LT6625B - Bacterial preparation for oxydation of oil products and their use - Google Patents
Bacterial preparation for oxydation of oil products and their use Download PDFInfo
- Publication number
- LT6625B LT6625B LT2017079A LT2017079A LT6625B LT 6625 B LT6625 B LT 6625B LT 2017079 A LT2017079 A LT 2017079A LT 2017079 A LT2017079 A LT 2017079A LT 6625 B LT6625 B LT 6625B
- Authority
- LT
- Lithuania
- Prior art keywords
- soil
- bacterial preparation
- oil
- preparation according
- nitrogen
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
- B09C1/10—Reclamation of contaminated soil microbiologically, biologically or by using enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C2101/00—In situ
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Soil Sciences (AREA)
- Microbiology (AREA)
- Environmental & Geological Engineering (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Processing Of Solid Wastes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Išradimo sritisField of the Invention
Šis išradimas yra susijęs su naftą skaidančio mikroorganizmo kompozicija ir jos panaudojimu naftos, ir jos darinių utilizavimui iš užteršto grunto.The present invention relates to a composition of an oil-decomposing microorganism and its use for the recovery of oil and its derivatives from contaminated soil.
Technikos lygisState of the art
Nafta yra sudėtingas angliavandenilių ir kitų organinių junginių mišinys. Jame yra šimtai ar tūkstančiai alifatinių, šakotų ir aromatinių angliavandenilių (Wang et ai. 1998), kurių dauguma yra toksiški gyviems organizmams.Oil is a complex mixture of hydrocarbons and other organic compounds. It contains hundreds or thousands of aliphatic, branched, and aromatic hydrocarbons (Wang et al. 1998), most of which are toxic to living organisms.
Užteršto dirvožemio valymui dažniausiai naudojami fiziko-cheminiai ir biologiniai būdai. Fiziko-cheminiai apdorojimo būdai yra deginimas, terminė desorbcija, koksavimas, tirpiklių ekstrahavimas, talpinimas į sąvartynus irt.t. Tačiau šie būdai arba paverčia gruntą nebenaudotinu (deginimas), arba nepašalina esminės problemos (sąvartynai). Be to, Europoje, įstatymai reikalauja, kad būtų mažinamas visų sąvartynų skaičius ir kuo daugiau atliekų būtų perdirbama.Physico-chemical and biological methods are commonly used for cleaning contaminated soil. Physico-chemical treatment methods include incineration, thermal desorption, coking, solvent extraction, landfilling and so on. However, these techniques either render the soil unusable (incineration) or do not eliminate the underlying problem (landfill). In addition, in Europe, legislation requires that all landfills be reduced and that as much waste as possible be recycled.
Dar 1946 m. Claude E. ZoBelI atrado, kad daugelis mikroorganizmų gali naudoti angliavandenilius kaip vienintelį anglies ir energijos šaltinį. Jis taip pat nustatė, kad angliavandenilių panaudojimas labai priklausė nuo naftos mišinių sudedamųjų dalių cheminio pobūdžio ir aplinkos veiksnių (Jain et ai. 2011). Mikroorganizmų panaudojimas angliavandeniliais užterštos teritorijos atkūrimui (remediacijai) yra vykdomas panaudojant naftą oksiduojančius mikroorganizmus, ypač dirvožemyje esančias vietines bakterijas ir grybus. Šie mikroorganizmai gali skaidyti daugybę naftos atliekose esančių sudedamųjų dalių (Eriksson, Dalhammar, ir Borg-Karlson 1999; Barathi ir Vasudevan 2001; Mishra et ai. 2001). Nors grybai taipogi pasižymi naftą oksiduojančiomis savybėmis, tačiau jų augimas yra sąlyginai lėtas, todėl jie sunkiai pritaikomi lauko sąlygomis ir esant dideliam užterštumui (Mohsenzadeh, Chehregani Rad, ir Akbari 2012). Siekiant paspartinti biologinį skaidymą naftos produktais užterštas gruntas apdorojamas dirbtinai užaugintais naftą oksiduojančiais mikroorganizmais, kurie naftos angliavandenilius naudoja kaip maisto šaltinį ir skaido juos iki nekenksmingų medžiagų: CO2 ir H2O.Back in 1946 Claude E. ZoBelI discovered that many microorganisms can use hydrocarbons as their sole source of carbon and energy. He also found that the use of hydrocarbons was highly dependent on the chemical nature and environmental factors of the components of petroleum blends (Jain et al. 2011). The use of microorganisms for the rehabilitation of hydrocarbon contaminated sites is carried out by utilizing oil oxidizing microorganisms, in particular native bacteria and fungi in the soil. These microorganisms can degrade many of the constituents present in petroleum waste (Eriksson, Dalhammar, and Borg-Karlson 1999; Barathi and Vasudevan 2001; Mishra et al. 2001). Although fungi also have oil-oxidizing properties, their growth is relatively slow, making them difficult to adapt to field conditions and high levels of contamination (Mohsenzadeh, Chehregani Rad, & Akbari 2012). To accelerate the biodegradation of oil-contaminated soils, the soil is treated with artificially cultivated oil-oxidizing microorganisms that use petroleum hydrocarbons as a food source and decompose them into harmless substances: CO2 and H2O.
Acinetobacter rūšys yra plačiai paplitę ir gali būti išgaunamos iš vandens, dirvožemio, gyvų organizmų ir net iš žmogaus odos. Tai nejudrios, neigiamos oksidazės, griežtai aerobinės, gram neigiamos kokobacilos. Jos gali naudoti įvairius anglies šaltinius augimui ir gali būti auginamos palyginti paprastose terpėse, įskaitant maistinį agarą arba triptikazės sojų agarą (Abdelhaleem 2003). Acinetobacter genties bakterijos dėl savo įvairovės gamina daugybę medžiagų naudojamų biotechnologijose. Kai kurios Acinetobacter rūšys gamina didelius kiekius polisacharidų, poliesterių ir lipazių. Tačiau industriniu požiūriu svarbiausi yra emulsikliai, tokie kaip, pvz., emulsinas (Gutnick et ai. 1980), OmpA (VValzer, Rosenberg, ir Ron 2006) ar alasanas (Toren et ai. 2002). Emulsikliai ypač naudingi angliavandenilių skaidyme, nes padeda emulguoti naftą ir jos darinius, taip paspartindami degradavimo procesus. Jau prieš porą dešimtmečių buvo pastebėta, kad kai kurios Acinetobacter rūšys geba skaidyti naftą ir jos darinius, tačiau geri rezultatai buvo pasiekiami tik laboratorinėmis sąlygomis, dėl naftos inhibicinių savybių bei aeracijos trūkumo dirvoje bei skystoje terpėje (Hanson et ai. 1997). Visų mikroorganizmų augimui ir dauginimuisi yra būtinos ne tik maisto medžiagos, bet ir mikroelementai, tokie kaip azotas, kalis, fosforas, siera, magnis, kalcis ir tt. Kai kurie iš jų - gyvybiškai svarbūs, nes yra DNR sudėtyje (azotas, fosforas), amino rūgščių sudėtyje (azotas, siera) ir ląstelių sienelėse (fosforas, kalcis).Acinetobacter species are widespread and can be extracted from water, soil, living organisms and even from human skin. These are immobile, negative oxidases, strictly aerobic, gram negative cocobacilli. They can use a variety of carbon sources for growth and can be grown in relatively simple media, including nutrient agar or trypticase soy agar (Abdelhaleem 2003). The bacteria of the genus Acinetobacter, due to their diversity, produce many substances used in biotechnology. Some species of Acinetobacter produce large amounts of polysaccharides, polyesters and lipases. However, industrially important emulsifiers such as emulsin (Gutnick et al. 1980), OmpA (Walzer, Rosenberg, and Ron 2006) or Alasan (Toren et al. 2002) are important. Emulsifiers are particularly useful in the decomposition of hydrocarbons because they help to emulsify petroleum and its derivatives, thereby accelerating the degradation process. Some Acinetobacter species have been observed for a couple of decades ago to decompose oil and its derivatives, but good results have been achieved only under laboratory conditions due to the inhibitory properties of oil and the lack of aeration in soil and liquid media (Hanson et al. 1997). Not only nutrients, but also micronutrients such as nitrogen, potassium, phosphorus, sulfur, magnesium, calcium, etc., are essential for the growth and growth of all microorganisms. Some of them are vital because they contain DNA (nitrogen, phosphorus), amino acids (nitrogen, sulfur) and cell walls (phosphorus, calcium).
Tačiau mikroelementai taip pat gali įtakoti įvairių naftos komponentų bioremediaciją. Aromatinių angliavandenilių biologinis skaidymas yra ypač jautrus pH pokyčiams. Foght ir kt. 1999 m. ištyrė azoto šaltinio vaidmenį naftos komponentų biologiniam skaidymui esant šaltoms jūrinėms sąlygoms (10 °C). Nitratai neturėjo įtakos pH, tačiau amonio pokyčiai lėmė rūgštėjimą, dėl kurio susilpnėjo aromatinių junginių skaidymas (Margesin irSchinner2001). Tokie rezultatai rodo, kad labai svarbu tinkamai adaptuoti sąlygas, kuriose mikroorganizmai skaido teršalus ir nuolat stebėti tų sąlygų pokyčius. Dėl nepastovių oro sąlygų ir nevykdant stebėjimų, daugelis bakterinių preparatų neveikia taip kaip yra tikimąsi atlikus tik laboratorinius eksperimentus. Taigi daug su naftos biologiniu skaidymu susijusių išradimų yra nepritaikomi praktiškai arba veikia tik uždaromis ir kontroliuojamomis sąlygomis ir negali būti pritaikyti dideliems užteršto grunto plotams.However, trace elements can also influence the bioremediation of various petroleum components. Biodegradation of aromatic hydrocarbons is particularly sensitive to changes in pH. Foght et al. 1999 investigated the role of the nitrogen source in the biodegradation of petroleum components under cold marine conditions (10 ° C). Nitrates had no effect on pH, but changes in ammonium led to acidification, which reduced the degradation of aromatic compounds (Margesin and Schinner2001). Such results indicate the importance of proper adaptation of the conditions in which the microorganisms decompose contaminants and the constant monitoring of changes in those conditions. Due to the volatile weather conditions and the absence of observations, many bacterial agents do not perform as expected in laboratory experiments alone. Thus, many inventions related to the biodegradation of petroleum are not practicable or operate only under closed and controlled conditions and cannot be applied to large areas of contaminated soil.
Išradimo esmėThe essence of the invention
Bakterinio preparato skaidančio naftos teršalus, apimančio Acinetobacter calcoaceticus BT 8 mikroorganizmus, panaudojimo technologija yra pagrįsta bakterijų, atrinktų iš dirvožemio, kultivavimu ir jų panaudojimu naftos degradacijai. Šis išradimas paspartina dirvožemio valymo procesą ir yra pranašesnis už kitus pramoniniu būdu gaminamus preparatus kadangi panaudojamas mikroorganizmo gebėjimas fiksuoti ore esantį azotą, taip sumažinant pridėtinių trąšų poreikį.The technology for utilizing a bacterial agent to decompose oil contaminants comprising microorganisms of Acinetobacter calcoaceticus BT 8 is based on the cultivation of bacteria selected from the soil and their use for oil degradation. The present invention accelerates the soil remediation process and is superior to other industrially prepared formulations because it utilizes the ability of the microorganism to fix nitrogen in the air, thereby reducing the need for added fertilizers.
Detalus išradimo aprašymasDetailed Description of the Invention
Šiame išradime aprašomas naujas bakterinis preparatas gebantis efektyviai, saugiai ir pigiai oksiduoti naftos teršalus dirvožemyje ir paversti juos nekenksmingomis cheminėmis medžiagomis. Sukurtas bakterinis preparatas pasižymi mažesniu mineralinio azoto poreikiu, nes jame naudojama bakterija A. calcoaceticus BT 8 geba fiksuoti ore esantį dujinį azotą ir versti jį mineraline medžiaga reikalinga įvairių gyvybinių funkcijų palaikymui.The present invention describes a novel bacterial preparation capable of efficiently, safely and cheaply oxidizing oil pollutants in soil and converting them into harmless chemicals. The developed bacterial preparation has a lower mineral nitrogen requirement because it uses the A. calcoaceticus BT 8 bacterium to capture gaseous nitrogen in the air and convert it into a mineral to support a variety of vital functions.
Viename išradimo įgyvendinimo pavyzdyje naudojamas bakterinis preparatas susidedantis iš atrinktų A. calcoaceticus BT 8 bakterijų ir mineralinių trąšų, kurios neapima azoto. Šis preparatas buvo išbandytas laboratorinėmis sąlygomis, kur naftos teršalų koncentracija buvo 181 g/kg.In one embodiment of the invention, a bacterial preparation consisting of selected A. calcoaceticus BT 8 bacteria and a mineral fertilizer that is nitrogen-free is used. This preparation was tested under laboratory conditions at a petroleum contaminant concentration of 181 g / kg.
Dar viename išradimo įgyvendinimo pavyzdyje naudojamas bakterinis preparatas susidedantis iš atrinktų A. calcoaceticus BT 8 bakterijų ir mineralinių trąšų apimančių azotą. Preparatas buvo išbandytas laboratorinėmis sąlygomis, kur naftos teršalų koncentracija buvo 181 g/kg.In another embodiment of the invention, a bacterial preparation comprising selected A. calcoaceticus BT 8 bacteria and a mineral fertilizer comprising nitrogen is used. The preparation was tested under laboratory conditions at a concentration of 181 g / kg of oil pollutants.
Dar viename išradimo įgyvendinimo pavyzdyje bakterinis preparatas yra naudojamas specializuotu būdu, po auginimo užsaldant bakterinį preparatą ir jį atšildant tik prieš purškimą ant nafta užterštos dirvos, kai preparato bei mineralinių trąšų kiekiai yra parenkami pagal dirvos užterštumo laipsnį bei numatomas papildomo purškimo grafikas.In another embodiment of the invention, the bacterial preparation is used in a specialized manner by freezing and thawing the bacterial preparation after cultivation only prior to spraying on oil-contaminated soil, wherein the amounts of formulation and mineral fertilizers are selected based on soil contamination and expected additional spraying schedules.
Brėžinių paveikslų aprašymas pav. Parodytas naftos angliavandenilių kiekis po mėnesį trukusio laboratorinio eksperimento, kai pradinis teršalų kiekis buvo 181 g/kg. Palyginamas biopreparato poveikis su mineralinio azoto šaltiniu ir be jo.Description of Drawings Fig. Shown are the petroleum hydrocarbons content after a month-long laboratory experiment with an initial contaminant of 181 g / kg. The effect of the biopreparation with and without mineral nitrogen source is compared.
pav. Parodytas naftos angliavandenilių skaidymas lauko sąlygomis, kai pradinė naftos koncentracija -189 g/kg. Eksperimento trukmė - 8 sav.Fig. The breakdown of petroleum hydrocarbons under field conditions with an initial oil concentration of -189 g / kg is shown. Experiment duration - 8 weeks.
Priemonės ir metodaiTools and methods
Prietaisai: techninės svarstyklės KERN PCB 2500, analitinės svarstyklės KERN ABJ 220, laminarinė oro srauto spinta „Thermo Scientific“, termostatuojama purtyklė „Thermo Scientific“ MaxQ 4450, termostatuojamas mikroorganizmų inkubatorius „Thermo Scientific“ Heratherm IGS60, fermentatorius EDF-5.4_1 „Biotehniskais centrs“, autoklavas AL02-10 „Advantage-Lab“, spektrofotometras GENESYS 10S UV-Vis „Thermo Scientific“.Appliances: KERN PCB 2500 technical scales, KERN ABJ 220 analytical balance, Thermo Scientific laminar flow cabinet, Thermo Scientific MaxQ 4450 shaker, Thermo Scientific Heratherm IGS60 thermo-incubator, EDF-5.4_1 Biotechnical Center , Autoclave AL02-10 Advantage-Lab, GENESYS 10S UV-Vis Spectrophotometer Thermo Scientific.
Reagentai:Reagents:
Lentelė. Bakterinio preparato gamyboje naudojami reagentai.Table. Reagents used in the preparation of the bacterial preparation.
Metodai:Methods:
Mikroorganizmų atrankaSelection of microorganisms
Siekiant sukurti bakterinį preparatą naftos teršalų valymui dirvožemyje buvo naudojamas selektyvios atrankos metodas išgaunant mikroorganizmus iš angliavandeniliais užteršto dirvožemio mėginių. Mėginiai buvo imti iš seno garažo automobilių remonto dirbtuvių, paėmus naftos produktais užteršto šlamo pavyzdžių. Norimų izoliatų išskyrimas buvo atliekamas ant agarizuotos terpės auginant iš mėginių išskirtus mikroorganizmus, kai vienintelis anglies šaltinis terpėje buvo angliavandeniliai. Sėkmingiausiai augę mikroorganizmai buvo naudojami kituose eksperimentuose.In order to develop a bacterial preparation for the treatment of oil pollutants in soil, a selective selection method was used to extract microorganisms from soil samples contaminated with hydrocarbons. Samples were taken from an old garage car repair shop, taking samples of oil-contaminated sludge. Isolation of the desired isolates was performed on the agarized medium by culturing isolated microorganisms where the only source of carbon in the medium was hydrocarbons. The most successful microorganisms were used in other experiments.
Azotą fiksuojančių mikroorganizmų atrankaSelection of nitrogen fixing microorganisms
Išskirti naftą oksiduojantys izoliatai buvo auginami ant agarizuotos terpės, be azoto šaltinių. Eksperimento metu išaugo tik tie naftą oksiduojantys izoliatai, kurie gebėjo fiksuoti ore esantį dujinį azotą ir versti jį mineraline medžiaga reikalinga įvairių gyvybinių funkcijų palaikymui.Isolated oil-oxidizing isolates were grown on agarized medium without nitrogen sources. During the experiment, only those oil-oxidizing isolates that were capable of trapping gaseous nitrogen in the air and converting it into mineral matter were required to support various vital functions.
Mikroorganizmų rūšies nustatymasSpecification of the micro-organism
Siekiant patvirtinti išskirto mikroorganizmo rūšį jis buvo identifikuojamas BASECLEAR laboratorijoje Olandijoje. Mikroorganizmas buvo identifikuotas panaudojant validuotą MicroSeų sistemą iš „Applied Biosystems“. Ši automatinė sistema yra paremta bakterinio 16S rRNR geno PGR amplifikacija ir DNR sekoskaita. Buvo nustatyta A. calcoaceticus BT8 16S rRNR geno seka - SEQ ID Nr. 1:In order to confirm the species isolated, it was identified in the BASECLEAR laboratory in the Netherlands. The microorganism was identified using a validated MicroSeai system from Applied Biosystems. This automated system is based on PCR amplification and DNA sequencing of the bacterial 16S rRNA gene. The A. calcoaceticus BT8 16S rRNA gene sequence - SEQ ID NO. 1:
GATTGAACGCTGGCGGCAGGCTTAACACATGCAAGTCGAGCGGAGTGA TGGTGyTTGCACTATCACTTAGCGGCGGACGGGTGAGTAATGCTTAGGAATCTG CCTATTAGTGGGGGACAACATTTCGAAAGGAATGCTAATACCGCATACGTCCTA CGGGAGAAAGCAGGGGATCTTCGGACCTTGCGCTAATAGATGAGCCTAAGTCG GATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCGGGT CTGAGAGGATGATCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGG GAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGC CGCGTGTGTGAAGAAGGCCTTATGGTTGTAAAGCACTTTAAGCGAGGAGGAGG CTACTGAAGTTAATACCTTCAGATAGTGGACGTTACTCGCAGAATAAGCACCGGGATTGAACGCTGGCGGCAGGCTTAACACATGCAAGTCGAGCGGAGTGA TGGTGyTTGCACTATCACTTAGCGGCGGACGGGTGAGTAATGCTTAGGAATCTG CCTATTAGTGGGGGACAACATTTCGAAAGGAATGCTAATACCGCATACGTCCTA CGGGAGAAAGCAGGGGATCTTCGGACCTTGCGCTAATAGATGAGCCTAAGTCG GATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCGGGT CTGAGAGGATGATCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGG GAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGATCCAGCCATGC CGCGTGTGTGAAGAAGGCCTTATGGTTGTAAAGCACTTTAAGCGAGGAGGAGG CTACTGAAGTTAATACCTTCAGATAGTGGACGTTACTCGCAGAATAAGCACCGG
CTAACTCTGT.CTAACTCTGT.
Nustatyta, jog geno seka 99,94 % sutampa su laboratorijoje naudojamoje duomenų bazėje esančia A. calcoaceticus 16S rRNR geno seka. Rūšies nustatymas patvirtino, jog mūsų išskirta bakterija yra nepatogeninė ir tinkama naudojimui dirvožemio bioremediacijoje.The gene sequence was found to be 99.94% identical to the A. calcoaceticus 16S rRNA gene sequence found in the laboratory database. Species identification confirmed that the bacterium we isolated was non-pathogenic and suitable for use in soil bioremediation.
A. calcoaceticus BT 8 biopreparato paruošimasPreparation of A. calcoaceticus BT 8 biopreparation
Norint užtikrinti, kad A. calcoaceticus BT8 bus veiksmingas lauko sąlygomis, mikroorganizmas kultivuojamas paprastoje mitybinėje terpėje su sumažintu mineralinio azoto kiekiu, aerobinėmis sąlygomis. Auginimo pabaigoje biopreparatas yra paruošiamas užšaldymui -18 °C temperatūroje, pridedant 10 % (pagal tūrį) melasos. Kultūrinis skystis su melasa gerai išmaišomas, išpilstomas ir užšaldomas.To ensure that A. calcoaceticus BT8 will be effective under field conditions, the microorganism is cultured in a simple nutrient medium with reduced mineral nitrogen under aerobic conditions. At the end of cultivation, the biopreparation is prepared for freezing at -18 ° C by adding 10% (v / v) molasses. Mix the culture liquid with molasses well, dispense and freeze.
Biopreparato panaudojimo pavyzdžiaiExamples of use of a biopreparation
Čia nurodomi bakterinio preparato panaudojimo pavyzdžiai. Išradimas nėra ribojamas šiais pavyzdžiais.Examples of the use of the bacterial preparation are given here. The invention is not limited to the following examples.
pavyzdysexample
Išaugintas ir užšaldytas A. calcoaceticus BT8 preparatas laboratorinėmis sąlygomis buvo atšildytas, atskiestas su vandeniu papildytu mineralinėmis trąšomis (P, K) ir po 50 ml išpilstytas į 1 L tūrio indus su nafta užterštu gruntu. Indai buvo laikomi kambario temperatūroje (~22 °C) mėnesį laiko. Kiekvieną savaitę gruntas buvo permaišomas ir papildomai užpilami skirtingi kiekiai biopreparato bei vandens. Kas savaitę buvo matuojamas angliavandenilių kiekis grunte. Eksperimento sąlygos pateikiamos 2 lentelėje.The cultivated and frozen preparation of A. calcoaceticus BT8 was thawed under laboratory conditions, diluted with water-supplemented mineral fertilizer (P, K) and poured into 50 ml 1 L containers containing oil-contaminated soil. The dishes were stored at room temperature (~ 22 ° C) for one month. Each week, the soil was mixed and additional amounts of biopreparation and water were added. Weekly soil hydrocarbons were measured. The experimental conditions are shown in Table 2.
lentelėtable
pavyzdysexample
Išaugintas ir užšaldytas A. calcoaceticus BT8 preparatas laboratorinėmis sąlygomis buvo atšildytas, atskiestas su vandeniu papildytu mineralinėmis trąšomis (N, P, K) ir po 50 ml buvo išpilstytas į 1 L tūrio indus su nafta užterštu gruntu. Indai buvo laikomi kambario temperatūroje (~22 °C) mėnesį laiko. Kiekvieną savaitę gruntas buvo permaišomas ir papildomai užpilami skirtingi kiekiai biopreparato bei vandens. Kas savaitę buvo matuojamas angliavandenilių kiekis grunte. Eksperimento sąlygos pateikiamos 3 lentelėje.The cultivated and frozen preparation of A. calcoaceticus BT8 was thawed under laboratory conditions, diluted with water-supplemented mineral fertilizer (N, P, K) and placed in 50 ml 1 L containers containing oil-contaminated soil. The dishes were stored at room temperature (~ 22 ° C) for one month. Each week, the soil was mixed and additional amounts of biopreparation and water were added. Weekly soil hydrocarbons were measured. The experimental conditions are shown in Table 3.
Šio eksperimento metu nustatyta, kad į terpę pridėjus papildomą azoto šaltinį angliavandenilių skaidymas pasikeitė nežymiai. Pirmo ir antro pavyzdžių rezultatų palyginimas pateikiamas 1 pav.In this experiment, it was found that the addition of nitrogen to the medium resulted in a slight change in hydrocarbon decomposition. A comparison of the results of the first and second examples is presented in Fig. 1.
lentelėtable
pavyzdysexample
Išaugintas ir užšaldytas A. calcoaceticus BT8 preparatas prieš naudojimą buvo atšildytas ir po 1 L buvo išpilstytas ant 4 m2 ploto dirvos, kuri buvo užteršta naftos produktais (189 g/kg). Preparatas buvo skiedžiamas su mineralinėmis trąšomis (P, K, N) papildytu vandeniu santykiu 1:20. Azoto kiekis mineralinių trąšų mišinyje buvo sumažintas iki 50 mg/kg užteršto grunto. Pusė praskiesto biopreparato buvo išpurškiama ant ~30 cm sluoksnio storio sukasto grunto, po išpurškimo gruntas vėl sukasamas ir išpurškiama antra biopreparato dalis. Kiekvieną savaitę gruntas buvo permaišomas ir papildomai užpilama biopreparato bei vandens. Kas savaitę buvo matuojamas angliavandenilių kiekis grunte. Lauko eksperimentas truko 2 mėn. Eksperimento sąlygos pateikiamos 4 lentelėje.The cultivated and frozen preparation of A. calcoaceticus BT8 was thawed before use and after 1 L was applied to 4 m 2 soil contaminated with oil (189 g / kg). The preparation was diluted 1:20 with mineral fertilizers (P, K, N) and water. The nitrogen content of the mineral fertilizer mixture was reduced to 50 mg / kg of contaminated soil. Half of the diluted biopreparation was sprayed on the rotated soil with a layer thickness of ~ 30 cm, after the application the soil was rotated again and the second part of the biopreparation was sprayed. Each week the soil was remixed and biopreparation and water were added. Weekly soil hydrocarbons were measured. The field experiment lasted 2 months. The experimental conditions are shown in Table 4.
lentelėtable
Šis eksperimentas parodė jog, naudojant mūsų išradimą, efektyviam angliavandenilių skaidymui lauko sąlygomis reikalingi mažesni azoto trąšų kiekiai.This experiment has shown that, according to our invention, smaller amounts of nitrogen fertilizers are required for efficient hydrocarbon decomposition under field conditions.
Optimalios mūsų sukurto bakterinio preparato veikimo sąlygos bei paaiškinimai pateikti 5 lentelėje.The optimal operating conditions and explanations of the bacterial preparation we have developed are presented in Table 5.
Lentelė. Optimalūs bakterinio preparato parametrai.Table. Optimal parameters of bacterial preparation.
LiteratūraLiterature
1. Abdelhaleem, Desouky. 2003. Acinetobacter: Environmental and Biotechnological Applications. T. 2.1. Abdelhaleem, Desouky. 2003. Acinetobacter: Environmental and Biotechnological Applications. T. 2.
2. Barathi, S., ir N. Vasudevan. 2001. „Utilization of Petroleum Hydrocarbons by Pseudomonas Fluorescens Isolated from a Petroleum-Contaminated Soil.“ Environment International 26 (5-6): 413-16.2. Barathi, S., and N. Vasudevan. 2001. "Utilization of Petroleum Hydrocarbons by Pseudomonas Fluorescens Isolated from a Petroleum-Contaminated Soil." Environment International 26 (5-6): 413-16.
3. Eriksson, M., G. Dalhammar, ir A. K. Borg-Karlson. 1999. „Aerobic Degradation of a Hydrocarbon Mixture in Natūrai Uncontaminated Potting Soil by Indigenous Microorganisms at 20 Degrees C and 6 Degrees C.“ Applied Microbiology and Biotechnology 51 (4): 532-35.3. Eriksson, M., G. Dalhammar, and A. K. Borg-Karlson. 1999. "Aerobic Degradation of a Hydrocarbon Mixture in Nature Uncontaminated Potting Soil by Indigenous Microorganisms at 20 Degrees C and 6 Degrees C." Applied Microbiology and Biotechnology 51 (4): 532-35.
4. Gutnick, DL, EA Bayer, C Rubinovitz, O Pines, Y Shabtai, ir E Rosenberg. 1980. „Emulsan production in Acinetobacter RAG-1“. Adv. Biotechnol 11: 455-59.4. Gutnick, DL, EA Bayer, C Rubinovitz, O Pines, Y Shabtai, and E Rosenberg. 1980. Emulsan production in Acinetobacter RAG-1. Adv. Biotechnol 11: 455-59.
5. Hanson, K. G., A. Nigam, M. Kapadia, ir A. J. Desai. 1997. „Bioremediation of Crude Oil Contamination with Acinetobacter Sp. A3.“ Current Microbiology 35 (3): 191-93.5. Hanson, K. G., A. Nigam, M. Kapadia, and A. J. Desai. 1997. Bioremediation of Crude Oil Contamination with Acinetobacter Sp. A3. ”Current Microbiology 35 (3): 191-93.
6. Jain, PK, VK Gupta, RK Gaur, M Lowry, DP Jaroli, ir UK Chauhan. 2011. „Bioremediation of petroleum oil contaminated soil and water“. Research journal of environmental toxicology 5(1): 1.6. Jain, PK, VK Gupta, RK Gaur, M Lowry, DP Jaroli, and UK Chauhan. 2011. Bioremediation of petroleum oil contaminated soil and water. Research journal of environmental toxicology 5 (1): 1.
7. Margesin, R., ir F. Schinner. 2001. „Biodegradation and Bioremediation of Hydrocarbons in Extreme Environments.“ Applied Microbiology and Biotechnology 56 (5-6): 650-63.7. Margesin, R., and F. Schinner. 2001. "Biodegradation and Bioremediation of Hydrocarbons in Extreme Environments." Applied Microbiology and Biotechnology 56 (5-6): 650-63.
8. Mishra, S., J. Jyot, R. C. Kuhad, ir B. Lai. 2001. „Evaluation of Inoculum8. Mishra, S., J. Jyot, R. C. Kuhad, and B. Lai. 2001. Evaluation of Inoculum
Addition to Stimulate in Sitų Bioremediation of Oily-Sludge-Contaminated Soil.“ Applied and Environmental Microbiology 67 (4): 1675-81.Addition to Stimulate in Sith Bioremediation of Oily-Sludge-Contaminated Soil. ”Applied and Environmental Microbiology 67 (4): 1675-81.
doi:10.1128/AEM.67.4.1675-1681.2001.doi: 10.1128 / AEM.67.4.1675-1681.2001.
9. Mohsenzadeh, Fariba, Abdolkarim Chehregani Rad, ir Mehrangiz Akbari. 2012. „Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils“. Iranian Journal of Environmental Health Science & Engineering 9 (1): 26. doi: 10.1186/1735-2746-9-26.9. Mohsenzadeh, Fariba, Abdolkarim Chehregani Rad, and Mehrangiz Akbari. 2012. "Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for petroleum-polluted soils". Iranian Journal of Environmental Health Science & Engineering 9 (1): 26. doi: 10.1186 / 1735-2746-9-26.
10. Toren, Amir, Elisha Orr, Yossi Paitan, Eliora Z. Ron, ir Eugene Rosenberg. 2002. „The Active Component of the Bioemulsifier Alasan from Acinetobacter Radioresistens KA53 Is an OmpA-like Protein.“ Journal of Bacteriology 184 (1): 165— 70.10. Toren, Amir, Elisha Orr, Yossi Paitan, Eliora Z. Ron, and Eugene Rosenberg. 2002. "The Active Component of the Bioemulsifier Alasan from Acinetobacter Radioresistens KA53 Is An OmpA-Like Protein." Journal of Bacteriology 184 (1): 165-70.
11. VValzer, Gil, Eugene Rosenberg, ir Eliora Z. Ron. 2006. „The Acinetobacter Outer Membrane Protein A (OmpA) Is a Secreted Emulsifier.“ Environmental Microbiology 8 (6): 1026-32. doi:10.1111/j.1462-2920.2006.00994.x.11.Valzer, Gil, Eugene Rosenberg, and Eliora Z. Ron. 2006. "The Acinetobacter Outer Membrane Protein A (OmpA) is a Secreted Emulsifier." Environmental Microbiology 8 (6): 1026-32. doi: 10.1111 / j.1462-2920.2006.00994.x.
12. Wang, Z., M. Fingas, S. Blenkinsopp, G. Sergy, M. Landriault, L. Sigouin, J. Foght, K. Semple, ir D. W. VVestlake. 1998. „Comparison of Oil Composition Changes due to Biodegradation and Physical VVeathering in Different Oils.“ Journal of Chromatography. A 809 (1-2): 89-107.12. Wang, Z., M. Fing, S. Blenkinsopp, G. Sergy, M. Landriault, L. Sigouin, J. Foght, K. Semple, and D. W. Westlake. 1998. "Comparison of Oil Composition Changes Due to Biodegradation and Physical Wetting in Different Oils." Journal of Chromatography. A 809 (1-2): 89-107.
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2017079A LT6625B (en) | 2017-10-13 | 2017-10-13 | Bacterial preparation for oxydation of oil products and their use |
PCT/IB2018/050306 WO2019073308A1 (en) | 2017-10-13 | 2018-01-18 | Microorganism capable of oxidizing petroleum and its products and the technology for its use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2017079A LT6625B (en) | 2017-10-13 | 2017-10-13 | Bacterial preparation for oxydation of oil products and their use |
Publications (2)
Publication Number | Publication Date |
---|---|
LT2017079A LT2017079A (en) | 2019-04-25 |
LT6625B true LT6625B (en) | 2019-05-27 |
Family
ID=61283265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LT2017079A LT6625B (en) | 2017-10-13 | 2017-10-13 | Bacterial preparation for oxydation of oil products and their use |
Country Status (2)
Country | Link |
---|---|
LT (1) | LT6625B (en) |
WO (1) | WO2019073308A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT7087B (en) | 2024-02-07 | 2024-09-10 | Gamtos Tyrimų Centras | Biopreparation for clening soil from oil contaminants and cleaning method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110713947A (en) * | 2019-10-30 | 2020-01-21 | 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 | Compound microbial agent for repairing petroleum pollution and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5715477B2 (en) * | 2011-04-25 | 2015-05-07 | 石川県 | NOVEL MICROORGANISM HAVING FUEL OIL RESOLUTION, ENVIRONMENT PURIFYING AGENT, AND ENVIRONMENT PURIFYING METHOD USING THE SAME |
CN102899381A (en) * | 2012-10-11 | 2013-01-30 | 天津大学 | Method for studying synergistic effect of surfactant producing bacteria on petroleum degradation |
-
2017
- 2017-10-13 LT LT2017079A patent/LT6625B/en not_active IP Right Cessation
-
2018
- 2018-01-18 WO PCT/IB2018/050306 patent/WO2019073308A1/en active Application Filing
Non-Patent Citations (12)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT7087B (en) | 2024-02-07 | 2024-09-10 | Gamtos Tyrimų Centras | Biopreparation for clening soil from oil contaminants and cleaning method |
Also Published As
Publication number | Publication date |
---|---|
WO2019073308A1 (en) | 2019-04-18 |
LT2017079A (en) | 2019-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK3104988T3 (en) | BIOCATALYTIC COMPOSITION FOR SUBSTRATE CONVERSION | |
Agamuthu et al. | Bioremediation of hydrocarbon contaminated soil using selected organic wastes | |
US20150352610A1 (en) | Microbial compositions for hydrocarbon remediation and methods of use thereof | |
Chen et al. | Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil | |
CN102580998A (en) | Method for preparing solid repair agent by using protein peptide and repairing soil by using soil repair agent | |
Tejada et al. | Application of biostimulants in benzo (a) pyrene polluted soils: short-time effects on soil biochemical properties | |
Acuña et al. | Effect of nitrogen deficiency in the biodegradation of aliphatic and aromatic hydrocarbons in Patagonian contaminated soil | |
CN113215033B (en) | Sulfonamide antibiotic degrading bacteria and application thereof | |
KR20140108765A (en) | Composition for removing an ammonia and a bad smell and method for removing an ammonia and a bad smell using the same | |
LT6625B (en) | Bacterial preparation for oxydation of oil products and their use | |
KR101167836B1 (en) | Soil microorganisms solubilizing insoluble-phosphate in soil and composition of soil treatment comprising it | |
EP1352694A2 (en) | Compositions for the bioremediation of soils contaminated with hydrocarbons and/or solvents and/or organic compounds | |
WO2020022933A1 (en) | Method of remediation of contaminated earth | |
RU2502569C1 (en) | Method of removing hydrocarbon contaminants from soils | |
Shokrollahzadeh et al. | Characterization and kinetic study of PAH-degrading Sphingopyxis ummariensis bacteria isolated from a petrochemical wastewater treatment plant | |
Sivasubramanian et al. | Evaluation of phenol degradation by effective microorganism (EM) technology with EM-1 | |
Echeverria et al. | Composting wet olive husks with a starter based on oil-depleted husks enhances compost humification | |
Jabbar et al. | Bioremediation of soil contaminated with diesel using biopile system | |
RU2529735C1 (en) | Method of producing biopreparation for cleaning and restoring fertility of soil contaminated with petroleum products | |
Mehmood et al. | Enzymatic bioremediation of endosulfan in soil using ligninolytic extract of spent mushroom compost of Pleurotus ostreatus | |
RU2501852C2 (en) | Preparation for cleaning of soil from oil and oil products | |
JP2002238551A (en) | Novel strain having function for decomposing volatile aromatic hydrocarbon and its application | |
Bara et al. | Review on bioremediation of methyl parathion contaminated agricultural soil by microorganisms | |
Pozo et al. | Linear alkylbenzene sulfonates (LAS) on soil microbial activity | |
Meeboon et al. | Evaluation of enhanced bioremediation for soils contaminated with used lubricating oil in soil slurry system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
BB1A | Patent application published |
Effective date: 20190425 |
|
FG9A | Patent granted |
Effective date: 20190527 |
|
MM9A | Lapsed patents |
Effective date: 20191013 |