LT5895B - Method for extraction of hydrogen from water - Google Patents

Method for extraction of hydrogen from water Download PDF

Info

Publication number
LT5895B
LT5895B LT2011047A LT2011047A LT5895B LT 5895 B LT5895 B LT 5895B LT 2011047 A LT2011047 A LT 2011047A LT 2011047 A LT2011047 A LT 2011047A LT 5895 B LT5895 B LT 5895B
Authority
LT
Lithuania
Prior art keywords
water
nanoparticles
atoms
membrane
hydrogen
Prior art date
Application number
LT2011047A
Other languages
Lithuanian (lt)
Other versions
LT2011047A (en
Inventor
Darius Milčius
Liudas Pranevičius
Original Assignee
Lietuvos Energetikos Institutas
Vytauto Didžiojo universitetas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lietuvos Energetikos Institutas, Vytauto Didžiojo universitetas filed Critical Lietuvos Energetikos Institutas
Priority to LT2011047A priority Critical patent/LT5895B/en
Publication of LT2011047A publication Critical patent/LT2011047A/en
Publication of LT5895B publication Critical patent/LT5895B/en

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Invention relates to hydrogen energy technologies and, in particular to hydrogen from water extraction method. The method of the invention characterized in that the hydrogen produced by decomposition of water molecules into H and O atoms by energetic water nanodrops insertion into membranes. This is accomplished by forcing water into water vapor, and water vapor - into the water nanodrops, which continue electrified, accelerated in an electric field and inserted into the surface layers of the membrane that selectively let in hydrogen atoms. Energetic water nanodrops, which kinetic energy exceeds the total communication energy between the atoms that make up nanodrops, resolve into H and O atoms on the surface of the membrane. H atoms have passed through the membrane, forming H2 gas.

Description

Išradimas skirtas vandenilio gavybai iš vandens būdui, konkrečiau - vandenilio išskyrimui iš vandens nanolašų (klasterių, sudarytų iš vandens molekulių), prieš tai atlikus jų jonizaciją greitinimą elektriniame lauke ir balistinį įterpimą į membranos paviršinį sluoksnį.The present invention relates to a process for the extraction of hydrogen from water, more specifically hydrogen release from water nanoparticles (clusters consisting of water molecules), followed by ionization acceleration in an electric field and ballistic insertion in the membrane surface layer.

TECHNIKOS LYGISTECHNICAL LEVEL

Procesai, susiję su vandenilio gavyba, saugojimu ir jo vidinės energijos panaudojimu elektros energijai gauti, yra intensyviai tiriami jau daugelį metą tačiau, nepaisant to, vandenilio energijos technologijos, skirtos elektrai gaminti, šiandien dar negali konkuruoti su pigiomis technologijomis, naudojančiomis angliavandenilinius junginius. Lentelėje 1 pateikiame palyginimą šiuo metu naudojamų ir tiriamų technologijų vandeniliui gauti pagal jų efektyvumą. Priminsime, kad technologijos efektyvumas skaičiuotas kaip santykis energijos, gaunamos iš pagaminto vandenilio, su energija, kuri sunaudojama jam gauti, išreikšta procentais.The processes involved in the extraction, storage, and utilization of its internal energy to generate hydrogen have been the subject of intense research for many years, but despite this, hydrogen power technologies for power generation are not yet able to compete with low-cost technologies using hydrocarbon compounds. In Table 1, we present a comparison of hydrogen technologies currently in use and under investigation for their efficiency. As a reminder, the efficiency of a technology is calculated as the ratio of the energy produced from hydrogen produced to the energy consumed to produce it, expressed as a percentage.

lentelė. Skirtingų vandenilio gavybos technologijų efektyvumastable. Efficiency of different hydrogen production technologies

Gavybos technologija Extraction technology Energijos efektyvumas Energy efficiency Metano dujų reformingas, Methane gas reformer, 83% 83% Metano dalinė oksidacija Partial oxidation of methane 70-80% 70-80% Autoterminis reformingas Autothermal reformer 71-74% 71-74% Anglies dujofikacija Coal gasification 63% 63% Tiesioginė biomasės dujofikacija Direct gasification of biomass 40-50% 40-50% Elektrolizė (naudojant atomines elektrines) Electrolysis (using nuclear power plants) 45-55% 45-55% Fotokatalytinis vandens skaldymas Photocatalytic water splitting 10-14% 10-14%

Daugelyje pasaulio laboratorijų plačiai tiriama žematemperatūrinė vandens elektrolizė, kurios metu vandenilio ir deguonies atomai susidaro disociacijos būdu vandens tirpale ir išsiskyrusios dujos surenkamos katodo ir anodo elektrodų srityse. Įskaičiuojant energiją reikalingą elektrolizei vykti, vandenilio išskyrimo iš vandens elektrolizės būdu efektyvumas svyruoja intervale 25-55 %.Low-temperature water electrolysis, in which hydrogen and oxygen atoms are formed by dissociation in aqueous solution and the gas released is collected in the cathode and anode electrodes, is widely studied in many laboratories around the world. Including the energy required for electrolysis, the efficiency of hydrogen removal from water by electrolysis ranges from 25% to 55%.

Vandens molekules bandoma skaldyti į H ir O atomus kitais įvairiais būdais ir metodais. Paskaičiuota, kad energija, reikalinga vandens molekulei suskaldyti į 2H ir O atomus, yra lygi maždaug 10 eV. Ji gaunama, kaitinant vandenį, generuojant vandenyje intensyvias mechanines bangas bei deformacijas, apspinduliuojant vandenį radiobangomis, fotonais, elektronais ir kitomis dalelėmis. Pagrindiniai procesai, inicijuojantys vandens molekulių skaldymą yra šie:Water molecules are attempted to be cleaved into H and O atoms by various other means and methods. The energy required to break up the water molecule into 2H and O atoms is estimated to be about 10 eV. It is obtained by heating water, generating intense mechanical waves and deformations in the water, irradiating water with radio waves, photons, electrons and other particles. The main processes that initiate the breakdown of water molecules are:

- termolizė - tai vandens skaldymas naudojant aukštas temperatūras (3000 K ir daugiau), tame tarpe plazmoje temperatūrų intervale 10000-12000 K;- thermolysis is the decomposition of water at high temperatures (3000 K and above), including plasma in the temperature range of 10000 to 12000 K;

- termocheminiai procesai, tame tarpe fotocheminiai, fotoelektrocheminiai, fotokatalitiniai ir kiti, kurie papildomai naudoja įvairius cheminius reagentus, katalizatorius, elektromagnetines bangas ir elektroninius procesus elektrolite. Laboratorinėse sąlygose termocheminių procesų efektyvumas siekia 38-40 %.- thermochemical processes, including photochemical, photoelectrochemical, photocatalytic and others, which additionally use various chemical reagents, catalysts, electromagnetic waves and electronic processes in the electrolyte. Under laboratory conditions, the efficiency of thermochemical processes reaches 38-40%.

- radiolizė - naudoja radijo bangas ir γ-spindulius inicijuoti procesų seką kurių rezultate vandenilis atskiriamas iš vandens;- Radiolysis - uses radio waves and γ-rays to initiate a sequence of processes that result in the removal of hydrogen from water;

- impulsinė fotolizė - {angį. flash photolysis), kurios metu trumpi šviesos impulsai inicijuoja chemines reakcijas, išskiriančias vandenilį;- pulsed photolysis - {carbon. flash photolysis) in which short pulses of light initiate chemical reactions that emit hydrogen;

- akustinė liuminescencija - {angį. sonoluminiscence), kuri atsiranda dėl akustinės kavitacijos, kai garso bangomis skystyje generuojami maži dujų burbuliukai, kurie staigaus išnykimo metu formuoja aukštas lokalines temperatūras ir spinduliavimą- acoustic luminescence - {carbon. sonoluminescence), which results from acoustic cavitation when sound waves generate small gas bubbles in a liquid, which, during sudden disappearance, produce high local temperatures and radiation

Visų išvardintų metodų ir būdų esmė susiveda į paiešką naujų fizikinių-cheminių poveikių, kurie atskiria vandenilį iš vandens molekulės.The essence of all of the above methods and techniques is the search for new physico-chemical effects that separate hydrogen from the water molecule.

Literatūroje yra daug patentų ir tyrimo darbą kuriuose vandenilis yra išskiriamas iš vandens garą dažniausiai iš plazmos vandens garuose:There are many patents and research papers in the literature where hydrogen is released from water vapor, usually from plasma water vapor:

1. J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catalysis Today, 139 tomas, leidinys 4, 2009-01-30, psl. 244-260;1. J.D. Holladay, J. Hu, D.L. King, Y. Wang, An Overview of Hydrogen Production Technologies, Catalysis Today, Volume 139, Issue 4, 2009-01-30, p. 244-260;

2. An Introduction to Energy Sources: http://nccr.iitm.ac.in/ebook%20final.pdf (eknyga);2. An Introduction to Energy Sources: http://nccr.iitm.ac.in/ebook%20final.pdf (eknyga);

3. Isao Yamada, Noriaki Toyoda, Nano-scale surface modification using gas cluster ion beams - A development history and review of the Japanese nano-technology program, Surface and Coatings Technology, 201 tomas, leidiniai 19-20, 2007-08-05, psl. 85798587;3. Isao Yamada, Noriaki Toyoda, Nano-scale Surface Modification Using Gas Cluster Ion Beams - A Development History and Review of the Japanese Nano-Technology Program, Surface and Coatings Technology, Volume 201, Publications 19-20, 2007-08-05 , p. 85798587;

4. Krull W. A. Jacobson D. C, Sekar K. , Horsky T. N.,WO/2008/128039, Cluster ion implantation for defect engineering.4. Krull W. A. Jacobson D. C, Sekar K., Horsky T. N., WO / 2008/128039, Cluster ion implantation for defect engineering.

5. J. I. Amo W. K. Olander, R, Kaim, US2011065268, Boron Ion Implantation Using Altemative Fluorinated Boron Precursors, and Formation of Large Boron Hydrides for Implanation.5. J. I. Amo W. K. Olander, R, Kaim, US2011065268, Boron Ion Implantation Using Altemative Fluorinated Boron Precursors, and Formation of Large Boron Hydrides for Implanation.

6. J. O. Borland, J. J. Hautala, W. J. Skinner, US7396745, Formation of ultra-shallow junctions by gas-cluster ion irradiation;6. J. O. Borland, J. J. Hautala, W. J. Skinner, US7396745, Formation of ultra-shallow junctions by gas-cluster ion irradiation;

7. M. A. Rosen Advances in hydrogen production by thermochemical water decomposition: A review, Energy, 35 tomas, leidinys 2, 2010 vasaris, psl. 1068-10763;7. M. A. Rosen Advances in Hydrogen Production by Thermochemical Water Decomposition: A Review, Energy, Volume 35, Issue 2, February 2010, p. 1068-10763;

Išvardintuose šaltiniuose paminėti vandenilio gavybos iš vandens būdai, kuomet plazmoje vandens molekulės sąveikauja su plazmos elektronais, kurie su tam tikra tikimybe nutraukia O-H ryšius. Tačiau lieka neišspręsta problema, kaip išskirti vandenilį iš plazmos.The above-mentioned sources mention the methods of extracting hydrogen from water, whereby water molecules in plasma interact with plasma electrons which, with some probability, break O-H bonds. However, the problem of hydrogen release from plasma remains unresolved.

IŠRADIMO ESMĖTHE SUBSTANCE OF THE INVENTION

Šio išradimo tikslas - pasiūlyti vandenilio iš vandens gavybos būdą, kurio metu vandenilis išskiriamas iš vandens dėl balistinės sąveikos energingų vandens molekulių klasterių, sudarančių nanolašus, su membranos atomais. Energingi pagreitinti elektriniame lauke vandens nanolašai savo kinetinę energiją perduoda membranos atomams, inicijuoja jų deformaciją, kaskadinį maišymą ir kolektyvinius atomų svyravimus, kurie formuoja aukštatemperatūrinį lokalizuotą piką, į kurį įterptos vandens molekulės skyla į H ir O atomus.It is an object of the present invention to provide a process for the production of hydrogen from water, whereby hydrogen is released from water due to ballistic interaction of energetic clusters of water molecules forming nanoscale with membrane atoms. Vigorous accelerated electric field water nanoparticles transfer their kinetic energy to membrane atoms, initiating their deformation, cascade mixing, and collective atomic oscillations, which form a high-temperature localized peak into which embedded water molecules decompose into H and O atoms.

Išradimo esmę sudaro procesų seka: iš vandens gaunami vandens garai, kurie staigiai atšaldomi ir susidaro vandens nanolašai (vandens molekulių klasteriai, kurių matmenys neviršija 5 nm), kurie įelektrinami ir greitinami elektriniame lauke iki įgauna kinetinę energiją, kuri kelis kartus viršija energiją, reikalingą tarpatominiams ryšiams H2O molekulėse, sudarančioms nanolašą, nutraukti. Balistinės sąveikos su membrana metu energingi nanolašai skila į H ir O atomus. Membranos medžiaga ir temperatūra parenkama taip, kad H atomai difuzijos būdu juda per membraną ir kitoje jos pusėje formuoja H2 molekules, kurios surenkamos specializuotame rezervuare.SUMMARY OF THE INVENTION The present invention consists of a sequence of processes: water vapor from water, which is rapidly cooled to form water nanoparticles (water molecule clusters up to 5 nm in size) that are electrified and accelerated in an electric field to obtain kinetic energy several times higher than that required for interatomic to break the bonds in the H2O molecules that form the nanoscale. During ballistic interaction with the membrane, energetic nanoparticles decompose into H and O atoms. The membrane material and temperature are chosen such that the H atoms move through the membrane by diffusion and form H2 molecules on the other side, which are collected in a specialized reservoir.

BRĖŽINIŲ FIGŪRŲ APRAŠYMASDESCRIPTION OF THE DRAWING FIGURES

Toliau išradimas bus aprašytas su nuoroda į jį paaiškinančius brėžinius, kuriuose:The invention will now be described with reference to the accompanying drawings, in which:

Fig. 1 yra schema įrenginio, kuriame realizuojamas išradimas;FIG. 1 is a schematic diagram of a device in which the invention is implemented;

Fig. 2 yra schema fazinių virsmų ir procesų sekos, skirtos paaiškinanti vandenilio iš vandens gavybą;FIG. 2 is a schematic diagram of a sequence of phase transformations and processes for explaining the extraction of hydrogen from water;

Fig. 3 yra schema, paaiškinanti vandens nanolašų skilimą į H ir O atomus.FIG. 3 is a diagram explaining the decomposition of water nanoparticles into H and O atoms.

IŠRADIMO REALIZAVIMO APRAŠYMASDESCRIPTION OF THE INVENTION

Šiame išradime pateiktasis vandenilio gavybos iš vandens nanolašų būdas realizuojamas šiais etapais:The process for the production of hydrogen from water nanoparticles according to the present invention is carried out in the following steps:

1. Vanduo 1 (fig. 1) uždarame termostate 2 kaitinimas kaitintuvu 3, kuriame sudaromas sotinančių vandens garų 4 slėgis, pavyzdžiui, 350 K vandens garų slėgis -40 kPa.1. Water 1 (Fig. 1) in a closed thermostat 2 is heated by a heater 3, which produces a saturating water vapor pressure of, for example, 350 K water vapor pressure of -40 kPa.

2. Indo su sotinančiais vandens garais sienelėje padaromos diafragmos (skylutės) 5, kurių skersmuo 20-50 pm ir kurių skaičius gali būti keičiamas nuo kelių dešimčių iki kelių tūkstančių.2. The wall of the vessel with saturated water vapor is provided with diaphragms (holes) 5 having a diameter of 20 to 50 pm, the number of which can be varied from several tens to several thousand.

3. Pro skylutes vandens garai veržiasi į vakuuminę kamerą 6, kuri atsiurbiama iki slėgio 1-0.1 Pa vakuuminiais siurbliais 7. Vandens garai 4, patekę į vakuuminę kamerą 6 pro skylutes 5, plečiasi (adiabatinis procesas), praranda dalį vidinės energijos, atvėsta iki prasideda vandens molekulių homogeninė nukleacija apie kondensacijos centrus ir jų augimas. Taip susiformuoja nanolašai 8, turintys savo sudėtyje kelias dešimtis vandens molekulių, kurių matmenys sudaro 2-5 nm.3. Through the holes, water vapor strikes the vacuum chamber 6, which is vacuumed by 1-0.1 Pa vacuum pumps 7. Water vapor 4, entering the vacuum chamber 6 through the holes 5, expands (adiabatic process), loses part of the internal energy, cools to homogeneous nucleation of water molecules around condensation centers begins and their growth begins. This produces nano-droplets 8 containing several tens of water molecules measuring 2 to 5 nm in size.

4. Tuo pat metu besiformuojantys vandens nanolašai 8 įelektrinami nepriklausomu jonizatoriumi 9 ir tampa įelektrintais vandens nanolašais 10. Nanolašų įelektrinimui atlikti gali būti panaudotas vienas iš plačiai naudojamų metodų: fotojonizacija, elektroninė jonizacija, jonizacija plazmoje ir kiti.4. At the same time, the emerging water nanoparticles 8 are electrolyzed by an independent ionizer 9 and become electrolytic water nanoparticles 10. One of the widely used methods can be used for the electrolysis of the nanoparticles: photoionization, electronic ionization, plasma ionization and others.

5. Įelektrinti nanolašai 10 formuojami elektriniame lauke 11, kuriame jie greitinami ir nukreipiami į membranos 12 paviršių. Dalelių, pasiekusių membranos paviršių, kinetinė energija yra proporcinga potencialų skirtumui tarp taško, kuriame dalelė įgavo krūvį, ir membranos 12 paviršiaus potencialo, kuris prijungiamas prie šaltinio 13 ir yra valdomas plačiame intervale nuo kelių iki kelių dešimčių kilovoltų.5. The electroplated nanoparticles 10 are formed in an electric field 11 where they are accelerated and directed to the surface of the membrane 12. The kinetic energy of the particles reaching the membrane surface is proportional to the difference in potentials between the point where the particle is charged and the surface potential of the membrane 12, which is coupled to source 13 and is controlled over a wide range of several to several tens of kilovolts.

6. Energingi elektriniame lauke pagreitinti nanolašai 10 pasiekia membranos 12 paviršinį sluoksnį, kur jie skyla į H ir O atomus.6. Vigorous electric field accelerated nanoparticles 10 reach the surface layer of membrane 12 where they decompose to H and O atoms.

7. Atskilę H atomai kaupiasi membranos atomų tarpmazgiuose ir pernešami per membraną. Kitoje membranos pusėje susidaro H2 molekulės 13, kurios surenkamos specializuotame rezervuare 14.7. Detached H atoms accumulate in the intermembrane atoms of the membrane and are transported through the membrane. On the other side of the membrane, H2 molecules 13 are formed, which are collected in a specialized reservoir 14.

Fig. 2 pateikta fazinių virsmų ir procesų schema, paaiškinanti vandenilio iš vandens gavybą.FIG. Figure 2 shows a scheme of phase transformations and processes explaining the extraction of hydrogen from water.

Virsmų seka: vanduo 1 (fig. 2) verčiamas į vandens garus 2, vandens garai - į vandens nanolašus 3, vandens nanolašai - į įelektrintus vandens lašus 4, įelektrinti vandens lašai - į energingus vandens lašus 5, energingi vandens lašai skyla į H bei O atomus 6 ir H atomai virsta į H2 molekules 7.Surface sequence: water 1 (fig. 2) is converted to water vapor 2, water vapor to water nanoparticles 3, water nanoparticles to electric water drops 4, electric water drops to vigorous water drops 5, vigorous water drops decompose to H and And atoms 6 and H atoms turn into H2 molecules 7.

Procesų seka: vandens garinimas 8, vandens garų adiabatinis plėtimas ir vandens nanolašų kondensacija 9, nanolašų įelektrinimas 10, nanolašų greitinimas 11, nanolašų skilimas 12 ir H2 surinkimas 13.Process sequence: water evaporation 8, water vapor adiabatic expansion and water nano-drop condensation 9, nano-drop electrolysis 10, nano-drop acceleration 11, nano-drop decomposition 12 and H2 capture 13.

Fig. 3 pateikta schema, paaiškinanti energingų vandens nanolašų skilimą į H ir O atomus. Krintantis energingas nanolašas 1 (fig. 3) sąveikauja su membrana 2, perduoda dalį savo kinetinės energijos membranos atomams, inicijuoja jų svyravimus ir lokalinę deformaciją, dėl ko membranoje formuojasi lokalinis aukštatemperatūrinis pikas, į kurį įterptos vandens molekulės disocijuoja į vandenilio 3 ir deguonies 4 atomus. Nanolašas pilnai skyla į jį sudarančius atomus, praėjus maždaug 20-30 fs.FIG. 3 is a diagram illustrating the decomposition of energetic water nanoparticles into H and O atoms. The falling energetic nanoscale 1 (Fig. 3) interacts with membrane 2, transferring part of its kinetic energy to membrane atoms, initiating their oscillations and local deformation, resulting in the formation of a local high-temperature peak in which membrane molecules dissociate into hydrogen 3 and oxygen 4 atoms. . The nanoscale completely decays into its atoms after about 20-30 fs.

Siūlomas vandenilio gavybos būdas suteikia naujas galimybes vandeniliui iš vandens gauti, nenaudojant brangių katalizatorių, ir garantuoja 100% ekologiškai švarią technologiją.The proposed method of hydrogen production offers new opportunities for hydrogen from water without the use of expensive catalysts and guarantees 100% eco-friendly technology.

Procesas kontroliuojamas ir lengvai automatizuojamas.The process is controlled and easily automated.

Vartotojai turės naują vandenilio iš vandens gavybos technologiją, kuri leis spręsti aktualias vandenilio ekonomikos ir gamtos apsaugos problemas.Consumers will have a new technology for the extraction of hydrogen from water that will address the pressing challenges of the hydrogen economy and nature conservation.

Claims (1)

IŠRADIMO APIBRĖŽTISDEFINITION OF INVENTION 1. Vandenilio gavybos iš vandens būdas, apimantis vandens garinimą vandens molekulių klasterizaciją (nanolašų formavimą), jų įelektrinimą, greitinimą elektriniame lauke ir įterpimą į membranas, besiskiriantis tuo, kadA method for extracting hydrogen from water, comprising evaporating water by clustering (nano-forming) water molecules, electronising, accelerating in an electric field, and incorporating into membranes a) uždarame termostate su 2-5 pm dydžio skylutėmis vienoje iš jo sienelių sudaro vandens sotinančių garų slėgį vandens temperatūros intervale 340-360 K,(a) Provides a water-saturated vapor pressure of 340-360 K in a closed thermostat with 2 to 5 pm holes in one of its walls; b) pro skylutes rezervuaro sienelėje vandens garus paduoda į vakuuminę kamerą kurioje vakuuminiais siurbliais palaiko stacionarų slėgį 1-0.1 Pa, kurioje vandens garai greitai atvėsinami (adiabatinis plėtimasis) ir suformuojami vandens nanolašai, kurių skersmuo neviršija 5 nm,b) feeding water vapor through the holes in the reservoir wall into a vacuum chamber where the vacuum pumps maintain a stationary pressure of 1-0.1 Pa, where the water vapor is rapidly cooled (adiabatic expansion) and water nanoparticles up to 5 nm in diameter are formed; c) vakuuminės kameros zonoje, kurioje formuojasi nanolašai, įelektrina nanolašus, panaudojant išorinius nepriklausomus jonizacijos šaltinius (Rentgeno spindulius, elektronus, plazmą ar kitus), dėl ko nanolašai tampa įelektrintomis nanodalelėmis,(c) electrolyze the nanoparticles in the vacuum chamber zone where the nanoparticles are formed, using external independent sources of ionization (X-rays, electrons, plasma, or other), which result in the nanoparticles becoming electroplated nanoparticles, d) vakuuminės kameros zonoje, kurioje formuojami nanolašai ir vyksta jų įelektrinimas, sukuria elektrinį lauką suformavus 20-60kV potencialų skirtumą tarp sienelės, pro kurią garai patenka į vakuuminę kamerą ir membranos, naudojamos vandeniliui atskirti, paviršiaus,d) generates an electric field in the vacuum chamber zone where the nanoparticles are formed and electrically energized by forming a potential difference of 20-60kV between the wall through which the vapor enters the vacuum chamber and the membrane used to separate hydrogen, e) įelektrintus nanolašus elektriniame lauke greitina ir suteikia kinetinę energiją(e) accelerating and imparting kinetic energy to the electrolytic nanoparticles in an electric field f) energingus nanolašus su energija, kurios pakanka suskaldyti nanolašus įjuos sudarančius H ir O atomus, sąveikoje su membranos atomais suskaldo į H ir O atomus,(f) energetic nanoparticles with energy sufficient to cleave the nanoparticles containing the H and O atoms, and, in interaction with the membrane atoms, decompose into H and O atoms; g) H atomus perneša per membraną kurie kitoje membranos pusėje sudaro H2 molekules.g) H atoms are transported through a membrane that forms H 2 molecules on the other side of the membrane.
LT2011047A 2011-05-18 2011-05-18 Method for extraction of hydrogen from water LT5895B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LT2011047A LT5895B (en) 2011-05-18 2011-05-18 Method for extraction of hydrogen from water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LT2011047A LT5895B (en) 2011-05-18 2011-05-18 Method for extraction of hydrogen from water

Publications (2)

Publication Number Publication Date
LT2011047A LT2011047A (en) 2012-11-26
LT5895B true LT5895B (en) 2013-01-25

Family

ID=47190722

Family Applications (1)

Application Number Title Priority Date Filing Date
LT2011047A LT5895B (en) 2011-05-18 2011-05-18 Method for extraction of hydrogen from water

Country Status (1)

Country Link
LT (1) LT5895B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396745B2 (en) 2004-12-03 2008-07-08 Tel Epion Inc. Formation of ultra-shallow junctions by gas-cluster ion irradiation
WO2008128039A2 (en) 2007-04-11 2008-10-23 Semequip, Inc. Cluster ion implantation for defect engineering
US20110065268A1 (en) 2005-08-30 2011-03-17 Advanced Technology Materials, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396745B2 (en) 2004-12-03 2008-07-08 Tel Epion Inc. Formation of ultra-shallow junctions by gas-cluster ion irradiation
US20110065268A1 (en) 2005-08-30 2011-03-17 Advanced Technology Materials, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
WO2008128039A2 (en) 2007-04-11 2008-10-23 Semequip, Inc. Cluster ion implantation for defect engineering

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I. YAMADA ET AL: "Nano-scale surface modification using gas cluster ion beams", A DEVELOPMENT HISTORY AND REVIEW OF JAPANESE NANO-TECHNOLOGY PROGRAM, pages 8579 - 8587
J.D. HOLLADAY ET AL: "An overview of hydrogen production technologies", CATALYSIS TODAY, pages 244 - 260
Retrieved from the Internet <URL:http://nccr.iitm.ac.in/ebook20final.pdf>

Also Published As

Publication number Publication date
LT2011047A (en) 2012-11-26

Similar Documents

Publication Publication Date Title
RU2718872C2 (en) Water treatment system using device for electrolysis of aqueous solution of alkali and alkaline fuel cell
KR101795465B1 (en) Carbon Capture Utilization System
CN102264948A (en) Methods and apparatus of electrochemical production of carbon monoxide, and uses thereof
CN113795611A (en) Conversion of carbonates to synthesis gas or C2+ products in an electrolytic cell
US20190323132A1 (en) Method for generating clean water, hydrogen, and oxygen from contaminated effluent
US20090038954A1 (en) Electrochemical process and production of novel complex hydrides
US10883182B2 (en) Microfluidic electrolyzer for continuous production and separation of hydrogen/oxygen
Strek et al. Laser induced hydrogen emission from ethanol with dispersed graphene particles
TANGE et al. Effect of pretreatment by sulfuric acid on cellulose decomposition using the in-liquid plasma method
LT5895B (en) Method for extraction of hydrogen from water
EP2812464B1 (en) Method and apparatus for producing gas
KR20210124700A (en) Hydrogen production apparatus using plasma discharge
JPWO2004031450A1 (en) Hydrogen activation device
CN204189882U (en) A kind of generator based on Methanol water hydrogen production system
JP5848533B2 (en) Hydrogen production method
JP2016175820A (en) Method for producing ammonia and compound production device
JP2016191141A (en) Reduction fixing device and reduction fixing method for carbon dioxide
JP6886753B2 (en) Hydrogen generator and hydrogen generation method
JP4677614B2 (en) Sulfuric acid electrolysis hydrogen production method and apparatus
RU2007132092A (en) METHOD FOR HYDROGEN GENERATION AND DEVICE FOR ITS IMPLEMENTATION
US20050178710A1 (en) Substance activating method and device therefor
LT6111B (en) Method of hydrogen extraction from water
JP2010163678A (en) Apparatus for producing methanol with carbon dioxide and water
US20230313387A1 (en) Hydrogen supply system for generating a hydrogen gas from an electrolyte water by water splitting
CN112794283B (en) Hydrogen production and desalination integrated equipment for seawater

Legal Events

Date Code Title Description
FG9A Patent granted

Effective date: 20130125

MM9A Lapsed patents

Effective date: 20130518