LU101200B1 - A terahertz image sensor readout circuit with clock auto-calibration unit - Google Patents

A terahertz image sensor readout circuit with clock auto-calibration unit Download PDF

Info

Publication number
LU101200B1
LU101200B1 LU101200A LU101200A LU101200B1 LU 101200 B1 LU101200 B1 LU 101200B1 LU 101200 A LU101200 A LU 101200A LU 101200 A LU101200 A LU 101200A LU 101200 B1 LU101200 B1 LU 101200B1
Authority
LU
Luxembourg
Prior art keywords
mos transistor
stage chopper
clock
pass filter
output terminal
Prior art date
Application number
LU101200A
Other languages
German (de)
Inventor
Jianguo Ma
Shaohua Zhou
Original Assignee
Univ Tianjin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tianjin filed Critical Univ Tianjin
Application granted granted Critical
Publication of LU101200B1 publication Critical patent/LU101200B1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention discloses a terahertz image sensor readout circuit with a clock auto-calibration unit, comprising a first-stage chopper and a second-stage chopper, an AC amplifier being connected between the first-stage chopper and the second-stage chopper, wherein a GmC low-pass filter is connected between the AC amplifier and the second-stage chopper, an output terminal of the second-stage chopper is connected with a low pass filter, and an automatic clock phase shift adjustment circuit is connected between an output terminal of the GmC low-pass filter and a clock input terminal of the second-stage chopper. The present invention provides a sufficient gain to amplify a voltage signal output by a sensor; can suppress noise, mainly suppressing the flicker noise; and has the clock auto-calibration function to solve the problem of signal phase shift between modulation and demodulation.

Description

A TERAHERTZ IMAGE SENSOR READOUT CIRCUIT WITH CLOCK AUTO-CALIBRATION UNIT
Technical field
The present invention relates to the field of sensors, and more particularly, to a terahertz image sensor readout circuit with a clock auto-calibration unit.
Technical background
Since the energy of terahertz photons is very low, and the energy of 1THz photons is only about 4 millielectron volts, it is not easy to destroy substances to be detected, which makes the terahertz band have certain advantages in terms of imaging over infrared imaging.
The terahertz imaging technology is to use the terahertz waves to irradiate an object that needs to be detected, and acquire information on a surface of or even inside the object according to different conditions in which the terahertz waves are transmitted or reflected by the object to be detected at individual places. Continuous terahertz imaging systems can be divided into two categories, i.e. active imaging systems and passive imaging systems. The passive imaging systems directly detect the terahertz waves emitted or reflected by an object for imaging, whereas the active imaging systems require a terahertz source to irradiate the object and then perform imaging by reflected and transmitted terahertz waves [1]
Since an output signal of a terahertz detector is extremely small and the signal-to-noise ratio is very low, an additional readout circuit is required to amplify the signal output from the detector while increasing its signal noise as little as possible. Based on the current need of this readout circuit characteristic, a terahertz image sensor readout circuit with a clock auto-calibration unit is proposed.
[References] [1] Kui Zhang. Research on terahertz imaging readout circuit array based on CMOS technology [D], Beijing: Beijing Institute of Technology, 2015.
[2] Cezary Kolacinski, Dariusz Obrebski. The integrated selective readout amplifier for NMOS THz detectors[C]. Mixed Design of integrated Circuits and Systems, 2014: 272-277.
[3] C.C.Enz, GC.Temes. Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double[J]. Proceedings of the IEEE, 1996, 84(11): 1584-1614.
Summary of the invention
An object of the present invention is to overcome the deficiencies in the prior art and provide a terahertz image sensor readout circuit with a clock auto-calibration unit, which provides a sufficient gain to amplify a voltage signal output by a sensor; can suppress noise, mainly suppressing the flicker noise; and has the clock auto-calibration function to solve the problem of signal phase shift between modulation and demodulation.
The object of the present invention is achieved by the following technical solutions. A terahertz image sensor readout circuit with a clock auto-calibration unit of the present invention comprises a first-stage chopper and a second-stage chopper, an AC amplifier being connected between the first-stage chopper and the second-stage chopper, wherein a GmC low-pass filter is connected between the AC amplifier and the second-stage chopper, an output terminal of the second-stage chopper is connected with a low pass filter, and an automatic clock phase shift adjustment circuit is connected between an output terminal of the GmC low-pass filter and a clock input terminal of the second-stage chopper; the automatic clock phase shift adjustment circuit is composed of a first MOS transistor, a second MOS transistor, a third MOS transistor, a fourth MOS transistor, a fifth MOS transistor, a sixth MOS transistor and an inverter; a gate of the first MOS transistor and a gate of the fourth MOS transistor are each connected to a positive output terminal of the GmC low-pass filter, a gate of the second MOS transistor and a gate of the third MOS transistor are each connected to an inverting output terminal of the GmC low-pass filter, a source of the first MOS transistor, a source of the second MOS transistor, a source of the third MOS transistor and a source of the fourth MOS transistor are each grounded, a drain of the first MOS transistor and a drain of the fourth MOS transistor are each connected to a drain of the fifth MOS transistor, a gate of the fifth MOS transistor and a gate of the sixth MOS transistor are each connected to a drain of the fifth MOS transistor, a source of the fifth MOS transistor and a source of the sixth MOS transistor are each connected to a voltage source, a drain of the second MOS transistor, a drain of the third MOS transistor, and a drain of the sixth MOS transistor are each connected to an input terminal of the inverter, and an output terminal of the inverter is connected to the clock input terminal of the second-stage chopper.
The first MOS transistor, the second MOS transistor, and the third MOS transistor and the fourth MOS transistor each adopts a P-channel MOS transistor, and the fifth MOS transistor and the sixth MOS transistor each adopts an N-channel MOS transistor.
The positive output terminal of the GmC low-pass filter is separately connected to a positive input terminal of the automatic clock phase shift adjustment circuit and a positive input terminal of the second-stage chopper, the inverting output terminal of the GmC low-pass filter is separately connected to an inverting input terminal of the automatic clock phase shift adjustment circuit and an inverting input terminal of the second-stage chopper, and an output terminal of the automatic clock phase shift adjustment circuit is connected to the clock input terminal of the second-stage chopper.
Compared with the prior art, the technical solution of the present invention has the following beneficial effects:
Compared with a band-pass filter, the present invention can limit the bandwidth of an amplifier only with a low pass filter, thereby reducing the noise of the readout circuit, and uses a simple automatic clock phase shift adjustment circuit to overcome the shortcoming of the signal phase shift caused by the low pass filter.
Brief description of the drawings
Fig. 1 is a schematic diagram of a basic chopper modulation-based readout circuit;
Fig. 2 is a block diagram of a terahertz image sensor readout circuit with a clock auto-calibration unit of the present invention;
Fig. 3 is a schematic diagram of an automatic clock phase shift adjustment circuit in the present invention.
Reference signs: Q1 : first MOS transistor; Q2: second MOS transistor, Q3: third MOS transistor; Q4: fourth MOS transistor; Q5: fifth MOS transistor; Q6: sixth MOS transistor; GND: ground; Vd«i: voltage source.
Detailed description of the embodiments
In order to more clearly explain the technical solutions of the present invention, the present invention will be further described below in conjunction with the accompanying drawings. A basic chopper modulation-based readout circuit structure known currently is as shown in Fig. 1. Some teams have improved on this basis by connecting a band-pass filter behind the AC amplifier to limit the bandwidth of the amplifier [2], which can further reduce the noise generated by the readout circuit. It is because if the bandwidth of an AC amplifier is infinite, then the offset noise generated by this chopping modulation method will be [3]:
(1) where, Vos is offset noise, Vspike is amplitude of a peak, τ is a time constant, and T is the period of the signal.
However, if a band-pass filter is connected after the AC amplifier and the stopband frequency is limited to about twice the chopping modulation frequency, the generated offset noise is:
(2)
Since t<T/2, the offset noise generated after limiting the bandwidth can be reduced. However, since a band-pass filter needs to be added after the AC amplifier, and the area of the band-pass filter may be relatively large, the present invention proposes to replace the band-pass filter with a low pass filter. Since a phase shift may be caused by the introduction of the low pass filter, modulated and demodulated clock
signals may also undergo corresponding phase shifts. Therefore, the present invention also adds a simple automatic clock phase shift adjustment circuit to adapt to the demand.
As shown in Fig. 2, a terahertz image sensor readout circuit with a clock auto-calibration unit of the present invention comprises a first-stage chopper 1 and a second-stage chopper 4, an AC amplifier 2 being connected between the first-stage chopper 1 and the second-stage chopper 4, wherein a GmC low-pass filter 3 is connected between the AC amplifier 2 and the second-stage chopper 4, an output terminal of the second-stage chopper 4 is connected with a low pass filter 5, and an automatic clock phase shift adjustment circuit 6 is connected between an output terminal of the GmC low-pass filter 3 and a clock input terminal of the second-stage chopper 4. The positive output terminal of the GmC low-pass filter is separately connected to a positive input terminal Vin+of the automatic clock phase shift adjustment circuit and a positive input terminal of the second-stage chopper, the inverting output terminal of the GmC low-pass filter is separately connected to an inverting input terminal Vm-of the automatic clock phase shift adjustment circuit and an inverting input terminal of the second-stage chopper, and an output terminal VoutOf the automatic clock phase shift adjustment circuit is connected to the clock input terminal of the second-stage chopper.
As shown in Fig. 3, the automatic clock phase shift adjustment circuit is composed of a first MOS transistor Q1, a second MOS transistor Q2, a third MOS transistor Q3, a fourth MOS transistor Q4, a fifth MOS transistor Q5, a sixth MOS transistor Q6 and an inverter. The first MOS transistor Q1, the second MOS transistor Q2, and the third MOS transistor Q3 and the fourth MOS transistor Q4 each adopts a P-channel MOS transistor, and the fifth MOS transistor Q5 and the sixth MOS transistor Q6 each adopts an N-channel MOS transistor. A gate of the first MOS transistor Q1 and A gate of the fourth MOS transistor Q4 are each connected to a positive output terminal of the GmC low-pass filter, a gate of the second MOS transistor Q2 and a gate of the third MOS transistor Q3 are each connected to an inverting output terminal of the GmC low-pass filter, a source of the first MOS transistor Q1, a source of the second MOS transistor Q2, a source of the third MOS transistor Q3 and a source of the fourth MOS transistor 04 are each grounded (GND), a drain of the first MOS transistor Q1 and a drain of the fourth MOS transistor Q4 are each connected to a drain of the fifth MOS transistor Q5, a gate of the fifth MOS transistor Q5 and a gate of the sixth MOS transistor Q6 are each connected to a drain of the fifth MOS transistor Q5, a source of the fifth MOS transistor Q5 and a source of the sixth MOS transistor Q6 are each connected to a voltage source Vdd, a drain of the second MOS transistor Q2, a drain of the third MOS transistor Q3, and a drain of the sixth MOS transistor Q6 are each connected to an input terminal of the inverter, and an output terminal Vout of the inverter is connected to the clock input terminal of the second-stage chopper.
After a signal passes through the GmC low-pass filter, a pair of sinusoidal differential signals is obtained. The pair of signals are input to the automatic clock phase shift adjustment circuit, and according to the difference of the pair of signals, a correspondingly varying voltage is generated at the input node of the inverter. When the voltage passes through the inverter, it outputs a square wave signal of amplitude VDD, which is an adjusted clock signal. Since the clock signal is varied according to the difference of the sinusoidal differential signal, the phase of the clock signal corresponds to the phase of the sinusoidal signal. No matter how much the phase of the sinusoidal differential signal is shifted compared to the signal input to the filter, the clock signal output from the inverter can be finally tracked. The adjusted clock signal is applied to the two-stage chopper for demodulating, and a corresponding signal can be well demodulated. Thus, a simpler low pass filter with a smaller area can be realized, and the low-noise amplification function of the detector signal can also be realized.
Although the functions and working processes of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the specific functions and working processes described above, and the specific embodiments given above are merely illustrative and not restrictive. Many forms may be made by those skilled in the art under the inspiration of the present invention without departing from the spirit and scope of the invention, and these are all within the protection of the present invention.

Claims (3)

1. Terahertz-Bildsensor-Ausleseschaltung mit einer Uhr-Autokalibrierungseinheit, umfassend einen Chopper der ersten Stufe und einen Chopper der zweiten Stufe, wobei ein Wechselstromverstârker zwischen dem Chopper der ersten Stufe und dem Chopper der zweiten Stufe geschaltet ist, dadurch gekennzeichnet, dass ein GmC-Tiefpaßfilter zwischen dem Wechselstromverstârker und dem Chopper der zweiten Stufe geschaltet ist, wobei ein Ausgangsanschluß des Choppers der zweiten Stufe mit einem Tiefpaßfilter verbunden ist, und eine automatische Taktphasenverschiebungs-Einstellschaltung zwischen einem Ausgangsanschluss des GmC-Tiefpassfilters und einem Takteingangsanschluss des Choppers der zweiten Stufe geschaltet ist; wobei die automatische Taktphasenverschiebungs-Einstellschaltung aus einem ersten MOS-Transistor (Q1), einem zweiten MOS-Transistor (Q2), einem dritten MOS-Transistor (Q3), einem vierten MOS-Transistor (Q4), einem fünften MOS-Transistor (Q5), einen sechsten MOS-Transistor (Q6) und einem Inverter besteht; wobei ein Gate des ersten MOS-Transistors (Q1) und ein Gate des vierten MOS-Transistors (Q4) jeweils mit einem positiven Ausgangsanschluß des GmC-Tiefpaßfilters verbunden sind, und wobei ein Gate des zweiten MOS-Transistors (Q2) und ein Gate des dritten MOS-Transistors (Q3) jeweils mit einem invertierenden Ausgangsanschluß des GmC-Tlefpaßfilters verbunden sind, und wobei eine Source des ersten MOS-Transistors (Q1), eine Source des zweiten MOS-Transistors (Q2), eine Source des dritten MOS-Transistor (Q3) und eine Source des vierten MOS-Transistors (Q4) jeweils geerdet sind (GND), und wobei ein Drain des ersten MOS-Transistors (Q1) und ein Drain des vierten MOS-Transistors (Q4) jeweils mit einem Drain des fünften MOS-Transistors (Q5) verbunden sind, und wobei ein Gate des fünften MOS-Transistors (Q5) und ein Gate des sechsten MOS-Transistors (Q6) jeweils mit einem Drain des fünften MOS-Transistors (Q5) verbunden sind, und wobei eine Source des fünften MOS-Transistors (Q5) und eine Source des sechsten MOS-Transistors (Q6) jeweils mit einer Spannungsquelle (Vdd) verbunden sind, und wobei ein Drain des zweiten MOS-Transistors (Q2), ein Drain des dritten MOS-Transistors (Q3) und ein Drain des sechsten MOS-Transistors (Q6) jeweils mit einem Eingangsanschluß des Inverters verbunden sind, und wobei ein Ausgangsanschluss des Inverters mit dem Takteingangsanschluss des Choppers der zweiten Stufe verbunden ist.A terahertz image sensor readout circuit comprising a clock auto-calibration unit comprising a first stage chopper and a second stage chopper, wherein an AC amplifier is connected between the first stage chopper and the second stage chopper, characterized in that a GmC Low-pass filter is connected between the AC amplifier and the second-stage chopper with an output terminal of the second-stage chopper connected to a low-pass filter, and an automatic clock-phase shift adjusting circuit connected between an output terminal of the GmC low-pass filter and a clock input terminal of the second-stage chopper is; wherein the automatic clock phase shift adjusting circuit is composed of a first MOS transistor (Q1), a second MOS transistor (Q2), a third MOS transistor (Q3), a fourth MOS transistor (Q4), a fifth MOS transistor (Q5 ), a sixth MOS transistor (Q6) and an inverter; wherein a gate of the first MOS transistor (Q1) and a gate of the fourth MOS transistor (Q4) are respectively connected to a positive output terminal of the GmC low-pass filter, and wherein a gate of the second MOS transistor (Q2) and a gate of the third MOS transistor (Q3) are each connected to an inverting output terminal of the GmC Tlefpaßfilters, and wherein a source of the first MOS transistor (Q1), a source of the second MOS transistor (Q2), a source of the third MOS transistor (Q3) and a source of the fourth MOS transistor (Q4) are respectively grounded (GND), and wherein a drain of the first MOS transistor (Q1) and a drain of the fourth MOS transistor (Q4) each having a drain of the fifth MOS transistor (Q5) are connected, and wherein a gate of the fifth MOS transistor (Q5) and a gate of the sixth MOS transistor (Q6) are each connected to a drain of the fifth MOS transistor (Q5), and wherein a Source of the fifth MOS transistor (Q5) and a e source of the sixth MOS transistor (Q6) are each connected to a voltage source (Vdd), and wherein a drain of the second MOS transistor (Q2), a drain of the third MOS transistor (Q3) and a drain of the sixth MOS Transistors (Q6) are each connected to an input terminal of the inverter, and wherein an output terminal of the inverter is connected to the clock input terminal of the second-stage chopper. 2. Terahertz-Bildsensor-Ausleseschaltung mit einer Uhr-Autokalibrierungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass der erste MOS-Transistor (Q1), der zweite MOS-Transistor (Q2) und der dritte MOS-Transistor (Q3) und der vierte MOS-Transistor (Q4) jeweils einen P-Kanal-MOS-Transistor verwendet, und der fünfte MOS-Transistor (Q5) und der sechste MOS-Transistor (Q6) jeweils einen N-Kanal-MOS-Transistor verwendet.2. terahertz image sensor readout circuit with a clock auto-calibration unit according to claim 1, characterized in that the first MOS transistor (Q1), the second MOS transistor (Q2) and the third MOS transistor (Q3) and the fourth MOS Transistor (Q4) each uses a P-channel MOS transistor, and the fifth MOS transistor (Q5) and the sixth MOS transistor (Q6) each uses an N-channel MOS transistor. 3. Terahertz-Bildsensor-Ausleseschaltung mit einer Uhr-Autokalibrierungseinheit nach Anspruch 1, dadurch gekennzeichnet, dass der positive Ausgangsanschluß des GmC-Tiefpaßfilters separat mit einem positiven Eingangsanschluß der automatischen Taktphasenverschiebungs-Einstellschaltung und einem positiven Eingangsanschluß des Choppers der zweiten Stufe verbunden ist, und wobei der invertierende Ausgangsanschluß des GmC-Tiefpaßfilters separat mit einem invertierenden Eingangsanschluß der automatischen Taktphasenverschiebungs-Einstellschaltung und einem invertierenden Eingangsanschluß des Choppers der zweiten Stufe verbunden ist, und wobei ein Ausgangsanschluß der automatischen Taktphasenverschiebungs-Einstellschaltung mit dem Takteingangsanschluß des Choppers der zweiten Stufe verbunden ist.The terahertz image sensor readout circuit having a clock auto-calibration unit according to claim 1, characterized in that the positive output terminal of the GmC low-pass filter is separately connected to a positive input terminal of the automatic clock phase shift adjusting circuit and a positive input terminal of the second-stage chopper, and wherein the inverting output terminal of the GmC low-pass filter is separately connected to an inverting input terminal of the automatic clock phase shift adjusting circuit and an inverting input terminal of the second-stage chopper, and an output terminal of the automatic clock phase-shift adjusting circuit is connected to the clock input terminal of the second-stage chopper.
LU101200A 2018-09-20 2019-04-30 A terahertz image sensor readout circuit with clock auto-calibration unit LU101200B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811100629.8A CN109302573B (en) 2018-09-20 2018-09-20 Terahertz image sensor reading circuit with clock automatic calibration unit

Publications (1)

Publication Number Publication Date
LU101200B1 true LU101200B1 (en) 2019-08-27

Family

ID=65163879

Family Applications (1)

Application Number Title Priority Date Filing Date
LU101200A LU101200B1 (en) 2018-09-20 2019-04-30 A terahertz image sensor readout circuit with clock auto-calibration unit

Country Status (2)

Country Link
CN (1) CN109302573B (en)
LU (1) LU101200B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111141702A (en) * 2019-12-19 2020-05-12 天津大学 High-frequency resolution arrayed terahertz imaging system based on detection comb principle
CN111121626B (en) * 2019-12-30 2021-09-07 广东博智林机器人有限公司 Signal detection circuit, position sensitive detector and position detection system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759776B2 (en) * 2008-12-31 2014-06-24 Technion Research And Development Foundation Ltd. Teramos-terahertz thermal sensor and focal plane array
JP5521245B2 (en) * 2010-02-03 2014-06-11 独立行政法人情報通信研究機構 Recorded information reading device
CN103913240B (en) * 2014-04-11 2017-01-11 电子科技大学 Current type terahertz pyroelectricity detector reading circuit
US20160209268A1 (en) * 2015-01-20 2016-07-21 Korea Advanced Institute Of Science And Technology Terahertz receiver and terahertz imaging sensor apparatus for high data rate
CN105300530B (en) * 2015-11-10 2018-07-31 中国科学院半导体研究所 Terahertz wave detector with reading circuit
CN106813779A (en) * 2016-12-25 2017-06-09 中国科学院紫金山天文台 A kind of full-automatic Terahertz atmospheric characteristic measuring system and its calibration method
CN107515202A (en) * 2017-08-17 2017-12-26 清华大学 Terahertz light spectral analysis method, system and equipment

Also Published As

Publication number Publication date
CN109302573A (en) 2019-02-01
CN109302573B (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP5014388B2 (en) Single photon imaging element
LU101200B1 (en) A terahertz image sensor readout circuit with clock auto-calibration unit
US5793230A (en) Sensor readout detector circuit
US20070090276A1 (en) Light detecting device
US7847231B2 (en) Image sensor and electromagnetic radiation imaging device
CN109644245A (en) Visual sensor is compared based on sampling and the time domain kept
JP2010063096A6 (en) Single photon imaging element
CN105300530B (en) Terahertz wave detector with reading circuit
CN104124935A (en) Chopper amplifier
JP3541750B2 (en) Optical receiving preamplifier
LU101199B1 (en) A readout circuit based on chopping modulation and correlated double sampling
JP2008199493A5 (en)
CN106788280B (en) Low-noise high-speed trans-impedance amplifier
KR101033952B1 (en) Electrical circuit, apparatus and method for the demodulation of an intensity-modulated signal
US7626460B2 (en) Low noise, low power and high bandwidth capacitive feedback trans-impedance amplifier with differential FET input and bipolar emitter follower feedback
US9961281B2 (en) Image sensor pixel noise measurement
CN209446170U (en) Four sampling low noise cmos detector reading circuits
EP2189816B1 (en) Charge pulse detecting circuit
Zhou et al. A differential difference amplifier employing pseudo-differential CMFB for neural signal recording applications
KR102113259B1 (en) Power detector with wide dynamic range
Kawahito et al. Column parallel signal processing techniques for reducing thermal and RTS noises in CMOS image sensors
US6664816B1 (en) Signal amplitude comparator
Kuang et al. The design of low noise chopper operational amplifier with inverter
JPWO2018131288A1 (en) Electronic circuit, imaging circuit, and detection / light reception method
Değerli Design of fundamental building blocks for fast binary readout CMOS sensors used in high-energy physics experiments

Legal Events

Date Code Title Description
FG Patent granted

Effective date: 20190827

FG Patent granted

Effective date: 20190827