Priority Date Filing Date
LVP-08-204A LV13870B (en) 2008-12-04 2008-12-04 Method for increasing stability of biodiesel against their oxidation during storage

Country Status (1)

Country Link
LV (1) LV13870B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2503990A1 (en) * 2014-05-16 2014-10-07 Universidad De Zaragoza Biodegradable additive for biodiesel (Machine-translation by Google Translate, not legally binding)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2503990A1 (en) * 2014-05-16 2014-10-07 Universidad De Zaragoza Biodegradable additive for biodiesel (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
LV13870A (en) 2009-02-20

Similar Documents

Publication Publication Date Title
Dueso et al. Performance and emissions of a diesel engine using sunflower biodiesel with a renewable antioxidant additive from bio-oil
Giakoumis A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation
US20100107481A1 (en) Antioxidant blends for fatty acid methyl esters (biodiesel)
El-Baz et al. Comparative study of performance and exhaust emissions of a diesel engine fueled with algal, used cooked and Jatropha oils biodiesel mixtures
Koppula et al. An experimental study on performance and emissions of a direct ignition diesel engine with crude pongamia, pongamia methyl ester and diethyl ether blended with diesel
EP3239277B1 (en) Fuel blend comprising a mixture of aryl ethers
LV13870B (en) Method for increasing stability of biodiesel against their oxidation during storage
CN100526440C (en) Method for mixing jatropha oil and petroleum diesel oil as diesel fuel
Tarabet et al. Experimental evaluation of performance and emissions of DI diesel engine fuelled with eucalyptus biodiesel
TÜCCAR et al. Experimental investigation of engine performance and emission characteristics of a diesel engine using blends containing microalgae biodiesel, n-butanol and diesel fuel
Otaka et al. Diesel combustion characteristics of palm oil methyl ester with 1-butanol
RU2544239C2 (en) Biofuel composition
Dhanamurugan et al. Performance of single cylinder diesel engine with bael seed biodiesel
CN111171883A (en) Valerate diesel oil mixed fuel
Mamilla et al. Experimental investigation of direct injection compression ignition engine fueled with blends of karanja methyl esters and diesel
Suryawanshi et al. Experimental investigations on a jatropha oil methyl ester fuelled diesel engine
Olson et al. Experimental Investigation of Glycerol Derivatives as Low-Concentration Additives for Diesel Fuel
Igbokwe et al. Performance characteristics of a diesel engine fuelled with palm kernel methyl ester and its blend with petrodiesel
Sethi et al. Emission Analysis of a Compression Ignition Engine Fueled with Different Blends of Mahua Biodiesel
Lim et al. The lubricity of biodiesel as alternative fuel
Kaura INVESTIGATING PERFORMANCE AND EMISSION CHARACTERSTICS OF CI ENGINE WITH CASTOR BASED BIODIESEL WHILE ADDING NANO METAL OXIDES OF ALUMINIUM AND COPPER
Honig et al. Use of blend of fame from animal fats with biobutanol as fuel in diesel engines
Diwan et al. Bio-diesel synthesis from Kenaf seed oil and performance analysis of its bio-diesel blends on four stroke, Compression Ignition Engine.
Swami et al. Compound Blends: A Review
Wcisło et al. Determining the effect of oil after frying fish for the production of biofuels with a fractional composition of FAME