LV11172B - Method for production of modified ceramic condenser materials based on titanium oxides - Google Patents

Method for production of modified ceramic condenser materials based on titanium oxides Download PDF

Info

Publication number
LV11172B
LV11172B LV940098A LV940098A LV11172B LV 11172 B LV11172 B LV 11172B LV 940098 A LV940098 A LV 940098A LV 940098 A LV940098 A LV 940098A LV 11172 B LV11172 B LV 11172B
Authority
LV
Latvia
Prior art keywords
plasma
production
temperature
ceramic
oxygen
Prior art date
Application number
LV940098A
Other languages
Latvian (lv)
Other versions
LV11172A (en
Inventor
Inta Aboltina
Janis Grabis
Rudite Ramata
Laimonis Timma
Original Assignee
Univ Rigas Tehniska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Rigas Tehniska filed Critical Univ Rigas Tehniska
Priority to LV940098A priority Critical patent/LV11172B/en
Publication of LV11172A publication Critical patent/LV11172A/en
Publication of LV11172B publication Critical patent/LV11172B/en

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

Invention concerns method for production of modified titanium dioxide ceramic material, including production of inorganic substances, the synthesis of which is carried under the impact of oxygen or air plasma, used in production of dielectric ceramic condensers.More dense and harder ceramic material is to be obtained in ecologically pure synthesis carried out in reactor under the impact of low temperature plasma. Oxide powders, including titanium, aluminium, silicon, scandium, and magnesium oxide powders are treated with low temperature oxygen or air plasma. This is followed by vapour condensation. Powder of delicate (50-100 nm) fuzzy particles that clamps in dense material with 1.5-1.8% microporosity , pore size (1.8-2)x10<3> nm and microhardness (925-930)x10<3> kg/m<2> at 1,170-1,220 K is obtained when temperature of plasma is 5,200-5,800 K , temperature of gases used in the hardening is 2,400-3,600K, relation between aggregate and consumed plasma gas is 0.12-0.2, relation between gases used in hardening and plasma gas is 0.6-1.2.

Description

Izgudrojums attiecas uz modificēta titāna dioksīda ķeramiska materiāla izgatavošanas paņēmienu, tai skaitā arī uz neorganisku vielu ieguvi, izmantojot sintēzei skābekļa vai gaisa plazmas ie-r darbību, kuras pielieto dielektrisku keramisku kondensatoru ražošanā.The present invention relates to a process for the preparation of a modified ceramic material of titanium dioxide, including the extraction of inorganic substances by synthesis of oxygen or air plasma for use in the manufacture of dielectric ceramic capacitors.

Modificēts Ti02 ir viens no labākajiem savienojumiem, tehniskā un ekonomiskā ziņā, kondensatoru materiālu ražošanai /1/. Augstās prasības pret kondensatoru materiālu dielektriskām īpašībām (piem., dielektriskie zudumi 10”^) var izpildīt tikai iegūstot ļoti blīvu keramiku. Sevišķi augstām ķeramiskām un mehāniskām īpašībām jābūt materiālam, ja izgatavo liela formāta vai sarežģītas konfigurācijas izstrādājumus. Plānās kārtiņas kondensatora dielektriskās īpašības varētu uzlabot, ja augstfrekvences magnetroniskā ģeneratorā kā mērķi varētu izmantot nevis keramisku mozaīku (Latv.pat. Nr. P-92-14, Int Cl5 Ξ01 Β 3A2, 1994.J) (TiQ2 80,4-88,2 mas.%, MgO 0,1-0,3 mas.%, A12U^ 5,8-16,7 mas.%, Si02 1,1-9,3 mas.%) /2/, bet monolītu' 0,2 m disku.Modified Ti0 2 is one of the best compounds, technically and economically, for the production of capacitor materials / 1 /. The high demands on the dielectric properties of capacitor materials (e.g., 10 "dielectric losses) can only be met by obtaining very dense ceramics. Extremely high ceramic and mechanical properties should be the material when making large-format or complex configuration products. Thin film capacitor dielectric characteristics can be improved if a high-frequency generator magnetroniskā as a target could be used instead of a ceramic mosaic (Latv.pat. No. P-92-14, Int Cl 5 Ξ01 Β 3A2, 1994.J) (TIQ 2 80,4- 88.2 wt%, MgO 0.1-0.3 wt%, Al 2 U ^ 5.8-16.7 wt%, SiO 2 1.1-9.3 wt%) / 2 / , but a monolithic '0.2 m drive.

Visizplatītākais dielektriskās keramikas materiāla iegūšanas paņēmiens ir keramiskais, kas balstās uz mehāniskas izejvielu sajaukšanas, ilgstošas malšanas un apdedzināšanas (PSRS aut.apl.The most common method of obtaining dielectric ceramic material is ceramic based on mechanical mixing, continuous milling and sintering (USSR aut.

Nr. 1271850. Int. Cl5 35/46, Ξ01 B 3/12, 1986) /3/. Šī sarežģītā paņēmiena trūkums ir ilgstošās malšanas un sajaukšanas operācijas, kuru laikā produkts piesārņojas no malšanas ķermeņiem. Tas noved pie poru un ieslēgumu rašanos keramikas virspusē, kas izsauc blīvuma mikroporainības (>6%), termiskās izplešanās koeficienta (< 85 grād”ļ) un elektrisko īpašību svārstības (dielektriskie zudumi A 10^).No. 1271850. Int. Cl 5 35/46, Ξ01 B 3/12, 1986) / 3 /. The disadvantage of this sophisticated technique is the prolonged grinding and mixing operations, during which the product is contaminated by the milling bodies. This leads to the formation of pores and inclusions on the surface of the ceramic, resulting in microporous density (> 6%), thermal expansion coefficient (<85 degrees) and electrical properties (dielectric loss A 10 ^).

Palielināt materiāla mehānisko stiprību (800-920 g/mm ) un samazināt mikroporainību (4—6,3 %) var modificējot titāna dioksida keramiku ar ķīmiskās nogulsnēšanas paņēmienu (ASV pat.. Nr.5049528, Int. 01^ 004 B 35/02, 1991) /4/. Galvenais šīs metodes trūkums ir lielie notekūdeņu daudzumi ar toksiskām vielām. Ti02 keramika, kas ir modificēta ar ķīmiskās nogulsnēšanas metodi grūti sasmalcināma.cādi iejāts, pulvera daļiņas nav mazākas kā 500-5000 nm.Increasing the mechanical strength of the material (800-920 g / mm) and reducing the microporousness (4-6.3%) can be achieved by modifying titanium dioxide ceramics by chemical deposition (US Pat. No. 5049528, Int. 01 ^ 004 B 35/02 , 1991) / 4 /. The main disadvantage of this method is the large amounts of waste water containing toxic substances. Ti0 2 ceramics, which are modified by chemical deposition difficult sasmalcināma.cādi train, powder particles of not less than 500 to 5000 nm.

Smalkāku pulveri (daļiņu izmērs 20-4Ό0 na) un bez indīgiem notekūdeņiem iejust oāzes fāzē ar liesmas hidrolizēs oaņēmienu one nl-./J (2333 aut.apl. fr. 1'/51720. Irt.The finer powders (particle size 20-4Ό0 na) and without toxic waste water enter the oasis phase by flame hydrolysis one nl-./J (2333 aut. Fr. 1 '/ 51720 Irt.

0^ ?5/46,0 ^? 5/46,

1992) , 5, · iegūtā pulvera īpatnējā virsma 250-300 tūkst, c līs metodes trūkums ir gaisa piesārņojums am rOl u arī metodi sadārdzina procesa daudzās stadijas.1992), 5, · The specific surface area of the obtained powder is 250-300 thousand, the disadvantage of this method is air pollution in the air and it also makes the process more expensive in many stages of the process.

lai panāktu smalku malumu, titāna dioksīda keramiku maļ ūdenī ar vinilacetāta dispergētāju, žāvē un sasmalcina ar kopolimēra vim.il acetāta-malei.oskābes di spermā tā ju (2S2.S aut.apl. Ir.15234-65. |—to obtain a fine grind, the titanium dioxide ceramic is ground in water with a vinyl acetate dispersant, dried and crushed with copolymer vim.yl acetate-malea.acid di semen (2S2.S aut. app. Ir.15234-65. | -

Int. Ol2 004· 2 55/46, 1939) /6/. 3īs metodes trūkums produkts satur vēl 0,2-1,0 mas.,o disper^ētāju, 15,1-29, ;uzem, na šķidro fāzi, kas 'nosaka samēra porainas <mikroporaimoa r-p/\ mehāniski neizturīgas (mikrocietība 530 s/mm1-) keramikas iejūsan _ļ nu ar zemu termiskās izplešanās koeficientu (k 36.10z jrad”~). Vistuvāk pēc tehniskā risinājuma, piedāvātajam ir titāna dioksīda modificēšana ar ķīmiskās nojulsiešanas paņēmienu, lai samazinātu procesa, ilgumu un enerģijas patēriņu, izejvielu sajaukšanu un materiāla, sintēzi veic izsmidzinot izejvielu šķīdumus reaktorā zem spiediena (2S23 aut.apl. Tr. 1753562. Int. 01^ 55/45, 1992, prototips) /7,· 0im nolūkam šķīdumu sajauc molārā :3a0l2= (3-15):1, izsmidzinot spiedienā 1,2-5,Int. Ol 2 004 · 2 55/46, 1939) / 6 /. In the absence of this method, the product contains a further 0.2-1.0 wt.% Of the dispersant, 15.1-29, in the form of a liquid phase which determines relatively porous <microporous rp / \ mechanically resistant (micro-hardness 530 s). / mm 1-) ceramic iejūsan _ļ either a low thermal expansion coefficient (k 36.10 jrad z '~). Closest to the technical solution, what is proposed is titanium dioxide modification by chemical deposition to reduce process, duration and energy consumption, feedstock mixing and material synthesis by injection of feedstock solutions in a reactor under pressure (2S23 aut. Tr. 1753562. Int. 01 ^ 55/45, 1992, prototype) / 7, · For this purpose, the solution is mixed in molar: 3a0l2 = (3-15): 1 by spraying at a pressure of 1.2-5,

Tķ,3n: 3aClo+ Ti014» (4,5-6,0):1. Iepūtās ao,^.Tk 3n: 3aCl 0 + TiO 4 4 (4.5-6.0): 1. Blown ao, ^.

maz-ā hlora jonus un apdedzina monolītos izstrādājumos saķep sanas temperatūrās 1170-1220 T. līs metodes trūkums ir lielie notekūdeņu daudzumi ar toksiskām vielām. 7i0? keramika., kas ir modificēta, ar ķīmiskās nogulsnēšanas metodi jrūti sasmalci!iāna. ~ādi iejāta tzecnoa :low chlorine ions and calcined in monolithic products at sintering temperatures of 1170-1220 T. The disadvantage of this method is the large amounts of waste water containing toxic substances. 7i0 ? ceramic, modified by chemical deposition, is hard to grind ! Ian. ~ tzecnoa like this:

atm virs šķīdi no nul sue s no f i 1 tr e, i zp un v erc. aņ n ņa.;atm over solution of null sue s of f i 1 tr e, i zp and v erc. an nn;

.v mažaunas -<ξ :00-5000 nm..v minor - <ξ: 00-5000 nm.

Ar prototipa tehnoloģiju iegūtā keramika diezgan poraina, (mikrooora.irība 4-6 %, poru izmērs (4-3).10^ nm un relatīvi zema cietīb, mikrocietība (630-920) .10^ kg, m*-/.Ceramic obtained by prototype technology is quite porous, (micrororality 4-6%, pore size (4-3) .10 ^ nm and relatively low hardness, micro-hardness (630-920) .10 ^ kg, m * - /.

Piedāvātā izgudrojuma mērķis ir radīt ekoloģiski tīru sintēzes procesu, kura ,_aitā iegūst au pstdisņer su aktīvu daļiņu pulveri, kas blīvi saķep monolītu ķeramisku detaļu apdedzināšanas procesā, veidojot au_sta blīvuma un mikrocietības izstrādājumus.The object of the present invention is to provide an ecologically pure synthesis process which obtains a powertrain active particle powder, which densely sinter the monolithic ceramic parts in a sintering process, producing high density and micro hardness products.

lai iepūtu blīvāku un cietāku keramiku, piedāvājam ekoloģiski tīru sintēzes procesu reaktorā ar zemtemperatūras plazmas iedarbību.In order to blow denser and harder ceramics, we offer an ecologically clean synthesis process in a low-temperature plasma reactor.

BAD ORIGiNALBAD ORIGINAL

L...........L ...........

Aujstdispersu aktīvu oksīdu pulveru ieņuvei, to viendabīņus maisījumus ved. sarežģītus savienojumus, rupji dispersus titāna, alumīnija, silīcija, šķaudīja, mapnija savienojumu pulverus ar daļiņu izmēru (20-130).13^ nm apstrādā ar skābekļa vai raisa zemtemperatūras plazmu ar sekojošu tvaiku kondensāciju. 2im nolūkam izej vielu pulveri ar transportējoso eāz5. - skābekli vai paisu padod zemtemperatūras plazmas kūlī ar augstfrekvences izlādi, kura tempe· ratūra. ir 5203-5303 k. kūlī notiek izejvielu sadalīšanās un iztvai košana, kā arī komponenšu tvaiku sajaukšanās, kas nodrošina iepūto šihtu ?u.psto nomoņenitāti. Tālāk zemtemperatūras plazmu ar oksīdu tvaikiem, kuru temperatūra, ir 2400-5300 22, padod rūdīšanas lāsē auksts skābeklis vai maiss. Strauja kūļa atdzišana nosaka aupsti dispersa oksīda, tā maisījumu vai savienojumu pulvera rašanos. Ielītās sfēriskās daļiņas ir 100 nm lielas. Daļiņu lielumu nosaka daļiņu koncentrācija kūlī (masas un plazmas veidojošās jāzes patēriņa attiecība), rūdīšanas un plazmas veidojošās ņāzes attiecība, kūļa temperatūra rūdīšanas pāzes ievadīšanas zonā.For dispersing active oxide powders in dispersed dispersions, their homogeneous mixtures are carried. complex compounds, coarse dispersed powders of titanium, aluminum, silicon, sneeze, mapnium compounds with a particle size (20-130) .13 µm are treated with oxygen or generate low temperature plasma with subsequent vapor condensation. 2im purpose raw material powder with towing e āz5. - Oxygen or vapor is supplied to the low temperature plasma beam by high frequency discharge at temperature. and 5203-5303. the bundle undergoes decomposition and evaporation of the raw materials, as well as the vapor mixing of the components, which gives the blown sheaf? u.psto the vigor. Next, the low-temperature plasma with oxide vapors at temperatures of 2400-5300 22 is fed into a quenching oxygen or cold bag. The rapid cooling of the bundle determines the formation of a highly dispersed powder of oxide, mixtures or compounds. The introduced spherical particles are 100 nm in size. The particle size is determined by the particle concentration in the bundle (ratio of mass to plasma yeast consumption), the ratio of annealing to the plasma forming nase, the temperature of the beam in the area of the quenching phase.

kases un plazmas veidojošās Qāzes patēriņa attiecība ir 0,123,2, bet rūdīšanas un plazmas veidojošās ņāzes attiecība 0,3-1,2. uzrādītās attiecības un kūļa temperatūra (2400-3600 k) rūdīšanas gāzes ievadīšanas zonā ir noteiktas eksperimentāli, pētot īpatnējās virsmas un daļiņu izmēru atkarību no nerādītiem parametriem.the ratio of the consumption of Q- plasma to plasma-forming Q is 0.123.2 and that of quenching to plasma-forming isase is 0.3-1.2. the reported ratios and the beams temperature (2400-3600 k) in the quenching gas injection zone were determined experimentally by studying the dependence of specific surface and particle sizes on undetermined parameters.

Sintezēto modificētā, sr KjO, Al20^, 3co0^ un Si0o oksīdiem titāna dioksīdu sapresē diskos no 0,01-0,10 m diametrā spiedienā 500-1500 k/cm“ un apdedzina temperatūrā 1170-1220 k. Piedāvātās tehnoloņijas procesā iepūtā un prototipa materiāla sastāvs un fizikālās īpašības dotas 1. tabulā.Synthesized modified, sr KjO, Al 2 0 ^ 0 ^ o 3c and Si0 o oxides of titanium dioxide compacts disks of 0.01 to 0.10 m in diameter at a pressure of 500-1500 K / cm "and fired at a temperature of 1170 to 1220 k. Table 1 shows the composition and physical properties of the blown and prototype material of the proposed technology.

Piemērs.Example.

2,7 nas.,3 2. _3, 4,^ mas.% 11-0-, ->?2.7 nas., 3 2. _3, 4, ^ mas.% 11-0-, ->?

tas.3 Sc-,0- un 30 riOp oulvērus ar trausportojošo paisu oadod zemtemoeratūras plazma o ar augstfrekvences izlādi (af jaudas blīvums 11 W/cn-), kura ratūra ir 5300 22. kūlī notiel< izejvielu sadalīšanās, iztvaiko-na, komponenšu tvaiku sajaukšanās. Tālāk zemtemperaturas plazmu temp ar ousmu ouusts no:it.3 Sc-, 0- and 30 riOp ovoids with a trawling barrier oadod low-temperature plasma o with high frequency discharge (af power density 11 W / cn - ) with a resolution of 5300 bundle 22 <decomposition of raw materials, evaporation, component vapor mixing. The following is a description of the low temperature plasma temp of ousmus from:

ik-nem, kuru temperatur:at any temperature of:

lielas daļ uv.much of uv.

oao.od rūdīšanas mze ka.sa.s un olaz.ua veidojošas ’azes oatēri;oao.od tempering mashes of ka.sa.s and olaz.ua forming 'azates;

attiecība - 0,15, bet rudīš;ratio - 0.15, but in the morning;

un osa zuas veidojošās ūzes attiecīl sintezētā sastāva sakritību ar izejvielu s?and the osse eel-forming goats relate the synthesis composition to the raw material s?

īmiskas analīzes rezultāti uzrada.results of chemical analysis produce.

ivu 10 “ pakāpē. kikroskopiskie pētījumā, usrj si ’.tezota pulvera daļiņām ir cūkaitek s tīro.ivu 10 ". microscopic in the study, usrj si '.these powder particles have a porcine pure.

do mā j omi s u zl ?b 3 mt er i āl ?do ma y omi s u zl? b 3 mt er iāl?

>rocesa.> rocesa.

pš-mu apdedzināšanupš-mu firing

BAD unujii».— jBAD unujii ».— j

Sintezēto pulveri saprese diskos 0,1 m spiedienā 5o0 kg/cm un apdedzina temperatūrā 1170 E ar 1 st. izturēšanu.The synthesized powder is pressed into disks at 0.1 m at 5o0 kg / cm and calcined at 1170 E for 1 h. endurance.

Nākošie piemēri tika izpildīti ar analoģisku, tehnoloģiju, mainījās tiksi komponenšu attiecības, plazmas un rūdīšanas fāzes temperatūra, masas un plazmas veidojošās gāzes patēriņa attiecība, rūdīšanas un plazmas veidojošo fāzu attiecību. Ja pulvera masas un plazmas veidojošās gāzes patēriņu, attiecība pieaug virs 0,2, tad pieaug daļiņu izmēri un samazinās pulvera aktivitāte. Samazinoties šai attiecībai zem 0,12 daļiņu izmērs samazinās, bet samazinās arī procesa ražīgums, palielinās elektroenerģijas patēriņš. Rūdīšanas un plazmas veidojošā gāzu attiecība samazinās - zem 0,6 - mazefektīva, jo neliels rūdīšanas gāzes patēriņš ievērojami nesamazina kūļa temperatūru un neuzlabo daļiņu augšanas apstākļus. Rūdīšanas un plazmas veidojošo gāzu attiecības palielināšana virs 1,2 ievērojami nesamazina daļiņu izmērus, tāpēc tālāka attiecības palielināšana nav lietderīga. Lieli dzesēšanas ātrumi traucē saliktu savienojumu veidošanos. Ja tūļa zonā padod rūdīšanas gāzi ar temperatūru virs 3600 E daļiņu izmēri palielinās, jo dēļ īsa daļiņu kontaktlaika ar kūli izej vielu pulveris pilnīgi neiztvaiko. Rūdīšanas gāzes temperatūras pazemināšana zem 2400 E maz ietekmē daļiņu izmērus un pulvera sastāvu, jo oksīdu kondensācija un daļiņu augšana notiek daudz augstākās temperatūrās.The following examples were executed with an analogous, technology-only change in component ratios, plasma to quench temperature, mass to plasma gas ratio, quench to plasma ratio. If the ratio of the mass of powder to the gas constituting the plasma increases above 0.2, the particle size increases and the activity of the powder decreases. As this ratio drops below 0.12, the particle size decreases, but also the process productivity decreases and the power consumption increases. The quenching-to-plasma gas ratio decreases - below 0.6 - inefficient because low quenching gas consumption does not significantly reduce bundle temperature and does not improve particle growth conditions. Increasing the quenching / plasma forming gas ratio above 1.2 does not significantly reduce the particle size, so further increasing the ratio is not useful. High cooling speeds prevent the formation of composite connections. If the quenching gas is supplied to the crucible with a temperature above 3600E, the particle size will increase because the powder will not evaporate completely due to the short contact time of the particles with the beam. Lowering the quenching gas temperature below 2400 E has little effect on particle size and powder composition as oxide condensation and particle growth occur at much higher temperatures.

Salīdzinot ar prototipu, piedāvātais paņēmiens, saglabājot augstu T1O2 saturu (78,9-81,4 mas.%), zemu keramikas apdedzināšanas temperatūru (1170-1220 E), ļauj sintezēt 3-15 smalkāku, pūkainu daļiņu pulveri, kas apdedzināšanas procesā saķep 2-3 reizes blīvākā keramikā, kuras mikrocietība palielinās par 5 %. Daudzkārt palielinātās keramikas īpašības lielā mērā paaugstina materiāla ekspluatācijas iespējas: iespējams izgatavot liela izmēra detaļas un samazināt dielektriskos zudumu s.Compared to the prototype, the proposed process, while maintaining a high T1O2 content (78.9-81.4 wt%), low ceramic firing temperature (1170-1220 E), allows synthesis of 3-15 finer, fluffy particle powders that sinter during the firing process. 2 to 3 times denser in ceramics with a 5% increase in microhardness. The multiplied properties of the ceramic greatly increase the material's service life: it is possible to produce large parts and reduce dielectric losses.

cū r~i pcū r ~ i p

•H rP>• H rP>

4t ied +->4t ied + ->

aa

CU

CŪ αCŪ α

•H a• H a

I03 o» cūI03 o »cū

Cd cū sCd pigs

>03> 03

O >O>

CU

PP

CU

ŠO to •H cd i—I icū •rd d Φ -P CŪ aHOW TO • H cd i — I icū • rd dΦ -P CŪ a

ld •H ild • H i

* <3 cūl^, £ $ ICŪ r\ CQ d 0)* <3 cūl ^, £ $ ICŪ r \ CQ d 0)

X) d Q O K * 3 cūX) d QO K * 3 cū

ΌΌ

IHIH

O •H •d cū dO • H • d cū d

ICŪ •P •rlICŪ • P • rl

P dFri d

pp

I03I03

O •rl <H •PO • rl <H • P

ΌΌ

OO

SS

• · • · d d > d» > d » CdrP ro-rl CdrP ro-rl •rl • rl d CdrP» d CdrP » P P Α ·44 Α · 44 O O • -P id • -P id lO 10 •P • P -ρ d -ρ -ρ d -ρ rp rp o o d šo ω d this ω d d Η tO Ο. Η tO Ο. ra ·η d ra · η d 03 03 1 1 Ο IH ~CJ 1 1 Ο IH ~ CJ d d d -P ro g d -P ro g £> £> 44 ra · \ 44 ra · \ LO LO IP IP •Η ·Η d O ŠC • Η · Η d O SH r-l r-l >03 > 03 s CdP A s CdP A d d Pt Pt * * IH IH d ι ω d ι ω d to d a d to d a 4 4 ra ra ο-nira d ο-nira d i—i i-i d d A a The a 44 44 •H • H i d i d ts ts Ο -H Ο -H 3 3 d d d d d d 44 d Λ 44 d Λ ro ro 43 43 •Η O oS. • Η O oS. H H a A a SJ SJ • d • d 03 03 > d* ~ > d * ~ P P r—ļ ·Η * r - r · Η * CJ CJ d •H d • H S/JSI S / JSI r-l r-l CQ CQ •d ·Η • d · Η 1 1 mod · mod · d d d d ό to o d d ό to o >03 > 03 d a o id ra d a o id ra IH IH to Tp Š0-H to Tp Š0-H r-l r-l TS TS ra d -η p ra d -η p rp rp >d > d d ro ra ο p d ro ra ο p (5 (5 d ρ. > >ra d d ρ. >> ra d 1 1 ra ι i ra ι i 03 03 d to np ra · d to np ra · •H • H ra d ra id o ra d ra id o > > CŪ ) ļ> >03 ra 03 CU)>> 03 ra 03 •Q a O, O ® -H • Q a O, O ® -H o o 03 03 ra ό to ρ ra ό to ρ rp rp to to d d ® o īd -p d d ® oyd -p HH 3 SO MO HH 3 SO MO >03 > 03 03 · 03 · IH IH ra pi ra pi •d • d N SiE N SiE CO CO id id id ra id ra « « šū-P shuh-P Λ Λ 1 1 to to d pi d pi d d m rP» S W m rP »S W r-l r-l d ih ra d ih ra co co A A a£p a £ p CJ CJ o o O- O- •H • H 6^ 6 ^ CQ CQ « « ra ra CJ CJ d d O O a a •H • H LD LD A A ra ra ro ro > > O O id id CJ CJ P P o o LO LO 03 03 U2 U2 d d 03 03 ro ro O O d d CJ CJ 1—1 1-1 cP cP 4 4 id id 4 4 •H • H d d O O 03 03 d d ro ro P P « « d d a a O O fcū fcū CJ CJ a a d’ d ' rP rP β β

I o · a o d «rl rP Ή 03 -P ·?“ •oid c © dC3 to ld -H I—I H rl coI o · a o d «rl rP Ή 03 -P ·? '• oid c © dC3 to ld -H I — I H rl co

LOLO

LOLO

4· i4 · i

roro

O r-l •O r-l •

o oo o

ro ro co co i>o tOro ro co co i> o tO

*.*.

CJ r-lCJ r-l

II rp oII rp o

•rl• rl

ĒP +EP +

cj « .Η O O 4 d K pq gcj «.Η O O 4 d K pq g

OJ rP oOJ rP o

d pqd pq

I I OJ ld 03 ~I I OJ ld 03 ~

Ū -H r-1 •rl Pi tO 03 II TS •rl 03 03 a d α ra d 03 a to d ·Η -P M XQ T3 d oŪ -H r-1 • rl Pi tO 03 II TS • rl 03 03 a d α ra d 03 a to d · Η -P M XQ T3 d o

OJ co ojOJ co oj

II

LOLO

o o LO LO o o o o ro ro o o o o co co ro ro co co LO LO co co ro ro Cl Cl ro ro CJ CJ O O co co o- o- CJ CJ CJ CJ Cl Cl CJ CJ H H CO CO co co co co σ> σ> co co co co co co σ> σ> CO CO co co co co co co CO CO o o ω ω o o to to tO tO lD 1D CO CO LO LO Cj Cj LO LO rd rd CJ CJ r-ļ r-l CJ CJ CJ CJ ro ro 4 4 1—1 1-1 r-ļ r-l rH rH CJ CJ CJ CJ

OJOJ

II

LO LO LO LO C0 C0 LO LO o o LO LO LO LO LO LO CO CO LO LO r-1 r-1 LO LO rP rP r-ļ r-l rM rM r—1 r-1 CJ CJ CJ CJ ro ro ro ro r-ļ r-l rH rH 1—ļ 1-up CJ CJ CJ CJ o o o o o o o o o o LO LO O O O O CJ CJ o o LO LO H H o o o o LO LO o o CJ CJ CJ CJ O O O O CO CO LO LO o o CJ CJ CJ CJ rP rP rP rP r-ļ r-l rH rH rH rH CJ CJ rH rH r-ļ r-l Γ—f Γ — f rH rH

co oco o

LO rp cocjLOtDroLOoocociLDLOroLO rp cocjLOtDroLOoocociLDLOro

OrPOOr-lOOOrPOOrPOrPOOr-lOOOrPOOrP

LO O OJ H rI OJ rP OJLO O OJ H rI OJ rP OJ

LO lO IO O OJ rP rP rp r—I OJ rp OJ rP rP ooooooooooooLO lO IO O OJ rP rP rp r— I OJ rp OJ rP rP oooooooooooo

o o o o o o o o o o o o o o o o o o o o o o O O O O o o o o o o o o o o o o o o o o o o o o g g o o O O CJ CJ CJ CJ L0 L0 o- o- ro ro LO LO ro ro CJ CJ LO LO o- o- ro ro ro ro ro ro ro ro CJ CJ ro ro CJ CJ ro ro CJ CJ ro ro ro ro CJ CJ ro ro CJ CJ o o o o o o o o o o o o o o o o o o o o o o O O O O o o o o o o o o o o o o o o o o o o o o o o O O o o LO LO LO LO co co Cl Cl 03 03 Cl Cl co co LO LO co co CJ CJ CO CO CJ CJ LO LO LO LO LO LO LO LO LO LO LO LO LO LO IO IO LO LO LO LO ιο ιο LO LO LO LO 1 1 co co co co co co co co co co 00 00 C0 C0 ro ro ro ro ro ro ro ro ro ro

OOOOOOOCOCOCT'COCO ι—I rp rP rP rP r-l r-I 4-4-4·4·4·4-4-4·4·4·4·4· ro co ι-1 coOOOOOOOCOCOCT'COCO ι — I rp rP rP rP r-l r-I 4-4-4 · 4 · 4 · 4-4-4 · 4 · 4 · 4 · 4 · ro co ι-1 co

I ·I ·

-P 03 d I 03 a-P 03 d I 03 a

O-lrlO-lrl

O 44>O 44>

O O o o o o o o O O o o o o rH rH r-ļ r-l rd rd rP rP r*l r * l co co C0 C0 co co C0 C0 oo oo C0 C0 CO CO co co co co C0 C0 CC CC co co LO LO to to LO LO LO LO to to to to to to LO LO to to to to to to to to i—1 i-1 r-ļ r-l r-ļ r-l rP rP r-ļ r-l r-l r-l r-ļ r-l CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ

oo ra co d cd cdoo ra co d cd cd

4· dd· d- d· d- d- d· ddddco co σ co co ro ro ro ro ro h co4 · dd · d - d · d - d - d · ddddco co σ co co ro ro ro ro ro h co

P P P P r-ļ r-l σ> σ> σ> σ> cc cc CO CO co co co co co co co co co co co co CO CO 1 o 1 o 1 1 o o •P • P •P • P Cl Cl CJ CJ CJ CJ CJ CJ Cl Cl CJ CJ CJ CJ CJ CJ CJ CJ Cl Cl CJ CJ CJ CJ o o o o • d • d d d rp PL. rp PL. CJ CJ d> d> to to 4 4 IO IO LD LD o- o- co co Co Co. o o r—ļ r - l CJ CJ ro ro 4- 4- r-l r-l r™ļ r ™ l p—ļ p rP rP

.tabulas turpinājums lo.table continued lo

Γ“ί i—I r-J d,—IΓ “ί i —I r-J d, —I

CO csCO cs

LOLO

IOIO

to to o o d- d - LO LO LO LO rH rH r—1 r-1 o o o o o o CU OJ OJ Ol Ol OJ OJ r—l r - l o o CO CO LS LS (Τ' (Τ ' co co co co co co co co co co co co oo oo 00 00 ,-t , -t ES ES es me σ· σ · o- o- OJ OJ ES ES lO 10 o o to to to to r-ļ r-l r—) r—) r-ļ r-l OJ OJ OJ OJ to to d d o o LO LO ts ts co co o- o- OJ OJ O- O- to to O O JO Yeah to to r—1 r-1 t—1 t-1 r-ļ r-l OJ OJ OJ OJ ΓΟ ΓΟ d · 00 00 00 00 to to co co OJ OJ o o ES ES o o 00 00 f—ļ f — l r—l r - l LO LO co co to to to to O O OJ OJ CO CO r-l r-l r-ļ r-l r-ļ r-l r—1 r-1 Ol Ol i—1 i-1 to to CO CO 00 00 OJ OJ LO LO LO LO to to to to CO CO o o o o o o i—ļ i-l O O o o r-ļ r-l o o o o lO 10 LO LO to to o o OJ OJ i—l i-l r-l r-l IO IO LO LO rH rH r-ļ r-l r-ļ r-l OJ OJ r-f r-f OJ OJ r-ļ r-l r—l r - l r-ļ r-l ·* · * R R Λ Λ ** ** o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o Q Q. o o o o o o o o lo lo to to OJ OJ LO LO e e [S [S to to LO LO to to ro ro OJ OJ to to to to OJ OJ to to OJ OJ to to OJ OJ O O o o o o o o o o o o o o o o o o O O o o o o o o o o o o o o o o o o co co to to oo oo Ol Ol oo oo OJ OJ co co to to LO LO LO LO to to to to to to LO LO LO LO to to to to to to 00 00 co co co co oo oo co co co co co co CO CO co co o o o o o o o o o o o o o o r—1 r-1 r-ļ r-l r-ļ r-l |—ļ | —L r-ļ r-l r-ļ r-l r-ļ r-l d · d · co co co co co co co co co co co co co co r—t r - t 00 00 co co co co 00 00 oo oo co co co co co co co co (S (S (s (s is is ES ES ts ts es me es me to to LO LO o o o o o o O O o o o o o o OJ OJ OJ OJ d·. d ·. d- d - d · d · d- d - d- d- d- d - co co co co co co <o <o co co co co <o <o co co co co to to to to OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ

OJOJ

I I I I I I I I II I I I I I I I I I

COCOd_d‘d’d'd‘d‘d· oj oj to ro to to to to toCOCOd _ d'd'd'd'd'd · oj oj to ro to to to

OtOO-COCOOr-lOjrO c“J l—Ir—I r—l r—l OJ OJ OJ OJOtOO-COCOOr-lOjrO c «J l — Ir — I r — l r— l OJ OJ

1. Oksīdu un metaloksinitrīdu caurspīdīgu plāno kārtiņu iegūšana ar augstfrekvences zibens iztvaikošanu / A.Gorins, V.Kilasovs, A.Martinovs u.c. // Elektrotehnika, 1991· - N.6 Lpp. 3-12.1. Obtaining Transparent Thin Films of Oxides and Metaloxynitrides by High-Frequency Lightning Evaporation / A.Gorin, V.Kilasovs, A.Martinovs, etc. // Electrical Engineering, 1991 · - N.6pp. 3-12.

2. Latv.R. pat. Int. Cl^ ΗΘ1Β 3/12. Dielektrisks plānās kārtiņas materiāls / I.Āboltiņa, R.Ramata, J.Kļaviņš u.c. Akceptēts 04.03.94.2. Latv.R. pat. Int. Cl ^ ΗΘ1Β 3/12. Dielectric Thin Film Material / I.Aboltiņa, R.Ramata, J.Kļaviņš, etc. Accepted 04.03.94.

3- I27135O. PSRS aut.apl. Int. Ol5 CO4B 35/46, HOIB 3/12. Segnetkeramiskās kondensatora šihtas izgatavošana / E.Mamčic, I.Bertošs, V.Laričeva, V.Kotļar. Iesn. 30.12.84. IT. 3832228/29-55» Publ. 23.11.86. Bil. IT. 43.3- I27135O. USSR autopl. Int. Ol 5 CO4B 35/46, HOIB 3/12. Production of Segmented Ceramic Capacitor Shaft / E.Mamčic, I.Bertošs, V.Larčeva, V.Kotļar. Iesn. 12/30/84. IT. 3832228 / 29-55 »Publ. 11/21/86. Bil. IT. 43.

4. 5049528. ASV pat. Int. Cl^ C04B 35/02. Ķerami skās kompozīcijas iegūšanas paņēmiens ar nogulsnēšanu no polimēra šķīduma / W.Moffatt. Publ. 17.09.91. Bil.S. 1130.- N. 3.4. 5049528. U.S. Pat. Int. Cl ^ C04B 35/02. Method for Preparation of Captive Composition by Polymer Solution / W.Moffatt. Publ. 9/17/91. Bil.S. 1130.— N. 3.

5. 1761720. PSRS aut.apl. Int. 01^ C04B 35/46. Keramisks materiāls / J.Mazurkevičs, lī.Zozuļa, I.Kobasa u.c. Iesn. 15.06.89.5. 1761720. USSR aut.apl. Int. 01 ^ C04B 35/46. Ceramic material / J.Mazurkevich, l.Zozulu, I.Kobasa, etc. Iesn. 6/15/89.

N. 4705427/55. Publ. i5.O9.92. Bil. IT. 34.N. 4705427/55. Publ. i5.O9.92. Bil. IT. 34.

6. 1628466 PSRS aut.apl. Int. Cl^ C04B 35/46. Pulverveida keramis· kā materiāla ar īpatnējās virsmas reksturojumu izgatavošanas paņēmiens monolītu kondensatoru ražošanai / V.Kolomainens, V.Miņkovs, V.Bočarovs u.c. Iesn. 13-02.89. Publ. 15.10.92.6. 1628466 USSR aut.apl. Int. Cl ^ C04B 35/46. Powdered Ceramic · as a Fabricated Material Surface Reflection Technique for the Production of Monolithic Capacitors /. Iesn. 13-02.89. Publ. 15.10.92.

Bil. N. 38.Bil. N. 38.

7. 1768562. PSRS aut.apl. Int. 01^ 004B 35 46.._Magnetisko._galviņu. plāksnīšu titāna un bārija oksīdu materiāla iegūšanas paņēmiens / T.Ļimar, J.Kagan, L.Šepeļenko u.c. Iesn. 19.07.90.7. 1768562. USSR aut.apl. Int. 01 ^ 004B 35 46 .._ Magnetic._head. method of obtaining titanium and barium oxide material of plates / T.Limar, J.Kagan, L.Shepelenko et al. Iesn. 7/19/90.

IT. 4852818/26. Publ. 15.10.92. Bil. IT. 38. Prototips.IT. 4852818/26. Publ. 15.10.92. Bil. IT. 38. Prototype.

Claims (1)

Izgudrojuma formulaFormula of the Invention Modificēta titāna dioksīda keramikas materiāla /monolītu kondensatoru ražošanai / iegūšanas paņēmiens, kurā vienlaicīgi reaktorā sajauc izejvielas un sintezē materiālu ar sekojošu apdedzināšanu līdz saķepšanas temperatūrai, atšķiras ar to, ka oksīdu sajaukšana un materiāla sintēze notiek zemtem peratūras plazmas kūlī ar augstfrekvences izlādi, ar sekojošu tvaiku kondensāciju.The process for the production of modified titanium dioxide ceramic material / monolithic capacitors / process, which simultaneously mixes the reactor in the reactor and synthesizes the material with subsequent sintering to a sintering temperature, is characterized by the fact that the oxide mixing and condensation.
LV940098A 1994-05-05 1994-05-05 Method for production of modified ceramic condenser materials based on titanium oxides LV11172B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LV940098A LV11172B (en) 1994-05-05 1994-05-05 Method for production of modified ceramic condenser materials based on titanium oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LV940098A LV11172B (en) 1994-05-05 1994-05-05 Method for production of modified ceramic condenser materials based on titanium oxides

Publications (2)

Publication Number Publication Date
LV11172A LV11172A (en) 1996-04-20
LV11172B true LV11172B (en) 1996-08-20

Family

ID=19735747

Family Applications (1)

Application Number Title Priority Date Filing Date
LV940098A LV11172B (en) 1994-05-05 1994-05-05 Method for production of modified ceramic condenser materials based on titanium oxides

Country Status (1)

Country Link
LV (1) LV11172B (en)

Also Published As

Publication number Publication date
LV11172A (en) 1996-04-20

Similar Documents

Publication Publication Date Title
EP1896215B1 (en) Metal oxide nanoparticles and process for producing the same
Pawlowski Suspension and solution thermal spray coatings
Monterrubio-Badillo et al. Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes
CN101283118B (en) Composite structure
US20070044513A1 (en) Shrouded-plasma process and apparatus for the production of metastable nanostructured materials
JP7069469B2 (en) Powder for film formation or sintering
US8007870B2 (en) Plasma-sprayed layers of aluminum oxide
CN101171369A (en) Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
US20030077221A1 (en) Aluminum oxide powders
Kijima et al. Sintering of ultrafine SiC powders prepared by plasma CVD
JP6659073B1 (en) Powder for film formation or sintering
LV11172B (en) Method for production of modified ceramic condenser materials based on titanium oxides
Okamura et al. Preparation and sintering of narrow-sized Al 2 O 3-TiO 2 composite powders
CN106904582B (en) A kind of preparation method of three-dimensional leaf cone cell vanadium nitride crystallite
US5545360A (en) Process for preparing powders with superior homogeneity from aqueous solutions of metal nitrates
JP2004099400A (en) Electrode member for discharge and ozonizer using the same
CN113913723B (en) Micron-sized porous-structure thermal barrier coating powder and preparation method thereof
Kucza et al. Synthesis and characterization of alumina-and zirconia-based powders obtained by the ultrasonic spray pyrolysis
Grabis et al. Nanosize NiO/YSZ powders produced by ICP technique
KR102503064B1 (en) Manufacturing method of gdc-lscf composite fine powder and composite fine powder manufactured thereby
US20230133847A1 (en) Powder for film formation or sintering
EP1700927B1 (en) Plasma-sprayed alumina layers
US20230331573A1 (en) Fine-particle powder containing calcium oxide or calcium hydroxide and production method for same
Zimmer EFFECT OF COOLING RATE IN THERMALLY SPRAYED ALUMINA
JP2006294517A (en) MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL