LT5895B - Method for extraction of hydrogen from water - Google Patents
Method for extraction of hydrogen from water Download PDFInfo
- Publication number
- LT5895B LT5895B LT2011047A LT2011047A LT5895B LT 5895 B LT5895 B LT 5895B LT 2011047 A LT2011047 A LT 2011047A LT 2011047 A LT2011047 A LT 2011047A LT 5895 B LT5895 B LT 5895B
- Authority
- LT
- Lithuania
- Prior art keywords
- water
- nanoparticles
- atoms
- membrane
- hydrogen
- Prior art date
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
Išradimas skirtas vandenilio gavybai iš vandens būdui, konkrečiau - vandenilio išskyrimui iš vandens nanolašų (klasterių, sudarytų iš vandens molekulių), prieš tai atlikus jų jonizaciją greitinimą elektriniame lauke ir balistinį įterpimą į membranos paviršinį sluoksnį.The present invention relates to a process for the extraction of hydrogen from water, more specifically hydrogen release from water nanoparticles (clusters consisting of water molecules), followed by ionization acceleration in an electric field and ballistic insertion in the membrane surface layer.
TECHNIKOS LYGISTECHNICAL LEVEL
Procesai, susiję su vandenilio gavyba, saugojimu ir jo vidinės energijos panaudojimu elektros energijai gauti, yra intensyviai tiriami jau daugelį metą tačiau, nepaisant to, vandenilio energijos technologijos, skirtos elektrai gaminti, šiandien dar negali konkuruoti su pigiomis technologijomis, naudojančiomis angliavandenilinius junginius. Lentelėje 1 pateikiame palyginimą šiuo metu naudojamų ir tiriamų technologijų vandeniliui gauti pagal jų efektyvumą. Priminsime, kad technologijos efektyvumas skaičiuotas kaip santykis energijos, gaunamos iš pagaminto vandenilio, su energija, kuri sunaudojama jam gauti, išreikšta procentais.The processes involved in the extraction, storage, and utilization of its internal energy to generate hydrogen have been the subject of intense research for many years, but despite this, hydrogen power technologies for power generation are not yet able to compete with low-cost technologies using hydrocarbon compounds. In Table 1, we present a comparison of hydrogen technologies currently in use and under investigation for their efficiency. As a reminder, the efficiency of a technology is calculated as the ratio of the energy produced from hydrogen produced to the energy consumed to produce it, expressed as a percentage.
lentelė. Skirtingų vandenilio gavybos technologijų efektyvumastable. Efficiency of different hydrogen production technologies
Daugelyje pasaulio laboratorijų plačiai tiriama žematemperatūrinė vandens elektrolizė, kurios metu vandenilio ir deguonies atomai susidaro disociacijos būdu vandens tirpale ir išsiskyrusios dujos surenkamos katodo ir anodo elektrodų srityse. Įskaičiuojant energiją reikalingą elektrolizei vykti, vandenilio išskyrimo iš vandens elektrolizės būdu efektyvumas svyruoja intervale 25-55 %.Low-temperature water electrolysis, in which hydrogen and oxygen atoms are formed by dissociation in aqueous solution and the gas released is collected in the cathode and anode electrodes, is widely studied in many laboratories around the world. Including the energy required for electrolysis, the efficiency of hydrogen removal from water by electrolysis ranges from 25% to 55%.
Vandens molekules bandoma skaldyti į H ir O atomus kitais įvairiais būdais ir metodais. Paskaičiuota, kad energija, reikalinga vandens molekulei suskaldyti į 2H ir O atomus, yra lygi maždaug 10 eV. Ji gaunama, kaitinant vandenį, generuojant vandenyje intensyvias mechanines bangas bei deformacijas, apspinduliuojant vandenį radiobangomis, fotonais, elektronais ir kitomis dalelėmis. Pagrindiniai procesai, inicijuojantys vandens molekulių skaldymą yra šie:Water molecules are attempted to be cleaved into H and O atoms by various other means and methods. The energy required to break up the water molecule into 2H and O atoms is estimated to be about 10 eV. It is obtained by heating water, generating intense mechanical waves and deformations in the water, irradiating water with radio waves, photons, electrons and other particles. The main processes that initiate the breakdown of water molecules are:
- termolizė - tai vandens skaldymas naudojant aukštas temperatūras (3000 K ir daugiau), tame tarpe plazmoje temperatūrų intervale 10000-12000 K;- thermolysis is the decomposition of water at high temperatures (3000 K and above), including plasma in the temperature range of 10000 to 12000 K;
- termocheminiai procesai, tame tarpe fotocheminiai, fotoelektrocheminiai, fotokatalitiniai ir kiti, kurie papildomai naudoja įvairius cheminius reagentus, katalizatorius, elektromagnetines bangas ir elektroninius procesus elektrolite. Laboratorinėse sąlygose termocheminių procesų efektyvumas siekia 38-40 %.- thermochemical processes, including photochemical, photoelectrochemical, photocatalytic and others, which additionally use various chemical reagents, catalysts, electromagnetic waves and electronic processes in the electrolyte. Under laboratory conditions, the efficiency of thermochemical processes reaches 38-40%.
- radiolizė - naudoja radijo bangas ir γ-spindulius inicijuoti procesų seką kurių rezultate vandenilis atskiriamas iš vandens;- Radiolysis - uses radio waves and γ-rays to initiate a sequence of processes that result in the removal of hydrogen from water;
- impulsinė fotolizė - {angį. flash photolysis), kurios metu trumpi šviesos impulsai inicijuoja chemines reakcijas, išskiriančias vandenilį;- pulsed photolysis - {carbon. flash photolysis) in which short pulses of light initiate chemical reactions that emit hydrogen;
- akustinė liuminescencija - {angį. sonoluminiscence), kuri atsiranda dėl akustinės kavitacijos, kai garso bangomis skystyje generuojami maži dujų burbuliukai, kurie staigaus išnykimo metu formuoja aukštas lokalines temperatūras ir spinduliavimą- acoustic luminescence - {carbon. sonoluminescence), which results from acoustic cavitation when sound waves generate small gas bubbles in a liquid, which, during sudden disappearance, produce high local temperatures and radiation
Visų išvardintų metodų ir būdų esmė susiveda į paiešką naujų fizikinių-cheminių poveikių, kurie atskiria vandenilį iš vandens molekulės.The essence of all of the above methods and techniques is the search for new physico-chemical effects that separate hydrogen from the water molecule.
Literatūroje yra daug patentų ir tyrimo darbą kuriuose vandenilis yra išskiriamas iš vandens garą dažniausiai iš plazmos vandens garuose:There are many patents and research papers in the literature where hydrogen is released from water vapor, usually from plasma water vapor:
1. J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catalysis Today, 139 tomas, leidinys 4, 2009-01-30, psl. 244-260;1. J.D. Holladay, J. Hu, D.L. King, Y. Wang, An Overview of Hydrogen Production Technologies, Catalysis Today, Volume 139, Issue 4, 2009-01-30, p. 244-260;
2. An Introduction to Energy Sources: http://nccr.iitm.ac.in/ebook%20final.pdf (eknyga);2. An Introduction to Energy Sources: http://nccr.iitm.ac.in/ebook%20final.pdf (eknyga);
3. Isao Yamada, Noriaki Toyoda, Nano-scale surface modification using gas cluster ion beams - A development history and review of the Japanese nano-technology program, Surface and Coatings Technology, 201 tomas, leidiniai 19-20, 2007-08-05, psl. 85798587;3. Isao Yamada, Noriaki Toyoda, Nano-scale Surface Modification Using Gas Cluster Ion Beams - A Development History and Review of the Japanese Nano-Technology Program, Surface and Coatings Technology, Volume 201, Publications 19-20, 2007-08-05 , p. 85798587;
4. Krull W. A. Jacobson D. C, Sekar K. , Horsky T. N.,WO/2008/128039, Cluster ion implantation for defect engineering.4. Krull W. A. Jacobson D. C, Sekar K., Horsky T. N., WO / 2008/128039, Cluster ion implantation for defect engineering.
5. J. I. Amo W. K. Olander, R, Kaim, US2011065268, Boron Ion Implantation Using Altemative Fluorinated Boron Precursors, and Formation of Large Boron Hydrides for Implanation.5. J. I. Amo W. K. Olander, R, Kaim, US2011065268, Boron Ion Implantation Using Altemative Fluorinated Boron Precursors, and Formation of Large Boron Hydrides for Implanation.
6. J. O. Borland, J. J. Hautala, W. J. Skinner, US7396745, Formation of ultra-shallow junctions by gas-cluster ion irradiation;6. J. O. Borland, J. J. Hautala, W. J. Skinner, US7396745, Formation of ultra-shallow junctions by gas-cluster ion irradiation;
7. M. A. Rosen Advances in hydrogen production by thermochemical water decomposition: A review, Energy, 35 tomas, leidinys 2, 2010 vasaris, psl. 1068-10763;7. M. A. Rosen Advances in Hydrogen Production by Thermochemical Water Decomposition: A Review, Energy, Volume 35, Issue 2, February 2010, p. 1068-10763;
Išvardintuose šaltiniuose paminėti vandenilio gavybos iš vandens būdai, kuomet plazmoje vandens molekulės sąveikauja su plazmos elektronais, kurie su tam tikra tikimybe nutraukia O-H ryšius. Tačiau lieka neišspręsta problema, kaip išskirti vandenilį iš plazmos.The above-mentioned sources mention the methods of extracting hydrogen from water, whereby water molecules in plasma interact with plasma electrons which, with some probability, break O-H bonds. However, the problem of hydrogen release from plasma remains unresolved.
IŠRADIMO ESMĖTHE SUBSTANCE OF THE INVENTION
Šio išradimo tikslas - pasiūlyti vandenilio iš vandens gavybos būdą, kurio metu vandenilis išskiriamas iš vandens dėl balistinės sąveikos energingų vandens molekulių klasterių, sudarančių nanolašus, su membranos atomais. Energingi pagreitinti elektriniame lauke vandens nanolašai savo kinetinę energiją perduoda membranos atomams, inicijuoja jų deformaciją, kaskadinį maišymą ir kolektyvinius atomų svyravimus, kurie formuoja aukštatemperatūrinį lokalizuotą piką, į kurį įterptos vandens molekulės skyla į H ir O atomus.It is an object of the present invention to provide a process for the production of hydrogen from water, whereby hydrogen is released from water due to ballistic interaction of energetic clusters of water molecules forming nanoscale with membrane atoms. Vigorous accelerated electric field water nanoparticles transfer their kinetic energy to membrane atoms, initiating their deformation, cascade mixing, and collective atomic oscillations, which form a high-temperature localized peak into which embedded water molecules decompose into H and O atoms.
Išradimo esmę sudaro procesų seka: iš vandens gaunami vandens garai, kurie staigiai atšaldomi ir susidaro vandens nanolašai (vandens molekulių klasteriai, kurių matmenys neviršija 5 nm), kurie įelektrinami ir greitinami elektriniame lauke iki įgauna kinetinę energiją, kuri kelis kartus viršija energiją, reikalingą tarpatominiams ryšiams H2O molekulėse, sudarančioms nanolašą, nutraukti. Balistinės sąveikos su membrana metu energingi nanolašai skila į H ir O atomus. Membranos medžiaga ir temperatūra parenkama taip, kad H atomai difuzijos būdu juda per membraną ir kitoje jos pusėje formuoja H2 molekules, kurios surenkamos specializuotame rezervuare.SUMMARY OF THE INVENTION The present invention consists of a sequence of processes: water vapor from water, which is rapidly cooled to form water nanoparticles (water molecule clusters up to 5 nm in size) that are electrified and accelerated in an electric field to obtain kinetic energy several times higher than that required for interatomic to break the bonds in the H2O molecules that form the nanoscale. During ballistic interaction with the membrane, energetic nanoparticles decompose into H and O atoms. The membrane material and temperature are chosen such that the H atoms move through the membrane by diffusion and form H2 molecules on the other side, which are collected in a specialized reservoir.
BRĖŽINIŲ FIGŪRŲ APRAŠYMASDESCRIPTION OF THE DRAWING FIGURES
Toliau išradimas bus aprašytas su nuoroda į jį paaiškinančius brėžinius, kuriuose:The invention will now be described with reference to the accompanying drawings, in which:
Fig. 1 yra schema įrenginio, kuriame realizuojamas išradimas;FIG. 1 is a schematic diagram of a device in which the invention is implemented;
Fig. 2 yra schema fazinių virsmų ir procesų sekos, skirtos paaiškinanti vandenilio iš vandens gavybą;FIG. 2 is a schematic diagram of a sequence of phase transformations and processes for explaining the extraction of hydrogen from water;
Fig. 3 yra schema, paaiškinanti vandens nanolašų skilimą į H ir O atomus.FIG. 3 is a diagram explaining the decomposition of water nanoparticles into H and O atoms.
IŠRADIMO REALIZAVIMO APRAŠYMASDESCRIPTION OF THE INVENTION
Šiame išradime pateiktasis vandenilio gavybos iš vandens nanolašų būdas realizuojamas šiais etapais:The process for the production of hydrogen from water nanoparticles according to the present invention is carried out in the following steps:
1. Vanduo 1 (fig. 1) uždarame termostate 2 kaitinimas kaitintuvu 3, kuriame sudaromas sotinančių vandens garų 4 slėgis, pavyzdžiui, 350 K vandens garų slėgis -40 kPa.1. Water 1 (Fig. 1) in a closed thermostat 2 is heated by a heater 3, which produces a saturating water vapor pressure of, for example, 350 K water vapor pressure of -40 kPa.
2. Indo su sotinančiais vandens garais sienelėje padaromos diafragmos (skylutės) 5, kurių skersmuo 20-50 pm ir kurių skaičius gali būti keičiamas nuo kelių dešimčių iki kelių tūkstančių.2. The wall of the vessel with saturated water vapor is provided with diaphragms (holes) 5 having a diameter of 20 to 50 pm, the number of which can be varied from several tens to several thousand.
3. Pro skylutes vandens garai veržiasi į vakuuminę kamerą 6, kuri atsiurbiama iki slėgio 1-0.1 Pa vakuuminiais siurbliais 7. Vandens garai 4, patekę į vakuuminę kamerą 6 pro skylutes 5, plečiasi (adiabatinis procesas), praranda dalį vidinės energijos, atvėsta iki prasideda vandens molekulių homogeninė nukleacija apie kondensacijos centrus ir jų augimas. Taip susiformuoja nanolašai 8, turintys savo sudėtyje kelias dešimtis vandens molekulių, kurių matmenys sudaro 2-5 nm.3. Through the holes, water vapor strikes the vacuum chamber 6, which is vacuumed by 1-0.1 Pa vacuum pumps 7. Water vapor 4, entering the vacuum chamber 6 through the holes 5, expands (adiabatic process), loses part of the internal energy, cools to homogeneous nucleation of water molecules around condensation centers begins and their growth begins. This produces nano-droplets 8 containing several tens of water molecules measuring 2 to 5 nm in size.
4. Tuo pat metu besiformuojantys vandens nanolašai 8 įelektrinami nepriklausomu jonizatoriumi 9 ir tampa įelektrintais vandens nanolašais 10. Nanolašų įelektrinimui atlikti gali būti panaudotas vienas iš plačiai naudojamų metodų: fotojonizacija, elektroninė jonizacija, jonizacija plazmoje ir kiti.4. At the same time, the emerging water nanoparticles 8 are electrolyzed by an independent ionizer 9 and become electrolytic water nanoparticles 10. One of the widely used methods can be used for the electrolysis of the nanoparticles: photoionization, electronic ionization, plasma ionization and others.
5. Įelektrinti nanolašai 10 formuojami elektriniame lauke 11, kuriame jie greitinami ir nukreipiami į membranos 12 paviršių. Dalelių, pasiekusių membranos paviršių, kinetinė energija yra proporcinga potencialų skirtumui tarp taško, kuriame dalelė įgavo krūvį, ir membranos 12 paviršiaus potencialo, kuris prijungiamas prie šaltinio 13 ir yra valdomas plačiame intervale nuo kelių iki kelių dešimčių kilovoltų.5. The electroplated nanoparticles 10 are formed in an electric field 11 where they are accelerated and directed to the surface of the membrane 12. The kinetic energy of the particles reaching the membrane surface is proportional to the difference in potentials between the point where the particle is charged and the surface potential of the membrane 12, which is coupled to source 13 and is controlled over a wide range of several to several tens of kilovolts.
6. Energingi elektriniame lauke pagreitinti nanolašai 10 pasiekia membranos 12 paviršinį sluoksnį, kur jie skyla į H ir O atomus.6. Vigorous electric field accelerated nanoparticles 10 reach the surface layer of membrane 12 where they decompose to H and O atoms.
7. Atskilę H atomai kaupiasi membranos atomų tarpmazgiuose ir pernešami per membraną. Kitoje membranos pusėje susidaro H2 molekulės 13, kurios surenkamos specializuotame rezervuare 14.7. Detached H atoms accumulate in the intermembrane atoms of the membrane and are transported through the membrane. On the other side of the membrane, H2 molecules 13 are formed, which are collected in a specialized reservoir 14.
Fig. 2 pateikta fazinių virsmų ir procesų schema, paaiškinanti vandenilio iš vandens gavybą.FIG. Figure 2 shows a scheme of phase transformations and processes explaining the extraction of hydrogen from water.
Virsmų seka: vanduo 1 (fig. 2) verčiamas į vandens garus 2, vandens garai - į vandens nanolašus 3, vandens nanolašai - į įelektrintus vandens lašus 4, įelektrinti vandens lašai - į energingus vandens lašus 5, energingi vandens lašai skyla į H bei O atomus 6 ir H atomai virsta į H2 molekules 7.Surface sequence: water 1 (fig. 2) is converted to water vapor 2, water vapor to water nanoparticles 3, water nanoparticles to electric water drops 4, electric water drops to vigorous water drops 5, vigorous water drops decompose to H and And atoms 6 and H atoms turn into H2 molecules 7.
Procesų seka: vandens garinimas 8, vandens garų adiabatinis plėtimas ir vandens nanolašų kondensacija 9, nanolašų įelektrinimas 10, nanolašų greitinimas 11, nanolašų skilimas 12 ir H2 surinkimas 13.Process sequence: water evaporation 8, water vapor adiabatic expansion and water nano-drop condensation 9, nano-drop electrolysis 10, nano-drop acceleration 11, nano-drop decomposition 12 and H2 capture 13.
Fig. 3 pateikta schema, paaiškinanti energingų vandens nanolašų skilimą į H ir O atomus. Krintantis energingas nanolašas 1 (fig. 3) sąveikauja su membrana 2, perduoda dalį savo kinetinės energijos membranos atomams, inicijuoja jų svyravimus ir lokalinę deformaciją, dėl ko membranoje formuojasi lokalinis aukštatemperatūrinis pikas, į kurį įterptos vandens molekulės disocijuoja į vandenilio 3 ir deguonies 4 atomus. Nanolašas pilnai skyla į jį sudarančius atomus, praėjus maždaug 20-30 fs.FIG. 3 is a diagram illustrating the decomposition of energetic water nanoparticles into H and O atoms. The falling energetic nanoscale 1 (Fig. 3) interacts with membrane 2, transferring part of its kinetic energy to membrane atoms, initiating their oscillations and local deformation, resulting in the formation of a local high-temperature peak in which membrane molecules dissociate into hydrogen 3 and oxygen 4 atoms. . The nanoscale completely decays into its atoms after about 20-30 fs.
Siūlomas vandenilio gavybos būdas suteikia naujas galimybes vandeniliui iš vandens gauti, nenaudojant brangių katalizatorių, ir garantuoja 100% ekologiškai švarią technologiją.The proposed method of hydrogen production offers new opportunities for hydrogen from water without the use of expensive catalysts and guarantees 100% eco-friendly technology.
Procesas kontroliuojamas ir lengvai automatizuojamas.The process is controlled and easily automated.
Vartotojai turės naują vandenilio iš vandens gavybos technologiją, kuri leis spręsti aktualias vandenilio ekonomikos ir gamtos apsaugos problemas.Consumers will have a new technology for the extraction of hydrogen from water that will address the pressing challenges of the hydrogen economy and nature conservation.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2011047A LT5895B (en) | 2011-05-18 | 2011-05-18 | Method for extraction of hydrogen from water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2011047A LT5895B (en) | 2011-05-18 | 2011-05-18 | Method for extraction of hydrogen from water |
Publications (2)
Publication Number | Publication Date |
---|---|
LT2011047A LT2011047A (en) | 2012-11-26 |
LT5895B true LT5895B (en) | 2013-01-25 |
Family
ID=47190722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LT2011047A LT5895B (en) | 2011-05-18 | 2011-05-18 | Method for extraction of hydrogen from water |
Country Status (1)
Country | Link |
---|---|
LT (1) | LT5895B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7396745B2 (en) | 2004-12-03 | 2008-07-08 | Tel Epion Inc. | Formation of ultra-shallow junctions by gas-cluster ion irradiation |
WO2008128039A2 (en) | 2007-04-11 | 2008-10-23 | Semequip, Inc. | Cluster ion implantation for defect engineering |
US20110065268A1 (en) | 2005-08-30 | 2011-03-17 | Advanced Technology Materials, Inc. | Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation |
-
2011
- 2011-05-18 LT LT2011047A patent/LT5895B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7396745B2 (en) | 2004-12-03 | 2008-07-08 | Tel Epion Inc. | Formation of ultra-shallow junctions by gas-cluster ion irradiation |
US20110065268A1 (en) | 2005-08-30 | 2011-03-17 | Advanced Technology Materials, Inc. | Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation |
WO2008128039A2 (en) | 2007-04-11 | 2008-10-23 | Semequip, Inc. | Cluster ion implantation for defect engineering |
Non-Patent Citations (3)
Title |
---|
I. YAMADA ET AL: "Nano-scale surface modification using gas cluster ion beams", A DEVELOPMENT HISTORY AND REVIEW OF JAPANESE NANO-TECHNOLOGY PROGRAM, pages 8579 - 8587 |
J.D. HOLLADAY ET AL: "An overview of hydrogen production technologies", CATALYSIS TODAY, pages 244 - 260 |
Retrieved from the Internet <URL:http://nccr.iitm.ac.in/ebook20final.pdf> |
Also Published As
Publication number | Publication date |
---|---|
LT2011047A (en) | 2012-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2718872C2 (en) | Water treatment system using device for electrolysis of aqueous solution of alkali and alkaline fuel cell | |
KR101795465B1 (en) | Carbon Capture Utilization System | |
CN102264948A (en) | Methods and apparatus of electrochemical production of carbon monoxide, and uses thereof | |
CN113795611A (en) | Conversion of carbonates to synthesis gas or C2+ products in an electrolytic cell | |
US20190323132A1 (en) | Method for generating clean water, hydrogen, and oxygen from contaminated effluent | |
US20090038954A1 (en) | Electrochemical process and production of novel complex hydrides | |
US10883182B2 (en) | Microfluidic electrolyzer for continuous production and separation of hydrogen/oxygen | |
Strek et al. | Laser induced hydrogen emission from ethanol with dispersed graphene particles | |
TANGE et al. | Effect of pretreatment by sulfuric acid on cellulose decomposition using the in-liquid plasma method | |
LT5895B (en) | Method for extraction of hydrogen from water | |
EP2812464B1 (en) | Method and apparatus for producing gas | |
KR20210124700A (en) | Hydrogen production apparatus using plasma discharge | |
JPWO2004031450A1 (en) | Hydrogen activation device | |
CN204189882U (en) | A kind of generator based on Methanol water hydrogen production system | |
JP5848533B2 (en) | Hydrogen production method | |
JP2016175820A (en) | Method for producing ammonia and compound production device | |
JP2016191141A (en) | Reduction fixing device and reduction fixing method for carbon dioxide | |
JP6886753B2 (en) | Hydrogen generator and hydrogen generation method | |
JP4677614B2 (en) | Sulfuric acid electrolysis hydrogen production method and apparatus | |
RU2007132092A (en) | METHOD FOR HYDROGEN GENERATION AND DEVICE FOR ITS IMPLEMENTATION | |
US20050178710A1 (en) | Substance activating method and device therefor | |
LT6111B (en) | Method of hydrogen extraction from water | |
JP2010163678A (en) | Apparatus for producing methanol with carbon dioxide and water | |
US20230313387A1 (en) | Hydrogen supply system for generating a hydrogen gas from an electrolyte water by water splitting | |
CN112794283B (en) | Hydrogen production and desalination integrated equipment for seawater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG9A | Patent granted |
Effective date: 20130125 |
|
MM9A | Lapsed patents |
Effective date: 20130518 |