KR970009238B1 - Method of degree of polymerization using olygomers - Google Patents

Method of degree of polymerization using olygomers Download PDF

Info

Publication number
KR970009238B1
KR970009238B1 KR1019930024835A KR930024835A KR970009238B1 KR 970009238 B1 KR970009238 B1 KR 970009238B1 KR 1019930024835 A KR1019930024835 A KR 1019930024835A KR 930024835 A KR930024835 A KR 930024835A KR 970009238 B1 KR970009238 B1 KR 970009238B1
Authority
KR
South Korea
Prior art keywords
polymerization
monomer
molecular weight
alkyl
oligomer
Prior art date
Application number
KR1019930024835A
Other languages
Korean (ko)
Other versions
KR950014156A (en
Inventor
조창기
김윤석
박태호
Original Assignee
엘지화학 주식회사
성재갑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지화학 주식회사, 성재갑 filed Critical 엘지화학 주식회사
Priority to KR1019930024835A priority Critical patent/KR970009238B1/en
Publication of KR950014156A publication Critical patent/KR950014156A/en
Application granted granted Critical
Publication of KR970009238B1 publication Critical patent/KR970009238B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/36Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by a ketonic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F234/00Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • C08F234/02Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring in a ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated

Abstract

The method is for controling degree of polymerization of polymers, in polymerization reaction of polymerizable monomers in free radicals, by employing oligomers of homo polymer type or random copolymer type as chain transfer agents or termination agents. AIBN of radical initiator is reacted with styrene monomers and methacrylate monomer in ethyl acetate, oligomers of homo polymer type or random copolymer type are added in an amount of 0.01 to 5 mole% based on the quantity of monomers, and reacted at 70 deg. C under the nitrogen atmosphere to provide the method for controling degree of polymerization of polymers.

Description

올리고머를 이용한 고분자의 중합도 조절 방법Method for Controlling Polymerization Using Oligomer

본 발명은 자유라디칼(Free Radical)로 중합 가능한 모노머들의 중합반응에 있어서 homo 중합체형 또는 무작위 공중합체형 올리고머를 사용하여 여러 가지 중합체의 중합도를 조절하는 방법에 관한 것이다.The present invention relates to a method for controlling the degree of polymerization of various polymers by using homo- or random copolymer-type oligomers in the polymerization of free radically polymerizable monomers.

자유라디칼 개시제에 의하여 중합이 개시되는 중합계로부터 중합체가 얻어질 때 여기서 얻어지는 중합체는 사용목적이나 필요에 따라 그 중합도가 조절되어야만 하여야 할 필요가 있다. 특히 어느 특정중합체가 아주 섬세하고 복잡한 금형에서 성형될 필요가 있을 때라든지 아니면 중합체 용액 흐름에 의하여 중합체 사슬들이 배향되는 것을 방지하려고 할 때에 이러한 분자량 조절 문제가 야기된다. 또한 페인트나 도료에서와 같이 높은 고형성분 함량을 유지하면서 저점도를 유지하고자 할 때 중합체의 분자량 조절은 아주 중요한 요소가 된다.When a polymer is obtained from a polymerization system in which polymerization is initiated by a free radical initiator, the polymer obtained here needs to be controlled to have a degree of polymerization depending on the purpose of use and need. This molecular weight control problem arises especially when certain polymers need to be molded in very delicate and complex molds or when trying to prevent polymer chains from being oriented by polymer solution flow. In addition, the molecular weight control of the polymer is very important when trying to maintain a low viscosity while maintaining a high solid content, such as paint or paint.

자유라디칼 개시제에 의하여 중합이 개시되는 중합계는 일반적으로 높은 분자량의 중합체를 생성하는데 이때 분자량은 다음의 식(1)에서 나타내어지는 것 같이 중합에 관계되는 여러 인자들에 의하여 결정된다.Polymerization systems in which polymerization is initiated by free radical initiators generally produce polymers of high molecular weight, where the molecular weight is determined by several factors involved in the polymerization, as shown in the following formula (1).

여기서 kp는 중합화성점의 중합속도상수, kt는 중합정지속도상수, kd는 개시제의 분해속도상수, f는 개시제의 효율, [I]는 개시제의 농도, 그리고 [M]은 모노머의 농도이다. 윗식에서 볼 수 있듯이 중합도를 알맞게 저하시키려면 각각의 인자들을 알맞게 조절해야 한다. 그러나 각 방법은 그 나름대로의 문제점을 갖고 있는데,Where k p is the polymerization rate constant of the polymerization point, k t is the polymerization stop rate constant, k d is the decomposition rate constant of the initiator, f is the efficiency of the initiator, [I] is the concentration of the initiator, and [M] is Concentration. As can be seen from the above equation, to properly reduce the degree of polymerization, each factor must be adjusted appropriately. But each method has its own problems,

1) 개시제의 농도를 농도를 높이는 방법은 다량의 개시제의 소비로 인한 비경제적인 불이익이 따르며,1) Increasing the concentration of the initiator is an uneconomic disadvantage due to the consumption of a large amount of initiator,

2) 중합온도를 높여서 kd를 크게하는 방법이 있는데 이는 높은 중합온도로부터 오는 에너지 손실이 크고,2) There is a method to increase k d by increasing the polymerization temperature, which causes a large energy loss from the high polymerization temperature.

3) 또한 thiol계의 연쇄 이동제를 첨가하여 kt를 크게하는 방법이 있는데 여기에서는 생성된느 thiol 함유 중합체가 내구성이 떨어지고 또한, 황 유도체이기 때문에 악취가 발생할 수 있다는 점이 문제가 된다.3) There is also a method of increasing the k t by adding a thiol-based chain transfer agent, in which a problem is that the produced thiol-containing polymer is inferior in durability and odor may occur because it is a sulfur derivative.

이러한 단점들을 개선하기 위하여 N. S. Enikolopyan 등은 J. Polym. Sci., Chem. Ed., vol. 19, 879(1981)에 cobalt(II) porphyrin 화합물을 이용한 PMMA 및 PS의 분자량 조절에 대한 연구를 발표하였고 A. F. Burczyk 등은 역시 J. Polym. Sci., Chem. Ed., vol. 22, 3255(1984)에 cobalt oximes을 이용한 PMMA 분자량 조절에 대한 연구를 발표하였다. 그 외에도 Carlson 등은 미국 특허 4,526,945에 그리고 A. H. Janowicz 등은 미국 특허 4,680,352에 위와 비슷한 coblat 화합물을 이용하여 styrene 및 methacryl 계통 고분자의 분자량 조절에 대한 연구를 발표하였다. 이러한 cobalt 화합물에 의한 중합계의 장점은 필요로 하는 cobalt 화합물이 소량이라는 점에서 그 잇점이 있다. 그러나, 이들 화합물은 일반적으로 공기중에서 불안정하고 적용될 수 있는 모노머와 개시제의 선택에 제한이 있으며 이들이 중합계에 색깔을 띠게하여 결과적으로 생성된 중합체의 색상에도 영향을 끼칠 수 있다는 단점이 있다. 특히 괴상중합, 현탁중합, 또는 유화중합 등에서 처럼, 중합수율을 높게하여 얻어진 생성물을 전처리 없이 제품과 직접 연결시킬 때는 이들 촉매가 존재할 때 야기되는 열 및 광 안정성, 변색성 또는 색깔 등 때문에 이들 촉매를 제거하여야 하는 필요성이 있음에도 불구하고 이들을 제거하기가 현실적으로 불가능하다는 단점이 있다.To remedy these shortcomings, N. S. Enikolopyan et al. J. Polym. Sci., Chem. Ed., Vol. 19, 879 (1981) published a study on the molecular weight of PMMA and PS using cobalt (II) porphyrin compounds. A. F. Burczyk et al. Sci., Chem. Ed., Vol. 22, 3255 (1984) published a study on PMMA molecular weight control using cobalt oximes. In addition, Carlson et al. In US Pat. No. 4,526,945 and A. H. Janowicz et al. In US Pat. No. 4,680,352 report on the control of the molecular weight of styrene and methacryl-based polymers using similar coblat compounds. The advantage of the polymerization system by such a cobalt compound is that the cobalt compound required is a small amount. However, these compounds are generally unstable in air and have limitations in the selection of monomers and initiators that can be applied and have the disadvantage that they can color the polymerization system and thus affect the color of the resulting polymer. Especially when the products obtained by increasing the polymerization yield are directly connected to the product without pretreatment, such as in bulk polymerization, suspension polymerization or emulsion polymerization, these catalysts are used due to the thermal and light stability, discoloration or color caused by the presence of these catalysts. Although there is a need to remove them, there is a disadvantage that it is practically impossible to remove them.

따라서 본 연구에서는 위와 같은 단점을 개선하기 위하여 예의 연구한 결과 특수한 구조를 가진 올리고모가 연쇄 이동제로 작용한다는 사실을 알게 되었으며 이러한 올리고머를 이용하여 기존에 사용되는 연쇄 이동제의 단점을 극복할 수 있다는 사실을 알았다. 즉 본 발명은 식 (2)에서와 같은 호모중합체형 또는 무작위 공중합체형 분자구조를 가진 것을 연쇄 이동제 또는 정지제로 사용하는 것에 대한 것이다.Therefore, in this study, as a result of intensive studies to improve the above disadvantages, it was found that oligomo having a special structure acts as a chain transfer agent, and that the oligomers can overcome the disadvantages of the conventional chain transfer agents. okay. That is, the present invention relates to the use of a homopolymer-type or random copolymer-type molecular structure as in formula (2) as a chain transfer agent or a stopper.

여기서, Z는 X 또는 Y, X 또는 Y=-COOR, -CN, -CONR'R, R은 탄소수 1~8개의 alky1, 2-hydroxyethyl, allyl, dimethylaminoethyl, glycidyl, Arylalkyl, H중 1종, R', R는 탄소수 1~8개의 alkyl or H, Ar은 phenyl or 탄소수 1~4개의 alkylphenyl, 1+m+n=1-20, m+n=1-20, n=1-20Where Z is X or Y, X or Y = -COOR, -CN, -CONR'R, R is C1-C8 alky1, 2-hydroxyethyl, allyl, dimethylaminoethyl, glycidyl, Arylalkyl, one of H, R ', R is C1-8 alkyl or H, Ar is phenyl or C1-4 alkylphenyl, 1 + m + n = 1-20, m + n = 1-20, n = 1-20

한편 이와 유사한 화합물은 주로 다른 모노머와의 크라프트 중합에 응용되고 있는데 이중 하나의 예로 P. Cacioli 등은 J. Macromol, Sci. chem., A23, 839(1986)에서 MMA 올리고머와 ethyl acrylate, styrene, MMA, An, vinyl acetate 등과의 gragft 공중합을 시도한 예가 있다. 그러나 이들은 분자량의 조절에 대하여는 아무런 언급이 없었다. 또한 H. Tanaka 등은 J. Polymer Sci. Part A : Polymer Chem. vol. 27, 1741(1989)에서 dimethyl 2,2' -azobisiso butylate을 (열)분해시켜 MMA의 다이머 형태(n=1, 1=m=0, Y=-COOCH3)와 dimethyl tetramethylsuccinate을 약 3/7로 생성시켰으며 이 혼합물과 styrene, scrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate, methyl vinyl ketone, methyl isopropenyl ketone 등의 모노머를 공중합하려는 시도를 하였다. 이 시도에서 이들은 혼합물의 존재가 중합 반응속도를 감소시킨다는 사실을 밝혀냈으며 이는 올리고모가 고분자 사슬 끝에 부가될 수 있다는 가능성 때문이라는 것을 제시하였다. 또한 이들은 어느정도의 분자량을 가지는 화합물(2)(1=0, m+n=35, X=Y=--COOCH3)를 합성하여 상기 저분자량의 혼합물 대신에 사용하였다. 그러나 이들이 연구에서도 분자량 조절에 대한 연구는 이루어지지 않았다.Similar compounds are mainly applied to kraft polymerization with other monomers. P. Cacioli et al., J. Macromol, Sci. In Chem., A23, 839 (1986), there is an example of gragft copolymerization of MMA oligomer with ethyl acrylate, styrene, MMA, An, vinyl acetate, and the like. However, they did not comment on the control of molecular weight. In addition, H. Tanaka et al. J. Polymer Sci. Part A: Polymer Chem. vol. 27, 1741 (1989) (thermally) decomposed dimethyl 2,2'-azobisiso butylate to obtain dimer form of MMA (n = 1, 1 = m = 0, Y = -COOCH 3 ) and dimethyl tetramethylsuccinate about 3/7. Attempts were made to copolymerize this mixture with monomers such as styrene, scrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate, methyl vinyl ketone, and methyl isopropenyl ketone. In this attempt, they found that the presence of the mixture reduced the polymerization kinetics, suggesting that it was due to the possibility that oligomo could be added to the polymer chain ends. In addition, they synthesized Compound (2) (1 = 0, m + n = 35, X = Y =-COOCH 3 ) having a certain molecular weight and used instead of the low molecular weight mixture. However, even in these studies, molecular weight control has not been studied.

본 발명에서는 위와 같이 중합속도가 느려진다는 점에 착안하여 그 이유를 예의 연구하고 system을 정련, 정선하여 본 연구 결과를 얻게 되었다. 즉, 일반식 (2)화합물의 순도를 높이고 분자량을 잘 조절한 결과 이들이 여러 가지 비닐 모노머의 중합에서 연쇄 이동제로 작용할 수 있다는 것을 알아냈으며, 또한 사용하는 화합물의 연쇄 이동 효과가 자유라디칼 개시제의 종류에도 거의 무관하다는 것을 알게 되었다.In the present invention, paying attention to the fact that the polymerization rate is lowered as described above, the reason for the study was carefully studied, and the system was refined and selected to obtain the results of this study. That is, as a result of increasing the purity of the compound of the general formula (2) and controlling the molecular weight well, it was found that they can act as a chain transfer agent in the polymerization of various vinyl monomers, and the chain transfer effect of the compound used is a kind of free radical initiator. I found it almost irrelevant.

한편 본 발명에서 사용된 일반식 (2)의 화합물은 주성분이 1+m+n=1-20, n=1-20 등의 혼합물로 소량(중합 대상 모노머에 비하여 5mole % 이하)으로 그 기능을 다할 수 있는 것을 말한다. 즉 소량의 부가에 의하여 대상되는 중합체의 분자량이 Mn=수천-수십만이 되게할 수 있는 것을 말한다. 이때 1+n+m20인 화합들도 화합물의 일부로서 사용될 수 있는데 단위무게당 효율이 주성분에 비하여 낮은 값을 갖는다.On the other hand, the compound of formula (2) used in the present invention has a main component is a mixture of 1 + m + n = 1-20, n = 1-20, etc. in small amounts (5 mole% or less than the monomer to be polymerized) to function Say something you can do. That is to say, by addition of a small amount, the molecular weight of the target polymer can be M n = thousands of thousands. Compounds of 1 + n + m20 may also be used as part of the compound, which has a lower value per unit weight than the main component.

사용되는 radical 개시제는 Azobisisobutyronitrile(AIBN), 2,2' -azobis(2-methyl) butanenitrile, 4,4' -azobis(4-cyanovaleric acid), 2-(t-butylazo)-2-cyanopropane 등 Azo 화합물, t-butylhydroxy-peroxide, benzoyl peroxide, t-butyl peroxide, cumyl peroxide, lauroyl peroxide, cumyl hydroperoxide, t-bytyl peracetate, acetyl peroxide 등의 peroxide, 또는 persulfate 등으로부터 선택된 것 중 어느 것이나 사용할 수 있으며 중합온도에 따라서 그 반감기가 1~4시간 정도의 것이 바람직하고 중합계의 선택에 따른 용해도에 따라서 결정된다.The radical initiators used are Azo compounds such as Azobisisobutyronitrile (AIBN), 2,2'-azobis (2-methyl) butanenitrile, 4,4'-azobis (4-cyanovaleric acid), 2- (t-butylazo) -2-cyanopropane , t-butylhydroxy-peroxide, benzoyl peroxide, t-butyl peroxide, cumyl peroxide, lauroyl peroxide, cumyl hydroperoxide, peroxide such as t-bytyl peracetate, acetyl peroxide, or persulfate. Therefore, the half life is preferably about 1 to 4 hours, and is determined according to the solubility according to the choice of the polymerization system.

본 발명은 또한 괴상 중합, 용액 중합, 현탁 중합, 유화 중합 등 라디칼 중합방법이 적용될 수 있는 어떠한 중합방법에도 적용이 가능하며 사용되는 일반식(2)의 화합물의 연쇄 이동제의 양은 모노머의 양에 대하여 약 0.01~5mole%가 적당하다. 공정은 연속식 또는 batch 식이든 어떠한 방법으로도 수행될 수 있다.The present invention is also applicable to any polymerization method to which radical polymerization methods such as bulk polymerization, solution polymerization, suspension polymerization and emulsion polymerization can be applied, and the amount of the chain transfer agent of the compound of the formula (2) used is based on the amount of the monomer. About 0.01-5 mole% is suitable. The process can be carried out in any manner, either continuously or batchwise.

본 발명이 적용될 수 있는 모노머는 라디칼 중합 가능한 모든 모노머가 그 대상이며 대표적인 예로는 styrene계 모너머, methacrylate계 모노머, acrylate계 모노머, methacrylamide, acrylamide, vinyl acetate, 디엔계 모노머, acrylonitrile, methacrylonitrile, vinyl chloride, vinyl ketones, isopropenyl ketones, vinyl oxazoline, isopropenyl oxazoline 그리고 allyl 등이 있다. 이때 acid glycidyl 또는 hydroxyalkyl 등처럼 라디칼 중합반응에 직접 영향을 미치지 않는 관능기들을 포함한 모노머들 역시 본 발명에 적용될 수 있다.Monomers to which the present invention can be applied are all monomers capable of radical polymerization, and typical examples thereof include styrene monomer, methacrylate monomer, acrylate monomer, methacrylamide, acrylamide, vinyl acetate, diene monomer, acrylonitrile, methacrylonitrile, vinyl chloride. , vinyl ketones, isopropenyl ketones, vinyl oxazoline, isopropenyl oxazoline and allyl. In this case, monomers including functional groups that do not directly affect radical polymerization, such as acid glycidyl or hydroxyalkyl, may also be applied to the present invention.

본 발명을 구체적으로 설명하기 위하여 이하에서 실시 예를 기술하기로 한다. 본 발명의 효과에 대하여는 이하에 기술하는 실시 예에 의하여 구체적으로 보여진다.In order to describe the present invention in detail, embodiments will be described below. The effects of the present invention are specifically shown by the examples described below.

제조예 1Preparation Example 1

환류 냉각기가 부착된 flack에 MMA 400g과 AIBN 0.56g을 ethyl acetate 200ml에 넣어 용액을 만든 다음 10mg의 coblat porphyrin 촉매를 넣는다. 이 용액을 질소로 bubbling 하여 공기를 제거시키고 약 85℃에서 약 5시간 반응시킨다음 활성탄으로 처리하여 촉매를 제거 시킨다. Rotary evaporator에서 용매와 MMA를 제거하면 약 285g(약 70% 수율)의 올리고머가 얻어진다. 폴리스티렌과 MMA를 표준으로 하여 결정된 GPC 분자량은 수평균 분자량 Mn=473, 중량평균 분자량 Mw=620, 분자량 분포도 Mw/Mn=1.31이었다.In a flack equipped with a reflux condenser, 400 g of MMA and 0.56 g of AIBN were added to 200 ml of ethyl acetate to prepare a solution, followed by 10 mg of coblat porphyrin catalyst. The solution was bubbling with nitrogen to remove air, reacted at about 85 ° C for about 5 hours, and treated with activated carbon to remove the catalyst. Removal of the solvent and MMA from the rotary evaporator yielded about 285 g of oligomer (about 70% yield). The GPC molecular weight determined based on polystyrene and MMA was number average molecular weight M n = 473, weight average molecular weight Mw = 620, and molecular weight distribution M w / M n = 1.31.

제조예 2Preparation Example 2

제조예 1과 같은 방법에 의하여 노말-부틸메타아크릴레이트(nBMA) 50parts, MMA 50parts, AIBN 10.8×10-2parts를 필요한 양의 촉매와 함께 약 70℃에서 반응시킨다. Oligomer의 수율은 69%, Mn=349, Mw/Mn=1.31이었다.In the same manner as in Preparation Example 1, 50 parts of normal-butyl methacrylate (nBMA), 50 parts of MMA, and 10.8 × 10 −2 parts of AIBN were reacted at about 70 ° C. with the required amount of catalyst. The yield of oligomer was 69%, M n = 349, M w / M n = 1.31.

제조예 3Preparation Example 3

제조예 1과 같은 방법에 의하여 nBMA 100parts, AIBN 10.8×10-2parts를 필요한 양의 촉매와 함께 약 70℃에서 반응시킨다. Oligomer의 수율은 89%, Mn=382, Mw/Mn=1.12이었다.NBMA 100parts and AIBN 10.8 × 10 −2 parts were reacted with the required amount of catalyst at about 70 ° C. by the same method as Preparation Example 1. The yield of oligomer was 89%, M n = 382, M w / M n = 1.12.

제조예 4Preparation Example 4

제조예 1과 같은 방법에 의하여 styrene 50parts, AIBN 0.1parts를 필요한 양의 촉매와 함께 약 70℃에서 반응시킨다. Oligomer의 수율은 67%, Mn=408, Mw/Mn=1.66이었다.50 parts of styrene and 0.1 parts of AIBN were reacted with the required amount of catalyst at about 70 ° C. by the same method as Preparation Example 1. The yield of oligomer was 67%, M n = 408, M w / M n = 1.66.

실시예 1Example 1

10g의 MMA 모노머와 AIBN 10mg을 10ml의 ethyl acetate에 녹인다음 제조예 1에서 합성된 올리고머를 필요한 양만큼 넣어준다(C/M=올리고머/MMA의 molu비). 질소 기류하에서 약 70℃ 3~5시간 반응시키고 과량의 메탄올에 침전시키면 PMMA가 얻어지는데 이때 분자량은 표 1과 같이 조절이 된다.10 g of MMA monomer and 10 mg of AIBN are dissolved in 10 ml of ethyl acetate, and the oligomer synthesized in Preparation Example 1 is added in the required amount (C / M = oligomer / molu ratio of MMA). When reacted for about 3 to 5 hours in a nitrogen stream and precipitated in excess methanol to obtain PMMA, the molecular weight is controlled as shown in Table 1.

표 1에서 볼 수 있듯이 올리고머가 없는 중합계에서 얻어지는 PMMA의 분자량은 M=169600, M=321200, M/M=1.89이었다.As shown in Table 1, the molecular weight of PMMA obtained in the polymerization system without an oligomer was M = 169600, M = 321200, and M / M = 1.89.

실시예 2Example 2

10g의 styrene 모노머와 AIBN 10mg을 10ml의 ethyl acetate에 녹인다음 제조예 1에서 합성된 올리고머를 필요한 양만큼 넣어준다(C/M=올리고머/styrene molu비). 질소 기류하에서 약 70℃ 24시간 반응시키고 과량의 메탄올에 침전시키면 폴리스티렌이 얻어지는데 이때 분자량은 표 2과 같이 조절이 된다.10 g of styrene monomer and 10 mg of AIBN are dissolved in 10 ml of ethyl acetate, and the oligomer synthesized in Preparation Example 1 is added in the required amount (C / M = oligomer / styrene molu ratio). Reaction is carried out for about 24 hours at 70 ℃ under nitrogen stream and precipitated in excess methanol to obtain polystyrene, the molecular weight of which is controlled as shown in Table 2.

한편 같은 조건하에서 올리고머가 없이 중합을 진행시켰을 때 얻어지는 폴리스티렌 분자량은 M=79200, M=137100, M/M=1.73이었다.On the other hand, the polystyrene molecular weight obtained when superposition | polymerization advanced without an oligomer under the same conditions was M = 79200, M = 137100, and M / M = 1.73.

실시예 3Example 3

2.46g의 styrene 모노머와 AIBN 7mg을 3.5ml의 ethyl acetate에 녹인 다음 제조예 1에서 합성된 올리 고머를 1.06mg 넣어준다(C/M=0.09). 질소 기류하에서 약 70℃ 24시간 반응시키고 과량의 메탄올에 침전시키면 폴리스티렌이 얻어지는데 이때 분자량은 M=4560, M=6010, M/M=1.32이었다.2.46 g of styrene monomer and 7 mg of AIBN were dissolved in 3.5 ml of ethyl acetate, and then 1.06 mg of the oligomer synthesized in Preparation Example 1 was added (C / M = 0.09). Reaction was carried out for about 24 hours at 70 DEG C under nitrogen stream and precipitation in excess methanol yielded polystyrene, at which the molecular weight was M = 4560, M = 6010 and M / M = 1.32.

실시예 4Example 4

9.1g의 styrene 모노머와 benzoyl peroxide 20mg을 10ml의 ethyl acetate에 녹인다음 합성예 1에서 합성된 올리고머를 필요한 양만큼 넣어준다. 질소 기류하에서 약 70℃ 24시간 반응시키고 과량의 메탄올에 침전시키면 폴리스티렌이 얻어지는데 이때 분자량은 표 3과 같이 조절이 된다.Dissolve 9.1g of styrene monomer and 20mg of benzoyl peroxide in 10ml of ethyl acetate, and add the oligomer synthesized in Synthesis Example 1 as necessary. The reaction is carried out for about 24 hours at 70 ℃ under nitrogen stream and precipitated in excess methanol to obtain polystyrene, the molecular weight of which is controlled as shown in Table 3.

실시예 5Example 5

8g의 styrene 모노머와 2g acrylonitrile 모너모, AIBN 10mg을 ethyl acetate 10ml에 녹인다음 합성예 1에서 합성된 올리고머를 필요한 양만큼 넣어준다. 질소 기류하에서 약 70℃ 15시간 반응시키고 과량의 메탄올에 침전시키면 SAN(styrene-acrylonitrile)중합체가 얻어지는데 이때 분자량은 표 4과 같이 조절이 된다.Dissolve 8g of styrene monomer, 2g acrylonitrile monomer and 10mg of AIBN in 10ml of ethyl acetate, and add the oligomer synthesized in Synthesis Example 1 as necessary. Reaction with nitrogen at about 70 ° C. for 15 hours and precipitation in excess methanol yields a SAN (styrene-acrylonitrile) polymer, the molecular weight of which is controlled as shown in Table 4.

실시예 6Example 6

10g의 ethyl acrylate와 AIBN 10mg을 ethyl acetate 10ml에 녹인다음 제조예 1에서 합성된 올리고머를 필요한 양만큼 넣어준다. 질소 기류하에서 약 70℃ 12시간 반응시키면 ethyl acrylate중합체가 얻어지는데 이때 분자량은 표 5과 같이 조절이 된다.10 g of ethyl acrylate and 10 mg of AIBN are dissolved in 10 ml of ethyl acetate, and the oligomer synthesized in Preparation Example 1 is added as necessary. When reacted for about 12 hours at 70 ° C. under a nitrogen stream, an ethyl acrylate polymer was obtained. The molecular weight was controlled as shown in Table 5.

실시예 7Example 7

10g의 vinyl acrylate와 AIBN 10mg을 ethyl acetate 10ml에 녹인 다음 제조예 2~4에서 합성된 올리고머를 필요한 양만큼 넣어준다. 질소 기류하에서 정해진 온도와 시간동안 반응시키면 중합체가 얻어지는데 이때 분자량은 표 6과 같이 조절이 된다.10 g of vinyl acrylate and 10 mg of AIBN are dissolved in 10 ml of ethyl acetate, and the oligomer synthesized in Preparation Examples 2 to 4 is added as necessary. When the reaction is carried out for a predetermined temperature and time under a nitrogen stream to obtain a polymer, the molecular weight is controlled as shown in Table 6.

실시예 8~10Examples 8-10

10g의 styrene 모노머와 AIBN의 10mg을 ethyl acetate 10ml에 녹인 다음 제조예 2~4에서 합성된 올리고머를 필요한 양만큼 넣어준다. 질소 기류하에서 정해진 온도, 시간동안 반응시키고 중합체가 얻어지는데 이때 분자량은 표 7과 같이 조절이 된다.10 g of styrene monomer and 10 mg of AIBN are dissolved in 10 ml of ethyl acetate, and the oligomer synthesized in Preparation Examples 2 to 4 is added as necessary. The reaction is carried out for a predetermined temperature and time under a nitrogen stream, and a polymer is obtained. The molecular weight is controlled as shown in Table 7.

* 반응온도 약 70℃, 반응시간 약 24시간* Reaction temperature about 70 ℃, reaction time about 24 hours

Claims (6)

자유라디칼로 중합 가능한 모노머들의 중합반응에 있어서 다음 일반식(2)로 나타내는 homo 중합체형 또는 무작위 공중합체형 올리고머를 사용함을 특징으로 하는 중합체의 중합도를 조절하는 방법.A method for controlling the degree of polymerization of a polymer characterized by using a homopolymer type or a random copolymer type oligomer represented by the following general formula (2) in the polymerization of free radically polymerizable monomers. 여기서, Z는 X 또는 Y, X 또는 Y=-COOR, -CN, -CONR'RWhere Z is X or Y, X or Y = -COOR, -CN, -CONR'R R은 탄소수 1~8개의 alky1, 2-hydroxyethyl, allyl, dimethylaminoethyl, glycidyl, Arylalkyl, H중 1종, R', R는 탄소수 1~8개의 alkyl or H, Ar은 phenyl or 탄소수 1~4개의 alkylphenyl, 1+m+n=1-20, m+n=1-20, n=1-20R is C1-C8 alky1, 2-hydroxyethyl, allyl, dimethylaminoethyl, glycidyl, Arylalkyl, one of H, R ', R is C1-C8 alkyl or H, Ar is phenyl or C1-C4 alkylphenyl , 1 + m + n = 1-20, m + n = 1-20, n = 1-20 제1항에 있어서, 중합 가능한 모노머가 스티렌, 아크릴로니트릴, 메타아크릴레이트, 비닐아세테이트, 탄소수 1~8개를 갖는 알킬의 아크릴레이트 및 이중결합을 포함하는 모노머 중 한 개 또는 2개 이상을 포함하는 방법.The monomer of claim 1, wherein the polymerizable monomer comprises one or two or more of styrene, acrylonitrile, methacrylate, vinyl acetate, alkyl acrylate having 1 to 8 carbon atoms, and a monomer comprising a double bond. How to. 제1항에 있어서, 개시제가 azo계 화합물, 퍼설페이트계 화합물, 퍼옥사이드계 화합물을 포함하는 방법.The method of claim 1, wherein the initiator comprises an azo compound, a persulfate compound, a peroxide compound. 제1항에 있어서, 올리고모가 일반식(2)의 1+m+n≤20의 값을 가지는 것에서 선택된 1개 또는 2개 이상의 혼합물을 포함하는 방법.The method of claim 1, wherein the oligomo comprises one or two or more mixtures selected from those having a value of 1 + m + n ≦ 20 in formula (2). 제2항에 있어서, 이중결합을 포함한 모노머가 아크릴아미드, 디엔계 모노머, 탄소수 1~6개를 갖는 알킬의 비닐케톤, 탄소수 1~6개를 갖는 알킬의 isopropenyl케톤, 비닐 옥사졸린, isopropenyl oxazoline을 포함하는 방법.The monomer comprising a double bond is acrylamide, diene monomer, vinyl ketone of alkyl having 1 to 6 carbon atoms, isopropenyl ketone of alkyl having 1 to 6 carbon atoms, vinyl oxazoline, isopropenyl oxazoline. How to include. 제1항에 있어서, 올리고머의 사용양은 모노머에 대하여 0.01~5mole%를 포함하는 방법.The method of claim 1, wherein the amount of oligomer used comprises 0.01 to 5 mole% relative to the monomer.
KR1019930024835A 1993-11-18 1993-11-18 Method of degree of polymerization using olygomers KR970009238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930024835A KR970009238B1 (en) 1993-11-18 1993-11-18 Method of degree of polymerization using olygomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930024835A KR970009238B1 (en) 1993-11-18 1993-11-18 Method of degree of polymerization using olygomers

Publications (2)

Publication Number Publication Date
KR950014156A KR950014156A (en) 1995-06-15
KR970009238B1 true KR970009238B1 (en) 1997-06-09

Family

ID=19368592

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930024835A KR970009238B1 (en) 1993-11-18 1993-11-18 Method of degree of polymerization using olygomers

Country Status (1)

Country Link
KR (1) KR970009238B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356888B1 (en) * 2007-06-15 2014-01-28 주식회사 엘지화학 Self-polymeric photopolymerizable methacrylate monomer, methacrylate polymer and photosensitive resin composition including the same
KR20200077285A (en) * 2018-12-20 2020-06-30 한화토탈 주식회사 A method of producing polyethylene polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356888B1 (en) * 2007-06-15 2014-01-28 주식회사 엘지화학 Self-polymeric photopolymerizable methacrylate monomer, methacrylate polymer and photosensitive resin composition including the same
KR20200077285A (en) * 2018-12-20 2020-06-30 한화토탈 주식회사 A method of producing polyethylene polymer

Also Published As

Publication number Publication date
KR950014156A (en) 1995-06-15

Similar Documents

Publication Publication Date Title
JP5122041B2 (en) Microgel preparation process
FR2757865A1 (en) PROCESS FOR THE CONTROLLED RADICAL POLYMERIZATION OR COPOLYMERIZATION OF (METH) ACRYLIC, VINYL, VINYLIDENIC AND DIENIC MONOMERS AND (CO) POLYMERS OBTAINED
JP2001512519A (en) Polymer whose molecular weight is controlled by photopolymerization
Chiefari et al. Control of Free‐Radical Polymerization by Chain Transfer Methods
CN100439406C (en) Dosing of peroxide to a suspension process wherein styrene is polymerized
US3219588A (en) Catalysts for the polymerization of vinyl monomers
KR970009238B1 (en) Method of degree of polymerization using olygomers
AU730639B2 (en) Improved acid catalyzed polymerization
GB1588877A (en) Free radical polymerisation process
US5990255A (en) High molecular weight polysytrene production by vinyl acid catalyzed free radical polymerization
EP0862586B1 (en) A process for preparing a branched polymer from a vinyl aromatic monomer
US6720429B2 (en) Thiocarbonylthio compound and living free radical polymerization using the same
AU762505B2 (en) An improved process for producing high molecular weight monovinylidene aromatic polymers and polymodal compositions
JPS63278910A (en) Manufacture of high-molecular weight polymer
US6084044A (en) Catalyzed process for producing high molecular weight monovinylidene aromatic polymers
US4002811A (en) Production of uniform copolymer of acrylonitrile and aromatic olefines
US5306794A (en) Method of producing copolymer
US6166155A (en) Process for preparing polymers of vinyl monomers with narrow molecular weight distribution by controlled free-radical polymerization
JP2565378B2 (en) Method for producing copolymer
CN1085676C (en) Use of peroxyacids as molecular weight regulators
JP3776462B2 (en) Method for producing copolymer
TWI238166B (en) Thiocarbonylthio compound and free radical polymerization using the same
KR100385724B1 (en) Dithioesters and method for polymerization of vinyl polymer using the same
US6780811B2 (en) Catalyst composition for living free radical polymerization and process for polymerizing (meth) acrylic, vinyl, vinylidene, and diene monomers using the catalyst composition
JPS6250304A (en) Novel polymerization process

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081017

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee