LU93331B1 - Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs - Google Patents

Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs Download PDF

Info

Publication number
LU93331B1
LU93331B1 LU93331A LU93331A LU93331B1 LU 93331 B1 LU93331 B1 LU 93331B1 LU 93331 A LU93331 A LU 93331A LU 93331 A LU93331 A LU 93331A LU 93331 B1 LU93331 B1 LU 93331B1
Authority
LU
Luxembourg
Prior art keywords
substituted
unsubstituted
nucleoside triphosphate
electron acceptor
acyclic
Prior art date
Application number
LU93331A
Other languages
German (de)
Inventor
Chris Meier
Tobias Nack
De Oliveira Thiago Dinis
Chenglong Zhao
Original Assignee
Univ Hamburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Hamburg filed Critical Univ Hamburg
Priority to LU93331A priority Critical patent/LU93331B1/en
Priority to PCT/EP2017/081140 priority patent/WO2018100137A1/en
Priority to EP17821806.1A priority patent/EP3548087A1/en
Application granted granted Critical
Publication of LU93331B1 publication Critical patent/LU93331B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • A61K31/708Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid having oxo groups directly attached to the purine ring system, e.g. guanosine, guanylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/548Phosphates or phosphonates, e.g. bone-seeking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • C07H19/207Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide

Abstract

The invention relates to nucleoside triphosphate and nucleoside triphosphate analogue prodrugs. It is an object of the present invention to provide improved nucleoside triphosphate or nucleoside triphosphate analogue prodrugs. To achieve the object, the present invention provides in one aspect non-symmetrically double modified nucleoside triphosphate compounds, or their analogues, wherein the modification is carried out at the terminal, i.e. the y-phosphate, or the corresponding analogous group, and wherein the first modification is adding a moiety A being intracellular stable, and the second modification is adding an intracellular labile mask B, which is cleaved within the cell, such that a nucleoside triphosphate or analogue thereof mono-modified with the intracellularly stable moiety A is released in the cell.

Description

NUCLEOSIDE TRIPHOSPHATE AND NUCLEOSIDE TRIPHOSPHATE ANALOGUE PRODRUGS
DESCRIPTION
The invention relates to compounds which can he used as nucleoside triphosphate or nucleoside triphosphate analogue prodrugs.
In the treatment of, for example, viral infectious diseases such as herpes or hepatitis infections or the immune deficiency disease AIDS (Acquired Immunodeficiency Syndrome), but also in cancer, nucleoside analogues are used, which can he incorporated into DNA. After incorporation, the nucleoside analogues in general act as chain terminators, i.e. there is no further elongation in the 3'-direction (Balzarini, P. Herdewijn, E. De Clercq; Differential Patterns of intracellular Metabolism of 2', 3 '-Didehydro-2',3 '-dideoxythymidine and 3 '-Azido-2',3'-dideoxythymidine, two potent Anti-human Immunodeficiency Virus Compounds; I. Biol. Chem. 1989, 264, 6127-6133). However, the nucleoside analogues must be present as triphosphates (NTP), so that they can be incorporated into the DNA strand for chain extension.
In the form of their mono-, di- or triphosphates (NMP, NDP, NTP), nucleoside analogues can not penetrate the cell membrane under physiological conditions due to their charge. It is also not possible to pass the blood brain barrier (BBB) to treat diseases affecting the brain. Therefore, nucleoside analogues must either be iutracellularly converted into their triphosphates by more or less specific kinases in several stages, or phosphorylated nucleoside analogues must be designed or modified so as to he able to pass through the cell membrane or BBB.
For this purpose, the lipophilicity of the drugs has usually to be increased (e.g. RJ Sawch.uk, Z. Yang, Investigation of distribution, transport and uptake of anti-HIV drugs to the central nervous system, Advanced Drug Delivery Reviews 1999, 39, 5-31). One possibility of increasing the lipophilicity of known drugs is the use of prodrug systems. Prodrugs are precursors of an active agent, releasing the active agent at the desired site of action after biotransformation, e.g. detachment of masking groups. In addition to increased lipophilicity, further preconditions for prodrugs are sufficient stability in extracellular medium and the release of non-toxic masks.
Enzymatically activatable prodrug systems for nucleoside monopbospbates (NMP) bave already been described (A. Pompon, I. Lefebvre, J.-L. bnbacb, S. Khan, D. Farquhar; Decomposition Pathways of the Mono-(Pivaloyloxymethyl) and Bis-(Pivaloyloxymethyl)
Esters of Azidotbymidine-5'-Monopbosphate in Cell Extract and in Tissue-Culture Medium -An Application of the Online Isrp-Cleaning HPLC Technique; Antiviral Cbem. Cbemotber. 1994, 5, 91-98; I. Lefebvre, C. Perigaud, A. Pompon, A.-M. Aubertin, J.-L. Girardet, A. Kim, G. Gosselin, J.-L. bnbacb; Mononucleoside Phosphotriester Dérivâtes with S Acyl-2-tbioetbyl Bioreversible Phosphate-Protecting Groups: Intracellular Delivery of 3'-Azido-2',3'-dideoxytbymidine-5'-monopbospbate; J. Med. Cbem. 1995, 38, 3941-3950; W. Thomson, D. Nicholls, W. J. Irwin, J. S. Al-Mushadani, S. Freeman, A. Karpas, J.Petrik, N. Mahmood, A. J. Hay, Synthesis, Bioactivation and Anti-HIV Activity of the Bis(4-acyloxybenzyl) and Mono(4-acyloxybenzyl) Esters of the 5-Monopbosphate of AZT, J. Cbem. Soc., Perkin Trans., 1993, 1, 1239-1245; Thomson, D. Nicholls, W. J. Irwin, J. S. Al-Mushadani, S. Freeman, A. Karpas, J.Petrik, N. Mahmood, A. J. Hay, Synthesis, Bioactivation and Anti-HIV Activity of the Bis(4-acyloxybenzyl) and Mono (4-acyloxybenzyl) Esters of the 5'-Monophosphate of AZT, J. Cbem. Soc., Perkin Trans., 1993, 1, 1239-1245; A. Routledge, I. Walker, S. Freeman, A. Hay, N. Mahmood, Synthesis, Bioactivation and Anti-HIV Activity of 4-Acyloxybenzyl Bis(Nucleosid-5-yl) Phosphates; Nucl. Nucl., 1995, 14, 1545-1558; C. Meier, Cyc/oSal Phosphates as Chemical trojan Horses for the intracellular Nucleotide and Glycosylmonophosphate Delivery — Chemistry meets Biology; European Journal of Organic Chemistry 2006,1081-1102).
However, although a few nucleoside monophosphate prodrug systems are known and are successfully applied, e.g. Sofosbuvir against Hepatitis C, the disadvantage of using NMP prodrugs is that the necessary subsequent phosphorylation to diphosphates and triphosphates in the cell can still be inhibited or completely suppressed. For example, in the case of the nucleoside analogue azidothymidine (AZT), a known anti-HIV drug, the phosphorylation to the AZTDP (DP = diphosphate) is inhibited. In addition, numerous side effects are attributed to the corresponding monophosphate AZTMP (MP = monophosphate). A suitable masking of nucleoside triphosphates (NTP) and analogues thereof is therefore desirable. In contrast to NMPs, in NTPs not only one phosphate group is present, but two energy-rich phosphoric acid anhydride bonds, which must be reversibly masked in the form of the pyrophosphate unit without causing a cleavage in the anhydride bond(s). When the pyrophosphate moiety is unmasked, no reaction must take place at the phosphorus atom as this can lead to a break in the pyrophosphate bridge. This essentially differentiates NDP and NTP prodrugs from their NMP relatives. Hydrolysis reactions on the phosphorus atom can also take place. Nucleoside triphosphates, in particular, may be dephosphorylated very rapidly intracellularly. In addition, there is still the risk that, besides the microbial (pathogen) polymerases (viruses, bacteria or parasites), cell-specific polymerases are also inhibited. This can potentially lead to a toxicological problem. WO 2009/129798 A2 describes symmetrically masked nucleoside diphosphates and triphosphates as well as a process for their preparation. "Symmetric" in this context means that the masks used for masking the charges of the terminal phosphate have the same structure. However, it has been found that the percentage of the desired diphosphate or triphosphate species of the active ingredient released during the chemical or enzymatic hydrolysis depends on the rate of cleavage of the first mask releasing the monomasked intermediate. The corresponding hydrolysis products of the pyrophosphate group were detected as a byproduct, the corresponding nucleoside monophosphates in the case of the nucleoside diphosphate prodrags, and the corresponding nucleoside diphosphates and the nucleoside monophosphates in case of the nucleoside triphosphates. This ultimately results in a merely nonselective release of the desired target compounds. lessen et al. 2008 and Schulz et al. 2014 (H.J. lessen, T. Schulz, I. Balzarini, C. Meier, Bio-reversible protection of nucleoside diphosphates; Angewandte Chemie International Edition 2008, 47, 8719-8722; T. Schulz, I. Balzarini, C. Meier, The DiPPro Approach: Synthesis, Hydrolysis, and Antiviral Activity of Lipophilic d4T Diphosphate Prodrags; ChemMedChem 2014, 9, 762-75; see also Schulz, T., 2012, Synthese und Untersuchung von Nucleosiddi-phosphat Prodrags, doctoral thesis, University of Hamburg) also describe first examples of symmetrically masked nucleoside triphosphates. In addition, Schulz et al. 2014 describe the non-symmetric masking of a nucleoside diphosphate analogue (l-[(2R,5S)-5-(hydroxymethyl)- 2,5-dihydroiuran-2-yl]-5-methylpyrimidine-2,4-dion, Stavudine, d4T) with a acyloxybenzyl group and a ß-cyanoethyl group. The ß-cyanoethyl group was rapidly cleaved in biological media.
In WO 2016/026493 Al, nucleoside and triphosphate compounds are described, which are bioreversibly non-symmetrically masked at the terminal phosphate group, one mask being more labile than the other and, thus, being cleaved more rapidly (see also L. Weinschenk, Dominique Schols, Jan Balzarini, Chris Meier, Nucleoside Diphosphate Prodrugs: Non-symmetric DiPPro-Nucleotides. J. Med. Chem. 2015, 58, 6114-6130).
It is an object of the present invention to provide improved nucleotide or nucleotide analogue prodrugs.
The problem is solved according to the invention by a non-symmetric chemical modification of nucleoside triphosphate compounds, or analogues thereof, at the terminal phosphate group or the respective analogous group containing a γ-phosphorus atom, one modification being covalently attaching an intracellularly labile moiety acting as a prodrug masking moiety, while the other modification is covalently attaching an intracellularly stable moiety, which is not supposed to be cleaved neither (photo-)chemically nor enzymatically within the cell.
The invention provides nucleotide or nucleotide analogue prodrugs, which are converted intracellularly to γ-phosphate-mono-modified nucleotides or nucleotide analogues. By means of the non-symmetric modification used according to the invention, nucleoside triphosphates (NTP) or their analogues can be successfully introduced into the cell, but instead of releasing the respective NTP or analogue in the cell as such, γ-mono-modified NTPs or analogues thereof are released from the prodrug, which are stable in the intracellular environment. The mono-modified compounds are particularly suitable for the selective inhibition of microbial or viral polymerases, e.g. reverse transcriptase of the human immunodeficiency virus. The modification is carried out only at the terminal phosphate, i.e. at the γ-phosphate. Additional modification of the internal phosphate(s) can be dispensed with.
It has been described in the literature that γ-modified nucleoside triphosphates with one methyl ester unit on the γ-phosphate or an arylphosphonate instead of the γ-phosphate of the nucleoside triphosphates can be substrates for the viral HIV polymerase in primer extension assays. Moreover, it has been shown that the use of such mono-y-modified nucleoside triphosphates with small aliphatic or aromatic residues can lead to differentiation between different polymerases. In contrast to viral reverse transcriptase, mono-y-modified nucleoside triphosphates are much less or not at all recognized as a substrate by the human DNA polymerases (see, for example, LA Alexandrova, AY Skoblov, MV Jasko, LS Victorova, AA Krayevsky, 2-Deoxy-nucleosides 5' -triphosphates modified at α-, β- and y-phosphates as substrates for DNA polymerases, Nucleic Acids Res. 1998, 26, 778-786, LS Victorova, DG Semizarov, EA Shirokova, LA Alexandrova, AA Arzumanov, MV Jasko, AA Krayevsky, Human DNA Polymerases and retroviral reverse transcriptases: Selectivity in respect to dNTPs modified at triphosphate residues, 1999, 18, 1031-1032; Mulder BA, AnayaS, Yu P, et al. Nucleotide modification at the γ-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase. Nucl. Acids Res. 2005, 33(15):4865-4873. doi:10.1093/nar/gki779). However, the published compounds were not and could not be used as potential virostatic agents, since they were too polar for a membrane passage. No prodrugs of such compounds have been reported or discussed yet.
In a first aspect the present invention provides a nucleoside triphosphate or nucleoside triphosphate analogue prodrug, or a pharmaceutically acceptable salt thereof, having covalently bound to its terminal phosphate or analogous group a lipophilic moiety A and a lipophilic moiety B, the lipophilic moieties A and B being different from each other, A being an intracellular stable lipophilic moiety, and B being an intracellular labile lipophilic moiety.
The nucleoside triphosphate or nucleoside triphosphate analogue prodrug according to the first aspect of the invention is cell-penetrating and permits the intracellular release of an active compound, for example an antivirally or an antitumoral active compound. In the compounds according to the invention, the moieties A and B at the terminal phosphorus atom differ by their stability within the cell. One of the moieties is intracellularly labile (and is therefore also called mask), for example enzymatically cleavable, e.g. by means of esterases, while the other moiety is intracellularly stable, so that after e.g. enzymatic cleavage of the labile moiety (mask) in the cell a mono-modified nucleotide or nucleotide analogue results. The resulting stably mono-modified compound has high resistance to nucleophilic attack on the phosphoanhydri.de bond(s) and enzymatic cleavage of the stable moiety A. Both the mask B and the moiety A are lipophilic and thus ensure the necessary lipophilicity in order to ensure entry into the cell. The adjustment of the lipophilicity of these two moieties is known to a person skilled in the art and can, if necessary, he determined by routine experimentation. For example, the lipophilicity of the mask (moiety B) and the stable moiety A can be manipulated by the size or length of a hydrocarbon residue. The stability of the moieties can also he influenced, for example, by the incorporation of heteroatoms. In addition, the selection of a suitable stable modification at the γ-phosphorus atom of a nucleoside triphosphate or analogue also allows a differentiation in the property of the mono-modified compound resulting after removal of the mask to function as a substrate of microbial/viral and endogenous polymerases. Particularly advantageous is, for example, a γ-mono-modified nucleoside triphosphate analogue, which is used at least predominantly or specifically only by microbial/viral polymerases and not or insignificantly by endogenous polymerases as substrate, as a result of which possible adverse effects on the cell can be avoided or reduced.
The compounds according to the invention allow the introduction of nucleotides and nucleotide analogues at the level of stably mono-modified triphosphates or triphosphate analogues into the cell. In particular, nucleoside triphosphates and analogues thereof can be introduced directly into the cell, in which they will be released and can also be enriched in a stably mono-modified form so that they can directly be used as a substrate of e.g. viral polymerases. As a result, side effects which are caused, for example, by monophosphates can be avoided. By intracellular release of stably mono-modified triphosphate analogues, which selectively serve as substrate for microbial/viral, but not or only marginally for cellular enzymes, side effects can be avoided which are caused by endogenous cellular enzymes using the introduced compounds as substrate leading to incorporation of the nucleoside triphosphate analogue into cellular RNA/DNA, e.g. by the mitochondrial DNA polymerase γ. The compounds according to the invention can, for example, find advantageous use in medicinal products both as antiviral and as antitumoral agents. They are particularly suitable as drugs for the treatment of infections by viruses, in particular retroviruses such as HI viruses, influenza, hemorrhagic fever and hepatitis viruses.
The intracellularly stable moiety A is thus preferably selected in such a way that it particularly provides for a specificity of the mono-modified compound, i.e. the compound having only the stable moiety A, as a substrate for, for example, viral/microbial enzymes, preferably polymerases, for example reverse transcriptases (EC 2.7.7.49), such as those of the HI virus. In contrast, the intracellularly for example enzymatically cleavable mask B ensures in particular for sufficient cell uptake of the original dimodified compound and the intracellular formation of the mono-modified compound. In addition, the stable moiety A also preferably improves cell membrane penetration by virtue of its lipophilicity.
The compounds according to the invention are generally present as salts under physiological conditions. In the following, a triphosphate compound or triphosphate analogue la is shown by way of example, where Cat+ means cation, for example ammonium, sodium or potassium cation. Nucl stands for nucleoside or nucleoside analogue.
(Ial)
The term "nucleoside triphosphate or nucleoside triphosphate analogue” refers to nucleoside triphosphates or analogues thereof, a nucleoside triphosphate being a compound according to the following general formula VI
(VI), and a “nucleoside triphosphate analogue” being an analogue of a nucleoside triphosphate.
Nucleoside triphosphates are composed of a base component (nucleobase), a sugar component, e.g. a pentose like ribose or deoxyribose, and a triphosphate residue (sometimes also termed “triphosphate bridge”) attached to an O atom of the sugar component, e.g. an O atom bound to
the 5' atom of a pentose. The term “triphosphate analogue” refers to compounds not being I triphosphates in a strict sense, because they do not contain three phosphate groups, i.e. groups having a phosphorus atom bound to four oxygen atoms, but contain groups analogous to phosphate groups, e.g. phosphonate groups, instead of one or two phosphate groups. A “nucleoside triphosphate analogue” is a chemical compound, which is structurally and/or
functionally similar to a nucleoside triphosphate such that an enzyme, e.g. a viral polymerase, having a nucleoside triphosphate naturally occurring in, for example, a human cell as a substrate would also use said compound as a substrate, analogous to the naturally occurring nucleoside triphosphate. A nucleoside triphosphate analogue may, in relation to a naturally occurring nucleoside triphosphate, be modified in one, two or in each of the above-mentioned components, i.e. the base component, the sugar component or the triphosphate component. The latter may, for example, be modified in that the bridging O atoms are replaced by, e.g. CH2, CF2, NH etc., or in that the non-bridging O atoms are replaced, e.g. by O, S or BH3.
The term “terminal phosphate or analogous group” refers to the terminal or γ-phosphate (γ-phosphoryl) group of the triphosphate group, or to the group, e.g. phosphonate, phosphoro-thioate, phosphoroselenoate or boranophosphate group, being analogous to the terminal phosphate group, i.e. the terminal group not being a phosphate group but containing a phosphorus atom. The term “γ-phosphorus atom” as used herein relates to the phosphorus atom of the terminal phosphorus containing group of the triphosphate component or the component being analogous thereto.
A "non-symmetrically modified nucleoside triphosphate or nucleoside triphosphate analogue prodrug" is understood to mean a nucleoside triphosphate or nucleoside triphosphate analogue being twice, but non-symmetrically, modified at the γ-phosphorus atom thereof, by covalently attaching two different lipophilic groups A and B at the group containing the γ-phosphorus atom. Group B is an intracellularly labile moiety, while group A is intracellularly stable moiety. A non-symmetrically modified nucleoside triphosphate or nucleoside triphosphate analogue prodrug” may thus be a compound according to the following general formula I
(I), in which A and B stand for different chemical structures, U is, independently from each other, O, S, Se, or BH3, for example Ο, V is, independently from each other, O, CH2, NH, CHF, CHC1, CHBr, CF2, CCE, CBr2 or CFC1, for example O, and R1 is nucleoside or nucleoside analogue. The terminal phosphorus atom, i.e. the γ-phosphorus atom, thus forms a stereogenic
centre. The chemical structures A, B neutralize the negative electric charges at the single-bonded oxygen atoms of the terminal phosphate under physiological conditions. In the case of the stable moiety A, an oxygen atom otherwise hound to the terminal phosphorus atom can also he replaced by S or NH. The two organic groups A and B themselves are also not charged under physiological conditions.
The term “mono-modified” used here in relation to a nucleoside triphosphate or nucleoside triphosphate analogue exclusively relates to compounds comprising the intracellularly stable moiety A only at the terminal phosphate or the group analogous to the terminal phosphate group, e.g. a terminal phosphonate group. According to the invention, mono-modified triphosphate compounds or triphosphate analogues are released within a cell, e.g. a mammalian cell, by cellular activity, e.g. enzymatically, from a compound of the invention having, at the terminal phosphate or analogues group, both an intracellularly stable moiety A and an intracellularly labile moiety (mask) B. The latter compounds, i.e. triphosphate compounds or analogues thereof carrying, at their terminal phosphate or analogous group, both the mask B and the stable moiety A, may be referred to as being “dimodified” or as being “monomasked plus mono-modified”.
An "intracellularly labile moiety", which may also be referred to as “mask”, or as an "intracellularly labile group", "enzymatically cleavable moiety", "enzymatically cleavable group", or the like, is understood here to be a chemical group which is, e.g. hydrolytically, cleavable under conditions prevailing in a target cell, preferably a eukaryotic, for example human cell, for example in terms of temperature, pH, salt content, etc., with the aid of enzymes present or, as the case may be, inducible in the target cell. The term also encompasses photolabile, i.e. photo cleavable moieties, e.g. groups that can he cleaved by irradiation with UV or near-UV light. The term also encompasses those cases in which a mask is degraded in several steps, for example cascade-like, and at least one degrading step takes place enzymatically. For example, the initial attack can be carried out enzymatically, while the further degradation steps occur spontaneous. In particular, a moiety is considered to be intracellularly labile, if the compound masked therewith has a comparatively low half-life in the cell, for example a half-life of < 4 h, preferably < 3 h, < 2 h, < 1 h, < 45 min or < 30 min.
Under an "intracellularly stable moiety", which may also be referred to as ’’intracellularly stable modification”, “intracellularly stable group”, “intracellularly stable protecting group” or similar terms, is to be understood a modification which is not or at least essentially not cleaved under intracellular conditions, and which is also not cleaved photo chemically. In particular, an "intracellularly stable moiety” is understood to be an intracellularly stable modification if the compound modified with it has a high half-life in the cell, for example a half-life of >24 h, preferably >36, >48, >60, >72, >84, >96, >108 or >120 h.
By "nucleoside" are meant organic molecules consisting of a sugar residue (sugar component) linked to an organic base (base component), e.g. a heterocyclic organic base, in particular a nitrogen-containing heterocyclic organic base (nucleobase), which are linked via a glycosidic bond. The sugar moiety is often a pentose, e.g. deoxyribose or ribose, but may also be another sugar, e.g. a C3-, C4- or Cô-sugar. Frequently, but not exclusively, nucleobases are purines (R) or pyrimidines (Y). Examples of naturally occurring purines are guanine (G) and adenine (A), examples of naturally occurring pyrimidines are cytosine (C), thymine (T) and uracil (U). In particular, a nucleoside is therefore a compound of the following general formula
wherein Bn is a nitrogen-containing heterocyclic organic base, e.g. a nucleobase, and R and R3' are, independently from each other, H or OH. Phosphorylated nucleosides, for example nucleoside monophosphates (NMP), nucleoside diphosphates (NDP) and nucleoside triphosphates (NTP), are also referred to as nucleotides. The phosphate, diphosphate (pyrophosphate) or triphosphate group is generally linked to the O atom attached to the 5'-C atom of the sugar component of the nucleoside. However, the invention also encompasses compounds in which the phosphate group(s) is(are) bound to a 2'- or 3'-OH group. A "nucleoside analogue" (or "nucleoside analog") is to be understood here as an organic compound which is naturally not present in the human body but which is structurally similar to a nucleoside occurring naturally in the human body so that it can be used, for example, by the cell and/or viral enzymes essentially corresponding to the natural nucleoside, for example
phosphorylated and incorporated into an RNA or DNA strand. A nucleoside analogue can itself be a nucleoside. However, for example, it may also be another compound having the above characteristics, for example a compound of a heterocyclic base and an acyclic residue and/or a residue which is not a sugar, or a compound of a carbocyclic compound and a heterocyclic base. In the case of carbocyclic nucleoside analogues, for example, the ring oxygen in the sugar component is replaced by a carbon (a methylene group or a substituted methylene group). In the sugar component, for example, a carbon atom may also be replaced by a heteroatom, for example the 3'-carbon atom by sulfur. Further, the 5' hydroxyl group of the sugar component may be replaced by another group, e.g. an amino group, or substituted. A nucleoside analogue may also he composed of a sugar like ribose or deoxyribose and a nucleobase analogue.
Examples of nucleobase analogues are 5-bromouracil, 6-azathymine, 5-fluorouracil andN6-hydroxyadenine. Nucleoside analogues are either themselves nucleosides in the above sense or structurally and/or functionally analogous to nucleosides. Since nucleoside analogues do not necessarily have to contain a sugar or base component in the narrow sense, the terms “component analogous to the (naturally occurring nucleo)base” (base analogue) or “component analogous to the sugar component” (sugar analogue) may also be used here. If a sugar component or base component is mentioned here, the corresponding analogous components of nucleoside analogues are also encompassed, unless the context clearly indicates otherwise. Numerous nucleoside analogues are known to the person skilled in the art. Known examples are AZT (3'-azido-2',3'-dideoxythimidine, azidothymidine), 2',3'-dideoxyinosine (didanosine), 2',3'-dideoxycytidine (zalticabine), ß-L-2',3'-dideoxythiacytidine (lamivudine, 3TC), L-thymidine, 2'-methyl-("up")-2'-hydroxyl-("down")-uridme/-cytidine), 2‘-Methyl-(„up“)-2‘-fhioro-(„down“)-uridine/-cytidine (see, for example, US Pat. No. 7608600 BI), 2-amino-9-((2-hydroxyethoxy)methyl)-lH-purine-6(9H)-one (Acyclovir). Nucleoside analogues which inhibit reverse transcriptase from retroviruses such as human immunodeficiency virus (HIV) are also referred to as NRTIs (nucleoside reverse transcriptase inhibitors). A "nucleoside phosphate analogue" is understood to mean an analogue to a phosphorylated nucleoside, i.e. a nucleotide analogue. The term "nucleoside monophosphate analogue" is, for example, understood to mean an analogue to a nucleoside monophosphate. Examples of nucleoside monophosphate analogues are nucleoside phosphonates, such as, for example, 3-hydroxy-2-phosphonomethoxypropyl (HPMP), 2-phosphonomethoxyethyl (PME), 2',3'- / didehydro-2',3'-dideoxythymidme phosphonate (d4TP), (S)9-(3-hydroxy-2- phosphonyhnethoxypropyl) adenine (HPMPA) and 9-(2-phosphonyhnethoxyethyl) adenine (PMEA, adefovir). Nucleoside phosphonates are known to the person skilled in the art, contain a C-P linkage instead of the P-0 linkage of nucleoside phosphates, and can contain, for example, a nucleobase, an acyclic or cyclic aliphatic sugar-analogous component and a phosphonomethyl group CH2P(O)(OH)2 group (see, for example, Pertusati et 2012, Medicinal Chemistry of Phosphonate Prodrugs for Antiviral Therapy, Antivir. Chem. Chem. 22: 181-203, doi: 10.3851 / EMP2012). Phosphorylated nucleoside analogues, for example phosphorylated nucleosides with a modified nucleobase, also fall under the terms "nucleoside phosphate analogue" or "nucleotide analogue."
If the abbreviation "Nucl" is used here, it encompasses both nucleosides and nucleoside analogues. The abbreviations "NMP", "NDP" and "NTP" encompass not only nucleoside monophosphates, nucleoside diphosphates and nucleoside triphosphates, but also corresponding analogues, i.e. nucleoside monophosphate analogues, nucleoside diphosphate analogues and nucleoside triphosphate analogs, unless explicitly stated otherwise.
For the purposes of the present invention, the indication of a range such as "1-10", for example, is to be understood as meaning that each intermediate value is also disclosed. In the case of an indication which can only affect integers, such as, for example, a number of C atoms, this means, of course, that only integers are disclosed. Any narrower range from a broader range is also meant to be disclosed by indicating the broader range, the narrower range also including ranges not comprising any of the boundary values of the broader range (e.g. a range of 2-5 from a range of 1-10).
The term "Cn-Cm" or "Cn-m", where n and m are each positive integers and m is greater than n, means a range indicating the number of carbon atoms of a compound or residue. The expression here expressly includes all integer intermediate values between the range boundaries n and m, in each case independently of one another. The expression "Cho" (n = 1, m = 10) therefore means, for example, a compound, group or residue having 1-10, i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms. "Cuo" therefore also comprises, for example, "CW, i.e. 2, 3, 4, 5 or 6 carbon atoms, or "C^", i.e. 1, 2, 3 or 4 carbon atoms, or "C4.9", i.e. 4, 5, 6, 7, 8 or 9 carbon atoms. Correspondingly, tbe term "Ci-20-alkyl" means, for example, an alkyl group having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15, 16, 17,18 , 19 or 20 carbon atoms and comprises all combinations of the values of n and m, which lie in the range from n = 1 to m = 20, for example “Cho alkyl”, i.e., an alkyl having 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, or "C5-7 alkyl", i.e. an alkyl having 5, 6 or 7 carbon atoms. Correspondingly, this also applies to terms such as "C2-10 alkenyl", "C4.20 alkenynyl", and the like.
The term "aliphatic residue" comprises cyclic or acyclic linear (straight chain) or branched, saturated or unsaturated carbon compound residues, other than aromatic residues. The tenu "heteroaliphatic residue" means aliphatic residues in whose carbon skeleton one or more C atoms are replaced by heteroatoms, for example oxygen, sulfur, nitrogen or phosphorus.
The term "alkyl" comprises saturated aliphatic (non-aromatic) groups including straight-chain (linear) alkyl groups (e.g. methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl), and branched alkyl groups (e.g. isopropyl, tert-butyl, isobutyl). The term also encompasses O, N, S or P alkyl groups (e.g., -O-methyl), i.e. alkyl groups which are hound to a compound via an oxygen, nitrogen, sulfur or phosphorus atom.
The term "alkenyl" comprises unsaturated aliphatic (non-aromatic) groups having at least one C-C double bond, including straight-chain and branched alkenyl groups. The term also includes O-, N-, S- or P-alkenyl groups (e.g., -O-propenyl), i.e. alkenyl groups bound to a compound via an oxygen, nitrogen, sulfur or phosphorus atom.
The term "alkynyl" (or “alkinyl”) includes unsaturated aliphatic (non-aromatic) groups having at least one C-C triple bond, including straight-chain and branched alkynyl groups. The term also includes O, N, S or P alkynyl groups (e.g., -O-hutinyl), i.e. alkynyl groups hound to a compound via an oxygen, nitrogen, sulfur or phosphorus atom.
The term "alkenynyl" (or “alkeninyl”) includes unsaturated aliphatic (non-aromatic) groups having at least one C-C double bond and at least one C-C triple bond, including straight-chain and branched alkenynyl groups. The term also includes O-, N-, S-, or P-alkenynyl groups, i.e. alkenynyl groups bound to a compound via an oxygen, nitrogen, sulfur or phosphorus atom.
The term "cycloalkyl" includes compounds containing an alicyclic group, i.e. a ring-shaped saturated aliphatic (non-aromatic) group, e.g. cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl group. The term also includes O-, N-, S- or P-cycloalkyl groups, i.e. cycloalkyl groups bound to a compound via an oxygen, nitrogen, sulfur or phosphorus atom. The terms "cycloalkenyl", "cycloalkynyl" and "cycloalkenynyl" mean correspondingly ring-shaped aliphatic (non-aromatic) alkenyls, alkynyls or alkenynyls as defined above, the double and/or triple hond(s) being present within or outside the ring or ring system.
The term "hetero alkyl" refers to alkyl groups in which one or more carbon atoms of the hydrocarbon structure are replaced by other atoms (heteroatoms), e.g. oxygen, nitrogen, sulfur or phosphorus atoms. The term also includes O-, N-, S- or P-heteroalkyl groups, i.e. heteroalkyl groups which are bound to a compound via an oxygen, nitrogen, sulfur or phosphorus atom. The term "heteroalkyl·' also includes cycloalkyls in which one or more carbon atoms of the hydrocarbon structure are replaced by other atoms, e.g. oxygen, nitrogen, sulfur or phosphorus atoms. The terms "heteroalkenyl", "heteroalkynyl", "heteroalkeninyl" mean corresponding alkenyls, alkynyls and alkeninyls, as well as cyclo alkenyls, cycloalkynyls and cyclo alkeninyls, in which one or more carbon atoms of the hydrocarbon skeleton are replaced by other atoms (heteroatoms), e.g. oxygen, nitrogen, sulfur or phosphorus atoms. For example, the term "Ci_2o-heteroalkyl" means an alkyl group having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,13,14, 15,16,17,18, 19 or 20 carbon atoms andatleast one heteroatom. The same also applies to hetero alkenyls, heteroalkynyls and hetero alkenynyls.
By "aryl" are meant groups with aromaticity, including multi-membered aromatic single ring groups and multicyclic systems with at least one aromatic ring. Examples of aryl groups include benzene, phenyl and naphthalene. The term also includes O-, N-, S- or P-aryl groups, i.e. aryl groups bound to a compound via an oxygen, nitrogen, sulfur or phosphorus atom.
By "heteroaryl" are meant aryl groups having at least one heteroatom in the ring structure, i.e. in which one or more carbon atoms in the ring structure are replaced by other atoms (hetero atoms), e.g. b oxygen, nitrogen, sulfur or phosphorus atoms. Examples of heteroaryls are pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, tetrazole, pyrazole, oxazole, pyridine, pyrazine, pyridazine and pyrimidine. The term also includes multicyclic, e.g. bicyclic and tricyclic, aryl groups, e.g. henzoxazole, benzo dioxazole, benzothiazole, benzoimidazole, benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, indole, benzofuran, purine or henzofuran. The term also includes O-, N-, S- or P-heteroaryl groups, i.e. heteroaryl groups hound to a compound via an oxygen, nitrogen, sulfur or phosphorus atom.
By the term "halogen" is meant chlorine (Cl), fluorine (F), bromine (Br) and iodine (I), in particular chlorine (Cl) and fluorine (F).
The term "substituted" means that one or more substituents are present, which replace a hydrogen atom on one or more carbon atoms of the hydrocarbon structure or on one or more heteroatoms in the carbon skeleton. Examples of such substituents are oxo, hydroxyl, phosphate, cyano, azido and amino groups, but also e.g. halogens (e.g., F, Cl, Br), acyl, acyloxy, alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, aryl and hetero aryl groups. Instead of the term “substituent” also the terms “residue” or “moiety” may be used here.
An "electron acceptor" is understood here to be a compound, compound residue or functional group which accepts, attracts or withdraws electrons and thus causes a charge displacement, i.e. a polarization, in a compound. Electron acceptors or electron acceptor groups are known to a person skilled in the art and have, for example, a negative inductive or mesomeric effect. Examples of electron acceptor groups are MeSO2, =0, C(O)H, COOH, CO2R, CN, SO3H, ketones, esters or the ester group, N02 and halogen (e.g. F, Cl). Me stands for methyl.
A nucleoside triphosphate or nucleoside triphosphate analogue according to the first aspect of the invention preferably is a compound according to the following general formula I
(I), or a pharmaceutically acceptable salt thereof, wherein A and B are different lipophilic moieties, A being an intracellular stable lipophilic moiety, and B being an intracellular labile lipophilic moiety,
U is, independently from each other, O, S, Se, or BH3, preferably 0, V is, independently from each other, O, CH2, ΝΉ, CHF, CHC1, CHBr, CF2, CCI2, CBr2 or CFC1, preferably 0, and wherein R1 is nucleoside or nucleoside analog.
Preferably, U and V are each 0. A nucleoside triphosphate or nucleoside triphosphate analogue according to this preferred embodiment has a structure according to the following general formula la: (la)
The residue R1 is, in the case of a nucleoside or nucleoside analogue, preferably bound via the sugar component or the component analogous to the sugar component, for example via an oxygen atom, e.g. the oxygen atom bound to the 5’-C atom of a pentose. The residue may, however, also be hound to the phosphorus atom via a C atom, preferably a C atom of the sugar component or sugar component analogue, e.g. a 5’-C atom of a pentose or pentose analogue, thus forming a phosphonate group, or via another suitable atom or group, e.g. NH or S. The residue R1 may, for example, also he bound via an oxygen atom at the 2'- or 3'-carbon atom of a pentose.
In a preferred embodiment of the invention
a) A is a residue according to formula II
(IT), wherein
I
RA1, RA2 and RA4 are, independently from each other, H, a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or hetero aliphatic residue, or a substituted or unsubstituted aromatic or heteroaromatic residue, or an electron acceptor, Z is Y or CRA6RA7Y, Y being O, S, NH or CRA9RA1°, and wherein RA6, RA7, RA9 and RA1° are, independently from each other, H, a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic residue, or a substituted or unsubstituted aromatic or heteroaromatic residue, or an electron acceptor, R'43 and RA5 are, independently from each other, H or C(X)RA8, but are not both H, wherein X is O, S or NH, and R is a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic residue, or a substituted or unsubstituted aromatic or heteroaromatic residue, or b) A is a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic residue, or a substituted or unsubstituted aromatic or heteroaromatic residue.
Non-limiting examples of electron acceptors are NO2, CN, SO3H, ketone, and halogen. A compound according to the invention can thus, for example, he a compound according to the following general formulas Ibl or Ib2:
(Ibl) (Ib2) Y can he O, S, NH or CRA9RA1°, and is preferably 0.
In a preferred embodiment of the invention the residues RA1, RA2 and RA4 are, in a compound according to the above formula I, independently from each other H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_2o aliphatic or Ci_2o heteroaliphatic residue, or a substituted or unsubstituted C5_2o aromatic or CWo hetero aromatic residue, or an electron acceptor, especially preferred, independently from each other, H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_io aliphatic or Ci_io heteroaliphatic residue, or a substituted or unsubstituted Cs-n aromatic or C3_i2 hetero aromatic residue, or an electron acceptor.
In a further preferred embodiment of the invention RA1, R^ and RA4 are, in a compound of the invention according to the formula I above, independently from each other selected from the group consisting ofH, substituted or unsubstituted Ci_2o alkyl, substituted or unsubstituted C2_ 2o alkenyl, substituted or unsubstituted C2_2o alkynyl, substituted or unsubstituted C4_2o alkenynyl, substituted or unsubstituted C3_2o cycloalkyl, substituted or unsubstituted C3_2o cycloalkenyl, substituted or unsubstituted Cs_2o cycloalkynyl, substituted or unsubstituted Cs_2o cyclo alkenynyl, substituted or unsubstituted Ci_2o heteroalkyl, substituted or unsubstituted C2_ 2o hetero alkenyl, substituted or unsubstituted C2_2o hetero alkynyl, substituted or unsubstituted Cz)_2o hetero alkenynyl, substituted or unsubstituted C5_24 Aryl, substituted or unsubstituted C3.24 heteroaryl, or an electron acceptor.
Further preferred, RA1, R^ and RA4 are, in a compound of the invention according to the formula I above, independently from each other selected from the group consisting of H, substituted or unsubstituted Ci_io alkyl, substituted or unsubstituted C2_io alkenyl, substituted or unsubstituted C2_io alkynyl, substituted or unsubstituted (Wo alkenynyl, substituted or unsubstituted C3_io cycloalkyl, substituted or unsubstituted C3_io cycloalkenyl, substituted or unsubstituted C5-10 cycloalkynyl, substituted or unsubstituted Cs_io cyclo alkenynyl, substituted or unsubstituted Ci_io heteroalkyl, substituted or unsubstituted CWo heteroalkenyl, substituted or unsubstituted C2_io heteroalkynyl, substituted or unsubstituted (Wo hetero alkenynyl, substituted or unsubstituted Û5_i2 aryl, substituted or unsubstituted C3_i2 heteroaryl, or an electron acceptor. Especially preferred RA1, R42 and RA4 are all H.
Preferably, RA8 i. is a substituted or xxusubstituted cyclic, acyclic, linear or branched Ci_2o aliphatic or Ci_2o hetero aliphatic residue, or a substituted or unsubstituted C^o aromatic or C3_2o hetero aromatic residue, or ii. is a substituted or xinsubstituted cyclic, acyclic, linear or branched Ci_io aliphatic or Ci_io hetero aliphatic residue, or a substituted or xinsubstituted C5_12 aromatic or C3_i2 heteroaromatic residue, or iii. is selected from the group consisting of substituted or unsubstituted Ci_2o alkyl, substituted or unsubstituted C2_20 alkenyl, substituted or unsubstituted C2-2o alkynyl, substituted or unsubstituted C4_2o alkenynyl, substituted or unsubstituted C3_2o cycloalkyl, substituted or unsubstituted C3_2o cycloalkenyl, substituted or unsubstituted C5_2o cycloalkynyl, substituted or unsubstituted C5_2o cyclo alkenynyl, substituted or xinsubstituted Ci_2o heteroalkyl, substituted or unsubstituted C2_2o hetero alkenyl, substituted or unsubstituted C2-20 heteroalkynyl, substituted or unsubstituted C4_2o hetero alkenynyl, substituted or unsubstituted C5_24 aryl, substituted or xinsubstituted C3_24 heteroaryl, preferably Ci_2o alkyl or Ci_2o alkenyl.
The residues RA6, RA7, RA9 and RA1° preferably i. are, independently from each other, H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_2o aliphatic or Ci_2o hetero aliphatic residue, a substituted or unsubstituted C5_2o aromatic or C3_2o hetero aromatic residue, or an electron acceptor, or ii. are, independently from each other, H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_io aliphatic or Ci_io hetero aliphatic residue, or a substituted or unsubstituted C5_i2 aromatic or C3_i2 heteroaromatic residue, or an electron acceptor, or iii. are, independently from each other, selected from the group consisting of H, substituted or unsubstituted Ci_2o alkyl, substituted or xinsubstituted C2_2o alkenyl, substituted or xinsubstituted C2-2o alkynyl, substituted or unsubstituted C4_2o alkenynyl, substituted or unsubstituted C3_2o cycloalkyl, substituted or unsubstituted C3_2o cycloalkenyl, substituted or unsubstituted Cs_2o cycloalkynyl, substituted or unsubstituted Cs_2o cyclo alkenynyl, substituted or unsubstituted Ci_2o heteroalkyl, substituted or xinsubstituted C2_2o heteroalkenyl, substituted or unsubstituted C2-2o heteroalkynyl, substituted or unsubstituted C4_2o hetero alkenynyl, substituted or unsubstituted Cs_24 aryl, substituted or unsubstituted C3_24 hetero aryl, or an electron acceptor, or iv. are, independently from each other, selected from the group consisting of H, substituted or unsubstituted Ci_io alkyl, substituted or unsubstituted C2_io alkenyl, substituted or unsubstituted C2-10 alkynyl, substituted or unsubstituted C4_io alkenynyl, substituted or unsubstituted C3_io cycloalkyl, substituted or unsubstituted C3_io cycloalkenyl, substituted or unsubstituted C5_io cycloalkynyl, substituted or unsubstituted Cs-io cyclo alkenynyl, substituted or unsubstituted Ci_io heteroalkyl, substituted or unsubstituted C2-10 hetero alkenyl, substituted or unsubstituted C2_io heteroalkynyl, substituted or unsubstituted ΰψ_ιο hetero alkenynyl, substituted or unsubstituted Cs-n aryl, substituted or unsubstituted C3_i2 heteroaryl, or an electron acceptor, or V. are all H, or vi. are an electron acceptor or H, with the proviso that residues at the same carbon atom are not both an electron acceptor, i.e. RA6 and RA7 are not both an electron acceptor, and RA9 and RA1° are not both an electron acceptor.
In a farther embodiment of the invention the moiety A i. is a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_2o aliphatic or Ci_2o heteroaliphatic residue, or a substituted or unsubstituted C5^2o aromatic or C3_2o hetero aromatic residue, or ii. is a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_i0 aliphatic or Cho heteroaliphatic residue, or a substituted or unsubstituted Cj-n aromatic or C3_i2 heteroaromatic residue, or iii. is selected from the group consisting of substituted or unsubstituted Ci_2o alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C2_20 alkynyl, substituted or unsubstituted C4_2o alkenynyl, substituted or unsubstituted 03-20 cycloalkyl, substituted or unsubstituted C3_2o cycloalkenyl, substituted or unsubstituted C5-20 cycloalkynyl, substituted or unsubstituted Cs_2o cyclo alkenynyl, substituted or unsubstituted Ci_2o hetero alkyl, substituted or unsubstituted C2-20 heteroalkenyl, substituted or unsubstituted C2-.20 heteroalkynyl, substituted or unsubstituted C^o heteroalkenynyl, substituted or unsubstituted C5_24 aryl, substituted or unsubstituted C3_24 heteroaryl, preferably Ci_2o alkyl or Ci_20 alkenyl.
The moiety A may be bound via a heteroatom, e.g. an O, N or S atom, or via a C atom to the terminal phosphorus atom. An example of a preferred embodiment, where the moiety A is an alkyl residue hound via an 0 atom bound to the terminal phosphorus atom, is shown in the following formula (Id).
(Id)
An example of this embodiment with the alkyl residue being C18H37, is shown below
(Ic2)
Moiety A is not a ß-cyanoethyl group —O(CH2)2CN.
As mentioned above, an alkyl or other residue may, however, also he directly attached to the terminai phosphorus atom, i.e. via a C-atom of the residue, as shown below.
(Ic3)
In a preferred embodiment of the compound of the invention Z is CRA6RA7Y, wherein Y is 0, S or NH, preferably 0, the residues RA1, R^, RA4, R^, RA6 and RA7 are each H, and RA3 is C(X)RA8, wherein X is O, S or NH, preferably 0, and wherein RA8 is as defined above.
In a particular preferred embodiment of the invention the mask B in the compound of the invention is a residue according to the following formula III (III), /.
wherein RB1, RB2 and R34 are, independently from each other, H, a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic residue, or a substituted or unsubstituted aromatic or heteroaromatic residue, or an electron acceptor, R36 and R37 are, independently from each other, H, a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic residue, or a substituted or unsubstituted aromatic or heteroaromatic residue, or an electron acceptor, R33 and R35 are, independently from each other, H or WC(X)R38, hut are not both H, wherein W and X are, independently from each other, O, S or NH, preferably both 0, and •no R is a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic residue, or a substituted or unsubstituted aromatic or hetero aromatic residue.
Non-limiting examples of electron acceptors are N02, CN, SO3H, ketone, and halogen.
An example of a preferred embodiment of the mask B, wherein RB1, R52, R34, R55, RB6 and R37 are all H, and wherein RB3 is WC(X)RB8, is shown in the following formula (Ilia)
(Ilia)
As mentioned above, W and X are, independently from each other, O, S or ΝΉ, preferably both 0.
In a preferred embodiment the compound of the invention has a structure according to the following general formula (Id):
(ld)
In a preferred embodiment the residues RA1, R^, RA4, RB1, RB2 and R64, and preferably also •p/' ·ρ--7 the residues R and R , are all the same, preferably all H. Such a preferred embodiment, in which the residues RA5 and RB5 are also each H, has, for example, the structure according to the following general formula Ie:
(le)
Alternatively, however, the residues RA3 and R53 can he each H and the residues RA5 and R55 can he as defined above, but not H. RA5 can, for example, be C(X)RAS and RB5 can, for
DO example, be W(X)R . W and X can, independently from each other, and in case of X also independently for any occurrence of X, he O, S or NH. Preferably, W and X are each 0.
In a further preferred embodiment of the compound of the invention the residue R?3 is C(X)RA8 and the residue RB3 is W(X)RB8, as shown in the following formula If:
(If) W and X can, independently from each other, and in case of X also independently from any occurrence of X, be O, S or NH. Preferably W and X are each 0.
In a further preferred embodiment, the two moieties "A" and "B" differ only in the residues R?3 and/or RA5 as well as RB3 and/or RB5. In this embodiment Z is CRA6RA7Y, where Y is 0. The residues RA1 and RB1, R43 and R52, RA4 and R®4 as well as the residues RA6 and RB6, and the residues RA7 and RB7, are identical among each other, particularly preferably all H. Particularly preferably, the two moieties differ only in their residues RA3 and RB3 or only in their residues RA5 and RB5, particularly preferably only in their residues R^ and R53. Such a preferred embodiment has, for example, the structure according to the general formula Ig:
(Ig)
The residues RA3 and RB3 are both not H. R^ is preferably C(X)RA8, the bond to the phenyl ring being via C, and the residue R is preferably W(X)R , the bond to the phenyl ring being via W. X is preferably, for each of the residues R''33 and RB3 independently from each other, O, S or NH, and W in the residue R70 is preferably O, S or NH. Preferably, X and W are each 0.
As already indicated, in preferred embodiments of the invention, the residues R^ or RA5 can have the general structure TV shown in the following to the left, and the residues R53 or RB5 have the general structure V shown in the following on the right:
(IV) (V)
Examples of preferred residues RA3 or RA5 according to formula TV are given below:
(IVa) (IVb) (IVc) •pq p<
Examples of preferred residues R or R according to formula V, in which X is 0, are given below:
(Va) (Vb) (Vc)
In the case where the moiety A has the following general structure Ila
(Ha) the terms "acylbenzyl moiety" or “acylbenzyl moiety", abbreviated as ab moiety or ab group, may also he used.
In the case where the moiety B has the following general structure Ilia
(Ilia) the terms „acyloxybenzyl moiety”, „acyloxybenzyl group” or “acyloxybenzyl mask“, abbreviated as AB moiety, AB group or AB mask, maybe used. In contrast to the acylbenzyl moiety, in which the acyl group (alkanoyl group) is directly linked to the benzyl radical via the C atom of the group, the acyl group in the acyloxybenzyl mask is linked to the benzyl radical via an oxygen atom. A preferred embodiment of the compound according to the invention is, for example, a compound according to the following general formula Ih
(Ih)
In a compound according to the invention in which the two moieties "A" and "B" differ only in the residues RA3 and/or RA5 as well as RB3 and/or RB5, for example, a compound of the invention according to the general formula Ig or Ih, the residues R and R are preferably, each independently of one another, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_2o aliphatic residue or Ci_2o heteroaliphatic residue, or a substituted or unsubstituted C5_2o aromatic residue or C3_2o hetero aromatic residue, provided that residues RA8 and RBS are different and selected such that moiety A is an intracellular stable lipophilic group and moiety B is an intracellularly labile lipophilic mask.
Especially preferred residues RA8 and RB8 are, independently from each other, selected from the group consisting of substituted or unsubstituted Ci_2o alkyl, substituted or unsubstituted C2_ 20 alkenyl, substituted or unsubstituted C2_2o alkynyl, substituted or unsubstituted C4.20 alkenynyl, substituted or unsubstituted C3_2o cycloalkyl, substituted or unsubstituted C^o cycloalkenyl, substituted or unsubstituted C3_2o cycloalkynyl, substituted or unsubstituted Cs_2o cycloalkenynyl, substituted or unsubstituted Ci.2o heteroalkyl, substituted or unsubstituted C2-2o heteroalkenyl, substituted or unsubstituted C2_2o heteroalkynyl, substituted or unsubstituted C4_ 20 heteroalkenynyl, substituted or unsubstituted Cs_24 aryl, substituted or unsubstituted C3_24 heteroaryl, preferably Ci_2o alkyl or Ci_2o alkenyl, with the proviso that the residues RA8 and Rbs are different, and moiety A is an intracellularly stable lipophilic group, and moiety B is an AO no intracellularly labile lipophilic mask. Especially preferred the residues R and R are selected
from substituted or unsubstituted C1-20 alkyl and substituted or unsubstituted C2-20 alkenyl, with the proviso that the residues R and R are different, and the moiety A is an intracellularly stable lipophilic group and the moiety B is an intracellularly labile lipophilic mask.
The compounds according to the invention exhibit good cell penetrability and intracellularly release, for example, mono-modified nucleoside phosphate analogues, which are preferably selectively used by, for example, microbial or viral polymerases, e.g. the reverse transcriptase of the HI virus, as a substrate and lead to chain termination. The compounds according to the invention are thus suitable for use as drugs, in particular as antiviral drugs, for example antiretroviral drug. For example, the compounds according to the invention can advantageously be used in medications for the treatment of HIV, influenza, hepatitis C and B infections, haemorrhagic fever or cancer.
The invention therefore also relates in a second aspect to a pharmaceutical composition comprising a compound according to the invention and a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are known to the person skilled in the art and comprise one or more liquid, semi-solid or solid fillers, diluents or other substances suitable for administration to mammals, including humans.
For the purposes of the present invention, the term "carrier" refers to any organic or inorganic, natural or synthetic substance which can be combined with the active ingredient to simplify application. Examples of such carriers include, but are not limited to organic or inorganic solvents, starch, lactose, mannitol, methylcellulose, talc, gelatin, agar agar, calcium phosphate, magnesium stearate, animal and vegetable fats, higher molecular weight fatty acids, or higher molecular weight polymers.
The term "pharmaceutically acceptable" means any substantially non-toxic material for mammals, especially humans, which does not substantially affect the effectiveness of the biological activity of the active ingredient. Such materials may include pharmaceutically acceptable concentrations of salts, buffers, preservatives, or the like. Non-limiting examples of pharmaceutically acceptable carriers include magnesium carbonate, magnesium stearate, talc, sugar, lactose, ethanol, glycerol, water, buffer solutions. The pharmaceutical composition may also comprise adjuvants and/or diluents.
In a third aspect the invention also relates to a pharmaceutical dosage form comprising a compound according to the invention and a pharmaceutically acceptable carrier. Especially preferred is a dosage form for oral administration, for example a tablet or capsule. A preferred embodiment of a compound according to the invention can be prepared, for example, according to the scheme given below
The residues R1, RA1~7 and RB1_7 are as indicated above for the first aspect of the present invention.
The invention is explained in more detail below with reference to the accompanying figures and exemplary embodiments for illustrative purposes only.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows schematically the intracellular cleavage of an enzyme-cleavable mask B and intracellular formation of a compound modified with a stable moiety A from a preferred
embodiment of a compound according to the invention. Nucl = nucleoside or nucleoside analogue; Cat+ = cation, E = esterase; T1/2 = half-life. FIG. 2 Schematic representation of the template (30 nt) and primer (25 nt) used for the primer extension assays. FIG. 3 shows results of primer extension assays with a stable mono-modified nucleoside triphosphate. A. Autoradiogram with the polymerase HIV-RT, B. Autoradiogram with the human polymerase ß. C. autoradiogram with the human polymerase γ. - = primer; + = dATP, dCTP, dGTP and TTP with polymerase HIV-RT; N * = dATP, dCTP, dGTP and C9 ketone-TTP); T = only TTP; T* = only C9-ketone-TTP. FIG. 4 shows results of primer extension assays with a compound according to the invention. A. Autoradiogram with the polymerase HIV-RT, B. Autoradiogram with the human polymerase β (with d4TTP), C. Autoradiogram with the human polymerase β (with the stable C9-ketone-d4TTP). - = primer; + = dATP, dCTP, dGTP and TTP with polymerase HIV-RT; N* = dATP, dCTP, dGTP and C9 ketone-d4TTP); Nx* = dATP, dCTP, dGTP and d4TTP; d4T = d4TTP; d4T* = = only C9-ketone-d4TTP. FIG. 5 shows HPLC chromatograms of the hydrolysis of the monomasked C9-ketone-d4TTP in CEM/0 cell extracts after different incubation times. FIG. 1 shows, for an exemplary embodiment of a compound according to the invention, schematically its introduction as a double-modified prodrug into a cell whose cell membrane is indicated here by an arcuate line, as well as the assumed course of release of a NTP derivative, i.e. a nucleoside triphosphate mono-modified with an intracellularly stable moiety A. The two otherwise negatively charged oxygen atoms (in bold face type) of the hydroxyl groups of the terminal phosphate (γ-phosphorus atom) in the NTP prodrug are non-symmetrically substituted, i.e. modified with two different groups A and B. The mask B is here an acyloxybenzyl derivative (AB derivative) and can be cleaved hydrolytically or enzymatically. In the cell, the labile mask B is therefore rapidly removed after enzymatic attack on the ester group by esterases (E) present in the cell and subsequent spontaneous degradation, resulting in a mono-modified product bearing the intracellularly stable group A. The labile mask B is cleaved at a rate leading to a comparatively short half-life time ti/2 (1) of the starting pro drug. A nucleophilic attack on the phosphorus anhydride bond(s) with a cleavage thereof does not occur, so that the unwanted formation of the mono- or diphosphate is prevented. The group A, in this case an acylbenzyl (ab-derivative), is not, or very much slower, attacked enzymatically, so that there is no or at least essentially no release of the parent nucleoside triphosphate (NTP).
Exemplary embodiments
1. Preparation of a stably mono-modified NTP
For a preliminary test of the concept according to the invention, thymidine triphosphate was prepared with a stable acylbenzyl group A having a C9 alkyl residue (also referred to as a C9-ab group or C9 ketone group) according to the following scheme:
2. Polymerase assays (primer extension assays) with the C9 ketone TTP
The mono-modified TTP (C9 ketone TTP) prepared as described above was tested in primer extension assays using a 32P-labeled primer (25 nt) and a 30 nt template for its suitability as a substrate of HIV reverse transcriptase and human polymerases (see FIG. 2).
The primer extension assays confirmed the inventive concept. FIG. 3 A shows the reference samples (-,+) from the reaction with the HIV reverse transcriptase. To determine the "starting point" only the 25 nt primer and no polymerase (“-“) was added to the first sample, so that no elongation of the strand occurred. In the presence of all dNTPs (+ = dATP, dCTP, dGTP and TTP), the complete elongation of the strand (30 nt) was observed in the second sample (control experiment). The incorporation of TMP from the C9 ketone nucleoside triphosphate is apparent in the third and fourth samples (N* includes the non-cleavable C9 ketone TTP instead of the natural TTP, T* includes only the C9 ketone TTP). In comparison, FIGs. 3B and 3C show the results of the reaction with the human DNA polymerases β and γ. In Figs. 3B and 3C, in the respective samples four, i.e. the samples containing only the C9 ketone TTP (T*), no incorporation of TMP out of the C9 ketone TTP is observed (corresponds to the primer, 25 nt). Consequently, the desired differentiation between viral and human polymerase could be achieved. 3. Preparation of a compound according to the present invention A compound according to the present invention having an unstable, i.e. enzymatically cleavahle, C4-acyloxybenzyl mask B (also referred to as C4-AB mask) and a stable acylbenzyl group A with C9-alkyl residue (also referred to as C9-ab group or C9-ketone group) with d4T monophosphate (d4TMP, stavudine monophosphate) as R1 according to the scheme shown in the following figure.
The γ-mono-modified C9-ketone nucleoside triphosphate was selectively generated from the resulting C9-ketone/C4-AB-d4TTP prodrug by enzymatic cleavage of the enzymatically cleavahle mask B.
4. Polymerase assays with the C9-ketone d4TTP
The prepared mono-modified d4TTP (C9-ketone-d4TTP) was tested for its suitability as a nucleotide analogue in primer extension assays (see FIG. 4).
FIG. 4A shows the reference samples (-, +) from the reaction with the HIV reverse transcriptase. To determine the "starting point" only the 25 nt primer and no polymerase (“—“) was added to the first sample, so that no elongation of the strand occurred. In the presence of all dNTPs (+), the complete elongation of the strand (30 nt) was observed in the second sample (control experiment). The incorporation of d4TTP from the C9-ketone nucleoside triphosphate is visible in the third and fourth sample (N* includes the stable C9-ketone d4TTP instead of the natural TTP; d4T* includes only the C9 ketone d4TTP).
In comparison, FIGs. 4B and 4C show the results of the reaction with the human DNA polymerases β. In FIG. 4B, starting from d4TTP, the comparatively marginal incorporation of d4TMP can be seen in samples three and four sample (Ni* includes d4TTP instead of the natural TTP; d4T includes only the d4TTP). hr FIG. 4C, starting from C9-ketone-d4TTP, no incorporation can be observed (corresponds to the primer, 25 nt) for the corresponding samples three and four. Consequently, the desired substrate specificity was also observed here. 5. Hydrolysis Tests
Hydrolysis studies in CEM/0 cell extract gave information about the enzymatic release of γ-mono-modified ketone nucleoside triphosphates from prodrugs. The samples are incubated in cell extract and the incubation is stopped at different times. The hydrolysis samples were analyzed by HPLC (high-pressure liquid chromatography).
The C9-ketone d4TTP was incubated in CEM/0 cell extracts. After different incubation times, samples were tested for hydrolysis by HPLC. γ-Mono-modified nucleoside triphosphates had the required stability in the cell medium. In the C9-ketone d4TTP, 89% of the compound was detected after 96 h in the CEM/0 cell extract (see FIG. 5). The same applies to the stability in phosphate buffer at pH=7.3. No hydrolysis was observed after 800 h. This stability is remarkable. Neither the formation of d4TTP, d4TDP nor that of d4TMP was detected. γ-Mono-modified AZT triphosphates already known from literature had only a half-life of ΐχ/2.(1) = 17-55 min, depending on the residue on the γ-phosphate (γ-methylphosphonate, γ-phenylphosphonate, γ-phenyltriphosphate and γ-anilido), in human serum (A. Hofer, GS Cremosnik, AC Miller, R. Giambruno, C. Trefzer, G. Snperti-Furga KL Bennett, HJ lessen, A Modular Synthesis of Modified Phosphoanhydrides, Chem. Bur. J. 2015,21, 10116-10122). 6. Antiviral activity
The following Table 1 shows data on the antiviral activity of compounds according to the invention according to the following general structure la.
(Ia)
Several compounds of the invention having different combinations of moieties A, B have been tested. The meaning of the abbreviations used in the Table 1 for the moieties A and B tested are given in the following:
Moiety A:
C9-ab C17-ab
C15 C18
As a control, in one experiment (see compound 2 in Table 1 below), a labile mask C17-AB according to the following general formula 1
C17-AB was used instead of a stable moiety A.
Moiety B:
C4-AB C6-AB C17-AB
Table 1 : Antiviral activity of exemplary compounds of the invention. Comp. = compound; Nucl = nucleoside; EC50 = half maximal effective concentration; CC50= cytotoxic concentration; CEM = cells from CEM cell line; HIV-l=human deficiency virus type-1; HIV-2= human deficiency virus type-2; TK“=thymidine-kinase deficient CEM cells that are HIV-2 infected
Comp. Nucl B A HIV-1 HIV-2 CEM TK’ HIV-2 EC50 (μΜ) EC50 (μΜ) CC50 (μΜ) EC50 (μΜ) 1 d4T (Nucl) - - 0.33+0.13 0.97+0.50 79 + 3 150+7 2 d4T C4-AB C17-AB 0.12 + 0.05 0.10 + 0.03 33 + 7 0.54+0,41
3 d4T C4-AB C9-ab 0.37±0.24 1.2±0.92 25 ±3 2.5±1.8 4 d4T C6-AB C17-ab 0.44±0.28 1.Ü0.83 34 ±12 0.40±0.15 5 d4T C17-ABC9-ab 0.58±0.32 0.78±0.51 35 ±6 l.l±0.75 6 d4T C17-AB C17-ab 0.42±0.18 0.83±0.43 28 ±2 0.38±0.19 7 d4T C4-AB C18 0.14±0.08 0.12±0.09 13 ±2 0.17±0.045 8 d4T C4-AB C15 0.25±0.0 0.14±0.15 22 ±3 0.39±0.3 9 adenosine C17-AB C9-ab 10 > 10 74±12 >10
As an example, compound 3 with d4T (Stavudine) as a nucleoside, C9-ab (also called “C9 ketone”) as intracellularly stable moiety A and C4-AB as mask B is depicted below:
As a further example, the structure of compound 8 having an alkyl group as moiety A is shown:
Compounds 3-9 are embodiments of compounds of the invention according to the general formula I. Compound 2 is a compound not according to the invention having two cleavable acyloxybenzyl (AB) masks. Compound 1 is the pure nucleoside d4T. In compound 9, adenosine was used as nucleoside.

Claims (11)

1. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon, oder ein pharmazeutisch annehmbares Salz davon, das kovalent an seine terminale Phosphat- oder dazu analoge Gruppe gebunden einen lipopbilen Rest A und einen lipopbilen Rest B aufweist, wobei die lipopbilen Reste A und B voneinander verschieden sind, und wobei A ein intrazellulär stabiler lipopbiler Rest und Rest B ein intrazellulär labiler lipophiler Rest ist.A nucleoside triphosphate or nucleoside triphosphate analogue prodrug, or a pharmaceutically acceptable salt thereof, which has covalently linked to its terminal phosphate or analogous group a lipophenyl radical A and a lipophenyl radical B, the lipophenyl radicals A and B being different from one another, and wherein A is an intracellularly stable lipoprobilic residue and residue B is an intracellular labile lipophilic residue. 2. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon mit der allgemeinen Formel I2. Nucleoside triphosphate or Nucleosidtriphosphatanalogon prodrug with the general formula I. (I) oder ein pharmazeutisch annehmbares Salz davon, wobei A und B voneinander verschiedene lipophile Reste sind, wobei A ein intrazellulär stabiler lipophiler Rest ist, und B ein intrazellulär labiler lipophiler Rest ist, U, unabhängig voneinander, O, S, Se oder BH3, bevorzugt O, ist V, unabhängig voneinander, O, CH2, NH, CHF, CHC1, CHBr, CF2, CC12, CBr2 oder CFC1, bevorzngt O, ist, und wobei R1 Nukleosid oder Nukleosidanalogon ist.(I) or a pharmaceutically acceptable salt thereof, wherein A and B are lipophilic residues different from each other, wherein A is an intracellularly stable lipophilic residue, and B is an intracellular labile lipophilic residue, U, independently, is O, S, Se or BH3 , preferably O, V is independently, O, CH 2, NH, CHF, CHCl, CHBr, CF 2, CC 12, CBr 2 or CFCl, preferably O, and wherein R 1 is nucleoside or nucleoside analog. 3. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon. nach Anspruch 1, wobei a) A ein Rest gemäß Formel II3. Nucleoside triphosphate or nucleoside triphosphate analogue prodrug. according to claim 1, wherein a) A is a radical according to formula II (II) ist, wobei RA1, R^ und RA4 jeweils unabhängig voneinander H, ein substitnierter oder unsubstituierter cycliscber, acycliscber, linearer oder verzweigter alipbatiscber oder beteroalipbatischer Rest, oder ein substituierter oder unsubstitnierter, aromatischer oder heteroaromatischer Rest, und/oder ein Elektronenakzeptor sind, Z fur Y oder CRA6RA7Y steht, wobei Y = O, S NH oder CRA9RA1° ist, und wobei RA6, RA7, RA9 und RA1° jeweils unabhängig voneinander H, ein substituierter oder unsubstitnierter cyclischer, acyclischer, linearer oder verzweigter aliphatischer oder heteroaliphatischer Rest, oder ein substituierter oder unsub stituierter, aromatischer oder heteroaromatischer Rest, und/oder ein Elektronenakzeptor sind, RA3 und RA5 jeweils unabhängig voneinander H oder C(X)RA8, nicht aber beide H sind, wobei X = O, S oder NH ist, und RA8 = ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter aliphatischer oder heteroaliphatischer Rest, oder ein substituierter oder unsubstituierter, aromatischer oder heteroaromatischer Rest ist, oder b) A ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter aliphatischer oder heteroaliphatischer Rest, oder ein substituierter oder unsubstituierter, aromatischer oder heteroaromatischer Rest ist.(II) wherein RA1, R4 and RA4 are each independently H, a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or beteroaliphatic radical, or a substituted or unsubstituted, aromatic or heteroaromatic radical, and / or an electron acceptor Z is Y or CRA6RA7Y where Y is O, S is NH or CRA9RA1 °, and wherein RA6, RA7, RA9 and RA1 ° are each independently H, a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic radical , or a substituted or unsubstituted, aromatic or heteroaromatic radical, and / or an electron acceptor, RA3 and RA5 are each independently H or C (X) RA8, but not both are H, where X = O, S or NH, and RA8 = a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic radical, or e in substituted or unsubstituted, aromatic or heteroaromatic radical, or b) A is a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic radical, or a substituted or unsubstituted, aromatic or heteroaromatic radical. 4. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon nach Anspruch 3, wobei a) RA1, R^ und RA4 i. jeweils unabhängig voneinander H, ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_2o-Aliphatrest oder Ci_2o-Heteroaliphatrest, oderThe nucleoside triphosphate or nucleoside triphosphate analogue prodrug of claim 3, wherein a) RA1, R ^ and RA4 i. each independently of one another H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_2o-Aliphatrest or Ci_2o-Heteroaliphat, or ein substituierter oder unsubstituierter C5_2o-Aromatenrest oder C3_2o-Heteroaromatemest, und/oder ein Elektronenakzeptor sind, oder ii. jeweils unabhängig voneinander H, ein substituierter oder unsub stituierter cyclischer, acyclischer, linearer oder verzweigter Ci_io-Aliphatrest oder Ci_io-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_i2-Aromatenrest oder C3_i2-Heteroaromatenrest, und/oder ein Elektronenakzeptor sind, oder iii. jeweils unabhängig voneinander ausgewâhlt sind aus der Grappe bestehend aus H, substituiertem oder unsubstituiertem CWo-Alkyl, substituiertera oder unsubstituiertem C2_ 20-Alkenyl, substituiertem oder unsubstituiertem C2-20-Alkinyl, substituiertem oder unsubstituiertem C^o-Alkerunyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkenyl, substituiertem oder unsubstituiertem C5_2o-Cycloalkinyl, substituiertem oder unsubstituiertem C5_2o-Cycloalkeninyl, substituiertem oder unsubstituiertem C1_2o-Heteroalkyl, substituiertem oder unsubstituiertem CWo-Heteroalkenyl, substituiertem oder unsubstituiertem C2_20-Heteroalkinyl, substituiertem oder unsubstituiertem C^o-Heteroalkeninyl, substituiertem oder unsubstituiertem ¢5-24-Aryl, substituiertem oder unsubstituiertem C3_24-Heteroaryl, und Elektronenakzeptor, oder iv. jeweils unabhängig voneinander ausgewâhlt sind aus der Grappe bestehend aus H, substituiertem oder unsubstituiertem CWo-Alkyl, substituiertem oder unsubstituiertem C2_ 10-Alkenyl, substituiertem oder unsubstituiertem C2-io-Alkinyl, substituiertem oder unsubstituiertem C4_io-Alkeninyl, substituiertem oder unsubstituiertem C3_io-Cycloalkyl, substituiertem oder unsubstituiertem C3_io-Cycloalkenyl, substituiertem oder unsubstituiertem Cs-io-Cycloalkinyl, substituiertem oder 'unsubstituiertem C5_io-Cycloalkeninyl, substituiertem oder unsubstituiertem Ci_io-Heteroalkyl, substituiertem oder unsubstituiertem C2-io-Heteroalkenyl, substituiertem oder unsubstituiertem C2_io-HeteroaLkmyl, substituiertem oder unsubstituiertem C4_1o-Heteroalkeninyl, substituiertem oder unsubstituiertem Cs-n-Aryl, substituiertem oder unsubstituiertem C3_i2-Heteroaryl, und Elektronenakzeptor, oder v. alle H, sind, b) RA8 i. ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_20-Aliphatrest oder Ci_2o-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_2o-Aromatenrest oder C3_2o-Heteroaromatenrest ist, oder ii. ein substituierter oder unsubstituierter cycliscber, acycliscber, linearer oder verzweigter Ci_io-Alipbatrest oder Ci_io-Heteroalipbatrest, oder ein substituierter oder unsubstituierter C5_i2-Aromaterirest oder C3_i2-Heteroaromatemest ist, oder iii. ausgewahlt ist aus der Gruppe bestedend aus substituiertem oder unsubstituiertem Ci_ 20-Alkyl, substituiertem oder uusubstituiertem C2~20-Alkenyl, substituiertem oder uusubstituiertem C2-20-AUdnyl, substituiertem oder unsubstituiertem C4_2o-Alkeninyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkenyl, substituiertem oder unsubstituiertem C^o-Cycloalkiuyl, substituiertem oder uusubstituiertem C^o-Cycloalkeninyl, substituiertem oder unsubstituiertem Ci_2o-Heteroalkyl, substituiertem oder unsubstituiertem C2-20-Heteroalkenyl, substituiertem oder unsubstituiertem C2-20-Heteroalkinyl, substituiertem oder unsubstituiertem C^o-Heteroalkeninyl, substituiertem oder unsubstituiertem C5_24-Aryl, substituiertem oder unsubstituiertem C3_24-Heteroaryl, vorzugsweise Ci_2o-Alkyl oder Ci_2o-Alkenyl, c) Ra6, Ra?, RA9 und RA1° i. jeweils unabhangig voneinander H, ein substituierter oder unsubstituierter cyclischer, acycliscber, linearer oder verzweigter Ci_2o-Aliphatrest oder Ci_2o-Heteroalipbatrest, ein substituierter oder unsubstituierter C5_2o-Aromatenrest oder C3_2o-Heteroaromateurest, und/oder ein Elektronenakzeptor sind, oder ii. jeweils unabhangig voneinander H, ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_io-Aliphatrest oder Ci_io-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_i2-Aromatemest oder C3_i2-Heteroaromatenrest, und/oder ein Elektronenakzeptor sind, oder iii. jeweils unabhangig voneinander ausgewahlt sind aus der Gruppe bestehend aus H, substituiertem oder unsubstituiertem Ci_2o-Alkyl, substituiertem oder unsubstituiertem C2-20-Alkenyl, substituiertem oder unsubstituiertem C2-2o-Alkmyl, substituiertem oder unsubstituiertem C^o-Alkeninyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkenyl, substituiertem oder unsubstituiertem C>uo-Cycloalkinyl, substituiertem oder unsubstituiertem Cs_2o-Cyclo alkeninyl, substituiertem oder unsubstituiertem Ci_2o-Heteroalkyl, substituiertem oder unsubstituiertem C2-2o-Heteroalkenyl, substituiertem oder unsubstituiertem C2-20-Heteroalkinyl, substituiertem oder unsubstituiertem C^o-Heteroalkeninyl, substituiertem oder unsubstituiertem C5_24-Aryl, substituiertem oder unsubstituiertem C3_24-Heteroaryl, und Elektronenakzeptor, oder iv. jeweils unabhängig voneinander ausgewahlt sind aus der Gruppe bestehend aus H, substituiertem oder unsubstituiertem Ci_io-Alkyl, substituiertem oder unsubstituiertem C2-10-Alkenyl, substituiertem oder unsubstituiertem C2-io-Alkinyl, substituiertem oder unsubstituiertem C4_io-Alkeninyl, substituiertem oder unsubstituiertem C3_io-Cycloalkyl, substituiertem oder unsubstituiertem C3_io-Cycloalkenyl, substituiertem oder unsubstituiertem Cs-io-Cycloalkinyl, substituiertem oder unsubstituiertem C5_i0- Cyclo alkeninyl, substituiertem oder unsubstituiertem Ci_i ο-Heteroalkyl, substituiertem oder unsubstituiertem C2-io-Heteroalkenyl, substituiertem oder unsubstituiertem C2-10-Heteroalkinyl, substituiertem oder unsubstituiertem C4_io-Heteroalkeninyl, substituiertem oder unsubstituiertem C^-n-Aryl, substituiertem oder unsubstituiertem C3_i2-Heteroaryl, und Elektronenakzeptor, oder v. alle H, sind, oder vi. ein Elektronenakzeptor oder H sind, mit der Maßgabe, dass Reste am selben Kohlenstoffatom nicht beide Elektronenakzeptoren sind, oder d) A i. ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_2o-Aliphatrest oder Ci_2o-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_2o-Aromatenrest oder C3_2o-Heteroaromatenrest ist, oder ii. ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_io-Aliphatrest oder Ci_io-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_i2-Aromatenrest oder C3_i2-Heteroaromatenrest ist, oder iii. ausgewahlt ist aus der Gruppe bestehend aus substituiertem oder unsubstituiertem Cj_ 20-Alkyl, substituiertem oder unsubstituiertem C2-20-Alkenyl, substituiertem oder unsubstituiertem C2-2o-Alkinyl, substituiertem oder unsubstituiertem C4_2o-Alkeninyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkyl, substituiertem oder unsubstituiertem C^o-Cycloalkenyl, substituiertem oder unsubstituiertem ¢5-20-Cycloalkmyl, substituiertem oder unsubstituiertem C5-2o-Cycloalkeninyl, substituiertem oder unsubstituiertem Ci_2o-Heteroalkyl, substituiertem oder unsubstituiertem ¢2-20-Heteroalkenyl, substituiertem oder unsubstituiertem C2-2o-Heteroalkinyl, substituiertem oder unsubstituiertem C4_2o-Heteroalkeninyl, substituiertem oder unsubstituiertem C5-24-Aryl, substituiertem oder unsubstituiertem ¢3-24-Heteroaryl, vorzugsweise Ci_2o-Alkyl oder Ci_2o-Alkenyl.is a substituted or unsubstituted C5_2o aromatic radical or C3_2o heteroaromatic moiety, and / or an electron acceptor, or ii. each independently of one another are H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_io-Aliphatrest or Ci_io-Heteroaliphat, or a substituted or unsubstituted C5_i2-Aromatenrest or C3_i2-Heteroaromatenrest, and / or an electron acceptor, or iii. are each independently selected from the group consisting of H, substituted or unsubstituted CWo-alkyl, substituted or unsubstituted C 2-20 -alkenyl, substituted or unsubstituted C 2-20 -alkynyl, substituted or unsubstituted C 1-8 -alkerunyl, substituted or unsubstituted C 3-30 -alkyl. Cycloalkyl, substituted or unsubstituted C3_2o-cycloalkenyl, substituted or unsubstituted C5_2o-cycloalkynyl, substituted or unsubstituted C5_2o-cycloalkeninyl, substituted or unsubstituted C1_2o-heteroalkyl, substituted or unsubstituted CWo-heteroalkenyl, substituted or unsubstituted C2_20-heteroalkynyl, substituted or unsubstituted C ^ o Heteroalkenyl, substituted or unsubstituted 5-24-aryl, substituted or unsubstituted C3-24 heteroaryl, and electron acceptor, or iv. are each independently selected from the Grappe consisting of H, substituted or unsubstituted CWo-alkyl, substituted or unsubstituted C 2-10 -alkenyl, substituted or unsubstituted C 2-10 -alkynyl, substituted or unsubstituted C 1-4 -alkeninyl, substituted or unsubstituted C 3-9 -cycloalkyl, substituted or unsubstituted C 3-10 cycloalkenyl, substituted or unsubstituted C 1-10 cycloalkynyl, substituted or unsubstituted C 5-10 cycloalkeninyl, substituted or unsubstituted C 1-10 -heteroalkyl, substituted or unsubstituted C 2-10 heteroalkenyl, substituted or unsubstituted C 2-10 heteroalklyl, substituted or unsubstituted C4_1o-heteroalkeninyl, substituted or unsubstituted Cs-n-aryl, substituted or unsubstituted C3_i2-heteroaryl, and electron acceptor, or v. all H, are, b) RA8 i. is a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_20-Aliphatrest or Ci_2o-Heteroaliphat, or a substituted or unsubstituted C5_2o-Aromatenrest or C3_2o-Heteroaromatenrest, or ii. is a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_io-Alipbatrest or Ci_io-Heteroalipbatrest, or a substituted or unsubstituted C5_i2-Aromaterirest or C3_i2-Heteroaromatemest, or iii. selected from the group consisting of substituted or unsubstituted C 1-20 -alkyl, substituted or substituted C 2-20 -alkenyl, substituted or substituted C 2-20 -n-dinyl, substituted or unsubstituted C 4-20 -alkeninyl, substituted or unsubstituted C 3-20 -cycloalkyl, substituted or unsubstituted C 3-20 cycloalkenyl, substituted or unsubstituted C 1-6 cycloalkyl, substituted or substituted C 1-8 cycloalkeninyl, substituted or unsubstituted C 1-20 heteroalkyl, substituted or unsubstituted C 2-20 heteroalkenyl, substituted or unsubstituted C 2-20 heteroalkynyl, substituted or unsubstituted C 1-6 heteroalkeninyl, substituted or unsubstituted C 5-24 aryl, substituted or unsubstituted C 3-24 heteroaryl, preferably C 1-20 -alkyl or C 1-20 -alkenyl, c) R a6, R a, RA 9 and R R 1 °. each independently H, a substituted or unsubstituted cyclic, acycliscber, linear or branched Ci_2o-Aliphatrest or Ci_2o-Heteroalipbatrest, a substituted or unsubstituted C5_2o-Aromatenrest or C3_2o-Heteroaromateurest, and / or an electron acceptor, or ii. each independently H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_io-Aliphatrest or Ci_io-Heteroaliphatrest, or a substituted or unsubstituted C5_i2-Arememest or C3_i2-Heteroaromatenrest, and / or an electron acceptor, or iii. are each independently selected from the group consisting of H, substituted or unsubstituted C 2-20 -alkyl, substituted or unsubstituted C 2-20 -alkenyl, substituted or unsubstituted C 2-30 -alkenyl, substituted or unsubstituted C 1-8 -alkeninyl, substituted or unsubstituted C 3-20 -Cycloalkyl, substituted or unsubstituted C3_2o-cycloalkenyl, substituted or unsubstituted C> uo-cycloalkynyl, substituted or unsubstituted Cs_2o-Cyclo alkeninyl, substituted or unsubstituted Ci_2o-heteroalkyl, substituted or unsubstituted C2-2o-heteroalkenyl, substituted or unsubstituted C2-20- Heteroalkynyl, substituted or unsubstituted C 1-8 heteroalkeninyl, substituted or unsubstituted C 5-24 aryl, substituted or unsubstituted C 3-24 heteroaryl, and electron acceptor, or iv. are each independently selected from the group consisting of H, substituted or unsubstituted C 1-10 -alkyl, substituted or unsubstituted C 2-10 -alkenyl, substituted or unsubstituted C 2-10 -alkynyl, substituted or unsubstituted C 1-4 -alkeninyl, substituted or unsubstituted C 3-9 -cycloalkyl , substituted or unsubstituted C 3-10 cycloalkenyl, substituted or unsubstituted C 3-10 cycloalkynyl, substituted or unsubstituted C 5-10 cycloalkeninyl, substituted or unsubstituted C 1-10 heteroalkyl, substituted or unsubstituted C 2-10 heteroalkenyl, substituted or unsubstituted C 2-10 heteroalkynyl , substituted or unsubstituted C4_io-heteroalkeninyl, substituted or unsubstituted C ^ -n-aryl, substituted or unsubstituted C3_i2-heteroaryl, and electron acceptor, or v. all H, are, or vi. are an electron acceptor or H, provided that residues on the same carbon atom are not both electron acceptors, or d) A i. is a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_2o-Aliphatrest or Ci_2o-Heteroaliphat, or a substituted or unsubstituted C5_2o-aromatics or C3_2o heteroaromatic radical, or ii. is a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_io-Aliphatrest or Ci_io-Heteroaliphat, or a substituted or unsubstituted C5_i2-aromatics or C3_i2-Heteroaromatenrest, or iii. is selected from the group consisting of substituted or unsubstituted C 2-20 alkyl, substituted or unsubstituted C 2-20 alkenyl, substituted or unsubstituted C 2-30 alkynyl, substituted or unsubstituted C 4-20 alkenynyl, substituted or unsubstituted C 3-20 cycloalkyl, substituted or unsubstituted C 1-6 cycloalkenyl, substituted or unsubstituted 5-20 cycloalkyl, substituted or unsubstituted C 5-30 cycloalkeninyl, substituted or unsubstituted C 1-20 heteroalkyl, substituted or unsubstituted C 2-20 heteroalkenyl, substituted or unsubstituted C 2-30 heteroalkynyl , substituted or unsubstituted C4_2o-heteroalkeninyl, substituted or unsubstituted C5-24-aryl, substituted or unsubstituted ¢ 3-24-heteroaryl, preferably Ci_2o-alkyl or Ci_2o-alkenyl. 5. Nucleosidtriphosphat- oder Nncleosidtriphosphatanalogon-Propharmakon nach einem der Ansprüche 3 oder 4, wobei Z für CRA6RA7Y steht, und wobei Y = O, S oder NH, vorzugsweise 0, ist, die Reste RA1, R42, RA4, R45, RA6 und RA7 jeweils H sind, und RA3 = C(X)RA8 ist, wobei X = O, S oder NH, vorzugsweise 0, ist, und wobei RA8 wie oben definiert ist.5. Nucleoside triphosphate or Nncleosidtriphosphatanalogon prodrug according to one of claims 3 or 4, wherein Z is CRA6RA7Y, and wherein Y is = O, S or NH, preferably 0, the radicals RA1, R42, RA4, R45, RA6 and RA7 are each H, and RA3 = C (X) RA8, where X = O, S or NH, preferably 0, and wherein RA8 is as defined above. 6. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon nach einem der vorhergehenden Ansprüche, wobei B ein Rest gemäß der Formel III (III) ist, wobei RB1, R32 und R34 jeweils unabhängig voneinander H, ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter aliphatischer oder heteroaliphatischer Rest, oder ein substituierter oder unsubstituierter, aromatischer oder heteroaromatischer Rest, und/oder ein Elektronenakzeptor sind, R36 und R37 jeweils unabhängig voneinander H, ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter aliphatischer oder heteroaliphatischer Rest, oder ein substituierter oder unsubstituierter, aromatischer oder heteroaromatischer Rest, und/oder ein Elektronenakzeptor sind,A nucleoside triphosphate or nucleoside triphosphate analogue prodrug according to any one of the preceding claims, wherein B is a radical according to formula III (III) wherein RB1, R32 and R34 are each independently H, a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic radical, or a substituted or unsubstituted, aromatic or heteroaromatic radical, and / or an electron acceptor, R36 and R37 are each independently H, a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic radical, or a substituted or unsubstituted, aromatic or heteroaromatic radical, and / or are an electron acceptor, po "RA R2 R und R jeweils unabhdngig voneinander H oder WC(X)R , nicht aber heide H sind, wobei W und X jeweils unabhdngig voneinander, O, S oder ΝΉ sind, vorzugsweise beide O sind, und R = ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter aliphatischer oder heteroaliphatischer Rest, oder ein substituierter oder unsubstituierter, aromatischer oder heteroaromatischer Rest ist.each of R and R independently of one another is H or WC (X) R, but not H, where W and X are each independently O, S or ΝΉ, preferably both are O, and R = a substituted or unsubstituted cyclic, acyclic, linear or branched aliphatic or heteroaliphatic radical, or a substituted or unsubstituted, aromatic or heteroaromatic radical. 7. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon nach Anspruch 6, wobei fjRSi^undR®4 i. jeweils unabhdngig voneinander H, ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_2o-Aliphatrest oder Ci_2o-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_2o-Aromatenrest oder C3_2o-Heteroaromatenrest, und/oder ein Elektronenakzeptor sind, oder ii. jeweils unabhdngig voneinander H, ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_io-Aliphatrest oder Ci_io-Heteroaliphatrest, oder ein substituierter oder unsubstituierter Cs-n-Aromatenrest oder C3_i2-Heteroaromatemest und/oder ein Elektronenakzeptor sind, oder iii. jeweils unabhdngig voneinander ausgewahlt sind aus der Gruppe bestehend aus H, substituiertem oder unsubstituiertem Ci_2o-Alkyl, substituiertem oder unsubstituiertem C2_ 2o-Alkenyl, substituiertem oder unsubstituiertem C2_2o-Alkinyl, substituiertem oder unsubstituiertem C^o-Alkeninyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkenyl, substituiertem oder unsubstituiertem Cs^o-Cycloalkinyl, substituiertem oder unsubstituiertem C^o- Cycloalkeninyl, substituiertem oder unsubstituiertem Cx_2o-Heteroalkyl, substituiertem oder unsubstituiertem C2_2o-Heteroalken.yl, substituiertem oder unsubstituiertem C2-20-Heteroalkinyl, substituiertem oder unsubstituiertem C^o-Heteroalkeninyl, substituiertem oder unsubstituiertem C5_24-Aryl, substituiertem oder unsubstituiertem C3_24-Heteroaryl, und Elektronenakzeptor, oder iv. jeweils unabhdngig voneinander ausgewahlt sind aus der Gruppe bestehend aus H, substituiertem oder unsubstituiertem Ci-io-AJkyl, substituiertem oder unsubstituiertem C2_ lo-Alkenyl, substituiertem oder unsubstituiertem Ch_io-Alkmyl, substituiertem oder unsubstituiertem C^io-Alkeninyl, substituiertem oder uusubstituiertem C3_io-Cycloalkyl, substituiertem oder unsubstituiertem C3_io-Cycloalkenyl, substituiertem oder uusubstituiertem C5_io-Cycloalkinyl, substituiertem oder uusubstituiertem Cs_io-Cycloalkeninyl, substituiertem oder unsubstituiertem Ci_io-Heteroalkyl, substituiertem oder unsubstituiertem Ch-io-Heteroalkenyl, substituiertem oder unsubstituiertem C2-10-Heteroalkmyl, substituiertem oder unsubstituiertem C^io-Heteroalkeninyl, substituiertem oder unsubstituiertem Cs-^-Aryl, substituiertem oder unsubstituiertem C3_i2-Heteroaryl, und Elektronenakzeptor, oder V. aile H, sind, g) RB8 i. ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_20-Aliphatrest oder Ci_2o-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_2o-Aromatenrest oder C3_2o-Heteroaromatenrest ist, oder ii. ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_io-Aliphatrest oder Ci_io-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_i2-Aromatenrest oder C3_i2-Heteroaromatenrest ist, oder iii. ausgewahlt ist aus der Gruppe bestehend aus substituiertem oder unsubstituiertem Ci_ 20-Alkyl, substituiertem oder unsubstituiertem C2_20-Alkenyl, substituiertem oder uusubstituiertem C2_20-Alkinyl, substituiertem oder unsubstituiertem C4_2o-Alkeninyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkenyl, substituiertem oder unsubstituiertem C^o-Cycloalkinyl, substituiertem oder unsubstituiertem C^o-Cycloalkeninyl, substituiertem oder unsubstituiertem Ci_2o-Heteroalkyl, substituiertem oder unsubstituiertem C2_20-Heteroalkenyl, substituiertem oder unsubstituiertem C2~20-Heteroa!kinyl, substituiertem oder uusubstituiertem C^o-Heteroalkeninyl, substituiertem oder unsubstituiertem C5_24-Aryl, substituiertem oder unsubstituiertem C3_24-Heteroaryl, vorzugsweise Ci_2o-Alkyl oder Ci_2o-Alken.yl, h) RB6undRB7 i. jeweils unabhängig voneinander H, ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_20-Aliphatrest oder Ci_2o-Heteroaliphatrest, ein substituierter oder unsubstituierter G5-2o-Aromatenrest oder C3_2o-Heteroaromatenrest, und/oder ein Elektronenakzeptor sind, oder ii. jeweils unabhängig voneinander H, ein substituierter oder unsubstituierter cyclischer, acyclischer, linearer oder verzweigter Ci_10-Aliphatrest oder Ci_i0-Heteroaliphatrest, oder ein substituierter oder unsubstituierter C5_i2-Aroruatenrest oder C3_i2-Heteroaromatenrest, und/oder ein Elektronenakzeptor sind, oder iii. jeweils unabhängig voneinander ausgewâhlt sind aus der Grappe bestehend aus H, substituiertem oder unsubstituiertem Ci-20-Alkyl, substituiertem oder unsubstituiertem C2_ 2o-Alkenyl, substituiertem oder unsubstituiertem C2_2o-Alkinyl, substituiertem oder unsubstituiertem C4_2o-Alkeninyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkyl, substituiertem oder unsubstituiertem C3_2o-Cycloalkenyl, substituiertem oder unsubstituiertem C5_2o-Cycloalkinyl, substituiertem oder unsubstituiertem ¢5-20-Cycloalkeninyl, substituiertem oder unsubstituiertem Ci_2o-Heteroalkyl, substituiertem oder unsubstituiertem C2_2o-Heteroalkenyl, substituiertem oder unsubstituiertem C2_20-Heteroalkinyl, substituiertem oder unsubstituiertem C4_2o-Heteroalkeninyl, substituiertem oder unsubstituiertem C5_24-Aryl, substituiertem oder unsubstituiertem C3_24-Heteroaryl, und Elektronenakzeptor oder iv. jeweils unabhängig voneinander ausgewâhlt sind aus der Grappe bestehend aus H, substituiertem oder unsubstituiertem Guo-Alkyl, substituiertem oder unsubstituiertem C2_ 10-Alkenyl, substituiertem oder unsubstituiertem C2_io-Alkinyl, substituiertem oder unsubstituiertem C4_io-Alkeninyl, substituiertem oder unsubstituiertem C3_io-Cycloalkyl, substituiertem oder unsubstituiertem C3_io-Cycloalkenyl, substituiertem oder unsubstituiertem Cs-io-Cycloalkinyl, substituiertem oder unsubstituiertem C5_jo-Cycloalkeninyl, substituiertem oder unsubstituiertem Ci_io-Heteroalkyl, substituiertem oder unsubstituiertem C2-io-Heteroalkenyl, substituiertem oder unsubstituiertem C2-io-Heteroalkinyl, substituiertem oder unsubstituiertem C4_io-Heteroalkemnyl, substituiertem oder unsubstituiertem ¢5-12-Aryl, substituiertem oder unsubstituiertem C3_i2-Heteroaryl, und Elektronenakzeptor oder v. alle H, sind, oder •DZ- 07 vi. ein Elektronenakzeptor oder H sind, mit der Maßgabe, dass R H und R ein Elektronenakzeptor ist, oder RB7 H und R56 ein Elektronenakzeptor ist.A nucleoside triphosphate or nucleoside triphosphate analogue prodrug according to claim 6, wherein fjRSi ^ and R®4 i. each independently H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_2o-Aliphatrest or Ci_2o-Heteroaliphat, or a substituted or unsubstituted C5_2o-Aromatenrest or C3_2o-Heteroaromatenrest, and / or an electron acceptor, or ii. each independently of one another H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_io-Aliphatrest or Ci_io-Heteroaliphat, or a substituted or unsubstituted Cs-n-aromatics or C3_i2-Heteroaromatemest and / or an electron acceptor, or iii. are each independently selected from the group consisting of H, substituted or unsubstituted C 2-30 -alkyl, substituted or unsubstituted C 2-20 -alkenyl, substituted or unsubstituted C 2-20 -alkynyl, substituted or unsubstituted C 1-6 -alkeninyl, substituted or unsubstituted C 3-20 -cycloalkyl, substituted or unsubstituted C 3-20 cycloalkenyl, substituted or unsubstituted C 3-10 cycloalkynyl, substituted or unsubstituted C 1-8 cycloalkeninyl, substituted or unsubstituted C 1-20 -heteroalkyl, substituted or unsubstituted C 2-2o heteroalkenyl, substituted or unsubstituted C 2-20 heteroalkynyl, substituted or unsubstituted C 1-8 heteroalkeninyl, substituted or unsubstituted C 5-24 aryl, substituted or unsubstituted C 3-24 heteroaryl, and electron acceptor, or iv. are each independently selected from the group consisting of H, substituted or unsubstituted C 1-10 -alkyl, substituted or unsubstituted C 2-10 -alkenyl, substituted or unsubstituted C 1-10 -alkenyl, substituted or unsubstituted C 1-10 -alkeninyl, substituted or substituted C 3-10 -alkyl. Cycloalkyl, substituted or unsubstituted C3_io-Cycloalkenyl, substituted or substituted C5_io-Cycloalkinyl, substituted or substituted Cs_io-Cycloalkeninyl, substituted or unsubstituted Ci_io-heteroalkyl, substituted or unsubstituted Ch-io-heteroalkenyl, substituted or unsubstituted C2-10-heteroalkyl, substituted or Unsubstituted C ^ io-heteroalkeninyl, substituted or unsubstituted Cs - ^ - aryl, substituted or unsubstituted C3_i2-heteroaryl, and electron acceptor, or V. aile H, are, g) RB8 i. is a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_20-Aliphatrest or Ci_2o-Heteroaliphat, or a substituted or unsubstituted C5_2o-Aromatenrest or C3_2o-Heteroaromatenrest, or ii. is a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_io-Aliphatrest or Ci_io-Heteroaliphat, or a substituted or unsubstituted C5_i2-aromatics or C3_i2-Heteroaromatenrest, or iii. selected from the group consisting of substituted or unsubstituted C 1-20 -alkyl, substituted or unsubstituted C 2-20 -alkenyl, substituted or substituted C 2-20 -alkynyl, substituted or unsubstituted C 4-30 -alkeninyl, substituted or unsubstituted C 3-30 -cycloalkyl, substituted or unsubstituted C 3-20 -cycloalkenyl, substituted or unsubstituted C 1-6 cycloalkynyl, substituted or unsubstituted C 1-6 cycloalkeninyl, substituted or unsubstituted C 1-20 heteroalkyl, substituted or unsubstituted C 2-20 heteroalkenyl, substituted or unsubstituted C 2-20 heteroaryl, substituted or substituted C 1-6 Heteroalkeninyl, substituted or unsubstituted C 5-24 aryl, substituted or unsubstituted C 3-24 heteroaryl, preferably C 1-20 -alkyl or C 1-20 -alkenyl, h) R B6 and R B7 i. each independently of one another are H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_20-aliphatic radical or Ci_2o-heteroaliphatic radical, a substituted or unsubstituted G5-2o-aromatic radical or C3_2o-heteroaromatic radical, and / or an electron acceptor, or ii. each independently of one another are H, a substituted or unsubstituted cyclic, acyclic, linear or branched Ci_10 aliphatic radical or Ci_i0 heteroaliphatic radical, or a substituted or unsubstituted C5_i2 aroaromatic radical or C3_i2 heteroaromatic radical, and / or an electron acceptor, or iii. are each independently selected from the Grappe consisting of H, substituted or unsubstituted C 1-20 -alkyl, substituted or unsubstituted C 2-20 -alkenyl, substituted or unsubstituted C 2-10 -alkynyl, substituted or unsubstituted C 4-12 -alkeninyl, substituted or unsubstituted C 3-20 -cycloalkyl, substituted or unsubstituted C 3-20 cycloalkenyl, substituted or unsubstituted C 5-30 cycloalkynyl, substituted or unsubstituted 5-20-cycloalkeninyl, substituted or unsubstituted C 2-30 heteroalkyl, substituted or unsubstituted C 2-20 heteroalkenyl, substituted or unsubstituted C 2-20 heteroalkynyl, substituted or unsubstituted C 1-4 halo Heteroalkenyl, C5-24 substituted or unsubstituted aryl, substituted or unsubstituted C3-24 heteroaryl, and electron acceptor or iv. are each independently selected from the Grappe consisting of H, substituted or unsubstituted Guo-alkyl, substituted or unsubstituted C 2-10 -alkenyl, substituted or unsubstituted C 2-10 -alkynyl, substituted or unsubstituted C 1-4 -alkeninyl, substituted or unsubstituted C 3-7 -cycloalkyl, substituted or unsubstituted C 3-9 cycloalkenyl, substituted or unsubstituted C 3-10 cycloalkynyl, substituted or unsubstituted C 5-30 cycloalkeninyl, substituted or unsubstituted C 1-30 heteroalkyl, substituted or unsubstituted C 2-10 heteroalkenyl, substituted or unsubstituted C 2-10 heteroalkynyl, substituted or unsubstituted C 1-4 -io -Heteroalkemnyl, substituted or unsubstituted ¢ 5-12-aryl, substituted or unsubstituted C3_i2-heteroaryl, and electron acceptor or v. all H, are, or • DZ-07 vi. are an electron acceptor or H, provided that R H and R is an electron acceptor, or RB7 H and R56 is an electron acceptor. 8. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon nach Anspruch 7, wobei das Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon eine Verbindung gemäß der folgenden Formel IfThe nucleoside triphosphate or nucleoside triphosphate analogue prodrug of claim 7, wherein the nucleoside triphosphate or nucleoside triphosphate analogue prodrug comprises a compound according to the following formula If (If) oder ein pharmazeutisch annehmbares Salz davon ist, wobei Z fär Y oder CRA6RA7Y, vorzugsweise CH2Y steht, und wobei Y = O, S oder NH, vorzugsweise O ist, und X = O, S oder NH, vorzugsweise O ist, und W = O, S oder NH, vorzugsweise 0 ist.(If) or a pharmaceutically acceptable salt thereof, wherein Z is Y or CRA6RA7Y, preferably CH 2 Y, and wherein Y is O, S or NH, preferably O, and X is O, S or NH, preferably O, and W = O, S or NH, preferably 0. 9. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon nach einem der Ansprüche 1 his 8 zur Verwendung als Arzneimittel.A nucleoside triphosphate or nucleoside triphosphate analogue prodrug according to any one of claims 1 to 8 for use as a medicament. 10. Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon nach einem der Ansprüche 1 his 8 zur Verwendung als antivirales Arzneimittel, vorzugsweise als antirétrovirales Arzneimittel, Arzneimittel zur Behandlung einer HIV-Infektion, Hepatitis-hxfektion, von Influenza oder hämorrhagischem Fieber.A nucleoside triphosphate or nucleoside triphosphate analogue prodrug according to any one of claims 1 to 8 for use as an antiviral drug, preferably as an antiretroviral drug, medicines for the treatment of HIV infection, hepatitis infection, influenza or hemorrhagic fever. 11. Pharmazeutische Zusammensetzung oder Darreichungsform, umfassend ein Nucleosidtriphosphat- oder Nucleosidtriphosphatanalogon-Propharmakon nach einem der Ansprüche 1 bis 8 und einen pharmazeutisch annehmbaren Träger.A pharmaceutical composition or dosage form comprising a nucleoside triphosphate or nucleoside triphosphate analogue prodrug according to any one of claims 1 to 8 and a pharmaceutically acceptable carrier.
LU93331A 2016-12-02 2016-12-02 Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs LU93331B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
LU93331A LU93331B1 (en) 2016-12-02 2016-12-02 Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs
PCT/EP2017/081140 WO2018100137A1 (en) 2016-12-02 2017-12-01 Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs
EP17821806.1A EP3548087A1 (en) 2016-12-02 2017-12-01 Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LU93331A LU93331B1 (en) 2016-12-02 2016-12-02 Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs

Publications (1)

Publication Number Publication Date
LU93331B1 true LU93331B1 (en) 2018-06-05

Family

ID=57629608

Family Applications (1)

Application Number Title Priority Date Filing Date
LU93331A LU93331B1 (en) 2016-12-02 2016-12-02 Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs

Country Status (1)

Country Link
LU (1) LU93331B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026493A1 (en) * 2014-08-22 2016-02-25 Universität Hamburg Di- and triphosphate prodrugs

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016026493A1 (en) * 2014-08-22 2016-02-25 Universität Hamburg Di- and triphosphate prodrugs

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
B. A. MULDER ET AL: "Nucleotide modification at the -phosphate leads to the improved fidelity of HIV-1 reverse transcriptase", NUCLEIC ACIDS RESEARCH, vol. 33, no. 15, 1 September 2005 (2005-09-01), pages 4865 - 4873, XP055111673, ISSN: 0305-1048, DOI: 10.1093/nar/gki779 *
CHRIS MEIER: "Developing Prodrugs of antivirally active Nucleoside Triphosphates -Against all odds, it works!", 17 April 2015 (2015-04-17), XP055396835, Retrieved from the Internet <URL:http://www.maggichurchouseevents.co.uk/bmcs/Downloads/Archive/Nucleosides - Meier Chris.pdf> [retrieved on 20170808] *
TRISTAN GOLLNEST ET AL: "Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals", NATURE COMMUNICATIONS, vol. 6, 27 October 2015 (2015-10-27), pages 8716, XP055367643, DOI: 10.1038/ncomms9716 *
TRISTAN GOLLNEST ET AL: "Membrane-permeable Triphosphate Prodrugs of Nucleoside Analogues", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 55, no. 17, 18 April 2016 (2016-04-18), pages 5255 - 5258, XP055396608, ISSN: 1433-7851, DOI: 10.1002/anie.201511808 *
TRISTAN GOLLNEST ET AL: "THE TriPPPro-APPROACH: DEVELOPMENT OF NUCLEOSIDE TRIPHOSPHATE PRODRUGS", 1 January 2014 (2014-01-01), XP055396684, Retrieved from the Internet <URL:https://www.chemie.uni-hamburg.de/oc/meier/congress/icar2014_/icar2014_gollnest.pdf> [retrieved on 20170807] *
TRISTAN GOLLNEST: "Membrane-permeable Triphosphate Prodrugs of Nucleoside Analogues - supporting information", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 55, no. 17, 16 April 2016 (2016-04-16), XP002772798 *

Similar Documents

Publication Publication Date Title
Baszczyňski et al. Medicinal chemistry of fluorinated cyclic and acyclic nucleoside phosphonates
Wang et al. Recent advances in L-nucleosides: chemistry and biology
CA1336820C (en) Fluorinated nucleosides and process for treating retrovirus infections therewith
CA2623522C (en) Modified 4&#39;-nucleosides as antiviral agents
Farrow et al. Synthesis and biological properties of novel phosphotriesters: A new approach to the introduction of biologically active nucleotides into cells
SK281826B6 (en) New phospholipid derivatives of nucleosides, their preparation and their use as antiviral drugs
JP2005503358A5 (en)
DD296687A5 (en) NUCLEOSIDE DERIVATIVES AND THEIR USE AS DRUGS
EA005774B1 (en) 3&#39;-PRODRUGS OF 2&#39;-DEOXY-beta-L-NUCLEOSIDES
Wang et al. Adenine: an important drug scaffold for the design of antiviral agents
Xu A review on the chemical synthesis of pyrophosphate bonds in bioactive nucleoside diphosphate analogs
Pal et al. Fluorinated nucleosides: synthesis, modulation in conformation and therapeutic application
US10131685B2 (en) Di- and triphosphate prodrugs
Jia et al. Improving properties of the nucleobase analogs T-705/T-1105 as potential antiviral
Périgaud et al. Comments on nucleotide delivery forms
JP3693357B2 (en) Reverse transcriptase inhibitor
Han et al. An AZT Analog with Strongly Pairing Ethynylpyridone Nucleobase and Its Antiviral Activity against HSV1
LU93331B1 (en) Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs
EP3548087A1 (en) Nucleoside triphosphate and nucleoside triphosphate analogue prodrugs
EP0817790A1 (en) Specific lipid conjugates of nucleoside diphosphates and their use as drugs
JP2008509110A (en) Prodrug activated by RNA-dependent DNA polymerase
Mullah et al. Potential prodrug derivatives of 2', 3'-didehydro-2', 3'-dideoxynucleosides. Preparations and antiviral activities
Sauer et al. Synthesis of uracil nucleotide analogs with a modified, acyclic ribose moiety as P2Y2 receptor antagonists
US5153180A (en) Fluorinated nucleosides and process for treating retrovirus infections therewith
EP4356928A1 (en) Nucleoside diphosphate or diphosphonate prodrugs, or nucleoside analogue diphosphate or diphosphonate prodrugs

Legal Events

Date Code Title Description
FG Patent granted

Effective date: 20180605