KR970008814B1 - Semiconductor ceramic composition and manufacturing method thereof - Google Patents

Semiconductor ceramic composition and manufacturing method thereof Download PDF

Info

Publication number
KR970008814B1
KR970008814B1 KR1019930020761A KR930020761A KR970008814B1 KR 970008814 B1 KR970008814 B1 KR 970008814B1 KR 1019930020761 A KR1019930020761 A KR 1019930020761A KR 930020761 A KR930020761 A KR 930020761A KR 970008814 B1 KR970008814 B1 KR 970008814B1
Authority
KR
South Korea
Prior art keywords
composition
grain boundary
magnetic
agent
magnetic composition
Prior art date
Application number
KR1019930020761A
Other languages
Korean (ko)
Other versions
KR950012724A (en
Inventor
이석진
이상석
최태구
Original Assignee
양승택
재단법인한국전자통신연구소
조백제
한국전기통신공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양승택, 재단법인한국전자통신연구소, 조백제, 한국전기통신공사 filed Critical 양승택
Priority to KR1019930020761A priority Critical patent/KR970008814B1/en
Publication of KR950012724A publication Critical patent/KR950012724A/en
Application granted granted Critical
Publication of KR970008814B1 publication Critical patent/KR970008814B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Abstract

A technique is described that can provide magnetic composite which contains SrTiO3 as a main component. The semiconductor magnetic composite includes magnetic composite containing SrTiO3 by 92 to 97 mol%, La2O3 by 0.1 to 0.2 mol%, MNO2 by 2.8 to 4.8 mol%, CuTiO3 by 0.1 to 3 mol%, and material for diffusing into the magnetic composite thereby insulating a crystal system. The method includes the steps of mixing the SrTiO3, La2O3, MNO2 and CuTiO3 with a ion extricating water, mixing the powder formed by drying the mixed composite, sintering the composite in atmosphere of reduction, and covering the surface of the composite with a material for insulating the crystal system so that the material can diffuse into the composite. Thereby, it is possible to provide the semiconductor magnetic composite which can contribute the miniaturization of a capacitor and increase of reliablity therein.

Description

입계절연형 반도체 자기조성물 및 그 제조방법Grain boundary insulation semiconductor self composition and manufacturing method

본 발명은 유전율이 매우 높고, 온도 변화율이 작은 티탄산스트론튬(SrTiO3)을 주성분으로한 자기조성물에 관한 것으로, 캐패시터의 소형화 및 신뢰성의 향상에 기여할 수 있는 입계절연형 반도체 자기조성물 및 그 제조방법에 관한 것이다.The present invention relates to a magnetic composition mainly composed of strontium titanate (SrTiO 3 ) having a very high dielectric constant and a small temperature change rate. The present invention relates to a grain boundary insulating semiconductor magnetic composition which can contribute to miniaturization of capacitors and improvement of reliability, and a method of manufacturing the same. It is about.

종래의 입계절연형 반도체 자기조성물로서는 티탄산바륨(BaTiO3)을 주성분으로 하여, 여기에 산화디스프로슘(Dy2O3) 등의 원자가제어제와 미량의 다른 첨가제가 배합된 반도체 자기의 결정입계를 산화동(CuO)등으로 열확산시켜 절연화시키는 방법이 많이 사용되었다.Conventional grain boundary insulating semiconductor magnetic compositions include barium titanate (BaTiO 3 ) as a main component, and crystal grain boundaries of semiconductor porcelain containing a valence control agent such as dysprosium oxide (Dy 2 O 3 ) and a small amount of other additives. Many methods have been used to insulate by thermal diffusion (CuO) and the like.

그러나, 상기 종래의 조성물은 유전율이 50,000~60,000 정도로 크지만, 유전손실(tan)이 5% 전후로 크고 또한 유전율의 온도변화율이 -25℃~+85℃의 범위에서 ±15%를 초과하는 문제점을 안고 있었다.However, although the conventional composition has a large dielectric constant of 50,000 to 60,000, dielectric loss (tan) ) Has a problem that the temperature change rate of dielectric constant exceeds ± 15% in the range of -25 ° C to + 85 ° C.

상기 종래의 단점을 개선하기 위하여 최근 티탄산스트론튬(SrTiO3)을 주성분으로한 조성물이 개발되고 있으며, 이들 조성물은 유전율의 온도변화율이 작고, 유전손실도 작은 특성을 가지고 있어 티탄산바륨계 대신에 널리 사용되고 있다.In order to improve the above disadvantages, compositions having a main component of strontium titanate (SrTiO 3 ) have recently been developed, and these compositions are widely used in place of barium titanate because they have a small temperature change rate of dielectric constant and a small dielectric loss. have.

현재 티탄산스트론튬계 조성물은 티탄산스트론튬에 칼슘(CaO) 및 바륨(BaO)을 일부 치환한 주조성에 반도체화를 시키기 위한 희토류원소 및 산화물을 첨가한 반도체 자기의 결정입계에 삼산화 비스무스(Bi2O3)등과 같은 금속산화물을 확산시켜 절연화시킨 조성물이 개발되고 있다.Currently, strontium titanate-based compositions have bismuth trioxide (Bi 2 O 3) at the grain boundaries of semiconducting porcelain containing rare earth elements and oxides for semiconductorization to castability in which strontium titanate partially substitutes calcium (CaO) and barium (BaO). The composition which insulated and diffused the metal oxide, such as), is developed.

특히, 이러한 유전물은 최근 회로의 집적회로(IC)화가 급속히 진행됨에 따라 캐패시터에 대한 소형화, 대용량화의 요구가 매년 증가되고 있으며, 유전손실과 유전율의 온도변화율은 작고 유전율은 매우 높은 조성물의 개발이 강력이 요구되고 있다.In particular, as dielectrics of ICs are rapidly progressing in recent years, the demand for miniaturization and large-capacity of capacitors is increasing every year, and the development of a composition having a low dielectric loss and a high dielectric constant and a very high dielectric constant has been strongly developed. This is required.

따라서, 본 발명은 티탄산스트론튬을 주성분으로 하여 상온에서 50,000이상의 유전율과, 유전손실(tan)이 1%이하, 유전율의 온도변화율이 -25℃~+85℃의 온도범위에서 ±10% 이하의 우수한 특성을 가지는 입계절연형 반도체 자기조성물을 개발함으로써, 매우 높은 유전율을 가지며 반면에 유전손실과 유전율의 온도변화율이 작은 입계절연형 반도체 자기조성물 및 그 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention has a dielectric constant of 50,000 or more at room temperature and a dielectric loss (tan) based on strontium titanate as a main component. ) Has a very high dielectric constant and develops a grain boundary insulating semiconductor self-composition having excellent characteristics of less than 1% and a temperature change rate of dielectric constant of ± 10% or less in the temperature range of -25 ° C to + 85 ° C. An object of the present invention is to provide a grain boundary insulating semiconductor self-composition having a small temperature change rate of the dielectric constant and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 입계절연형 반도체 자기조성물은, 티탄산스트론튬(SrTiO3)을 92~97mol%, 원자가제어제인 산화란탄(La2O3)을 0.1~0.2mol%, 결정입자성장제인 이산화망간(MnO2)을 2.8~4.8mol%, 소결온도를 낮추고 결정입자를 성장을 촉진 시키는 티탄산동(CuTiO3)을 0.1~3mol%로 첨가하여 형성된 자기조성물 및 상기 자기조성물에 확산되어 결정입계를 절연하는 입계절연화제로 이루어지는 것을 특징으로 한다.Mouth season-isolated semiconductor ceramic composition of the present invention for achieving the above object, a strontium titanate (SrTiO 3) 92 ~ 97mol% , the valence control agent lanthanum oxide (La 2 O 3) 0.1 ~ 0.2mol%, crystal grain growth Zn-manganese dioxide (MnO 2 ) 2.8 ~ 4.8mol%, the sintering temperature is lowered by the addition of copper titanate (CuTiO 3 ) 0.1 ~ 3mol% to promote the growth of crystal grains formed in the magnetic composition and the crystal grains are dispersed It is characterized by consisting of a grain boundary insulating agent for insulating.

또한, 본 발명의 입계절연형 반도체 자기조성물 제조 방법은, 티탄산스트론튬(SrTiO3), 산화란탄(La2O3), 이산화망간(MnO2), 티탄산동(CuTiO3)을 표1의 조성과 같이 평량하여 탈이손수와 함께 혼합하는 단계, 상기 혼합물을 건조하여 형성된 파우더를 하소하여 혼합하는 단계, 하소된 혼합물을 성형하는 단계, 상기 성형된 혼합물을 환원분위기의 전기로 중에서 소결하는 단계 및 상기 소결된 자기조성물에 결정입계 절연을 위한 입계절연화제를 상기 조성물 표면에 도포하여 조성물 내부로 확산시키는 단계를 포함하여 이루어지는 것을 특징으로 한다.In addition, in the method of manufacturing a grain boundary insulating semiconductor self-composition of the present invention, strontium titanate (SrTiO 3 ), lanthanum oxide (La 2 O 3 ), manganese dioxide (MnO 2 ) and copper titanate (CuTiO 3 ) are prepared as shown in Table 1 below. Weighing and mixing with deionized water, drying the mixture to calcinate the powder formed, forming a calcined mixture, sintering the shaped mixture in an electric furnace in a reducing atmosphere, and sintering And applying a grain boundary insulator for grain boundary insulation to the surface of the composition to diffuse into the composition.

이하, 본 발명에 따른 일실시예를 상세히 설명하면 다음과 같다.Hereinafter, an embodiment according to the present invention will be described in detail.

본 발명에서는 주성분인 티탄산스트론튬(SrTiO3)을 92~97mol%에 원자가제어제인 산화란탄(La2O3)을 0.1~0.2mol%를 첨가하고, 결정입자성장제인 이산화망간(MnO2)을 2.8~4.8mol%의 범위로 첨가하고, 소결온도를 낮추고 결정입자의 성장을 촉진시키는 기능을 가지는 티탄산동(CuTiO3)을 0.1~3mol%를 첨가한 자기조성물과 이 자기조성물의 결정입계의 절연을 위하여 상기 자기조성물에 확산되는 입계절연화제로 구성된다.In the present invention, strontium titanate (SrTiO 3 ) as a main component is added to 92 to 97 mol% of lanthanum oxide (La 2 O 3 ), which is a valence controlling agent, and manganese dioxide (MnO 2 ), which is a grain growth agent, is added at 2.8 to In order to insulate the magnetic composition containing 0.1 to 3 mol% of copper titanate (CuTiO 3 ), which is added in the range of 4.8 mol%, and has a function of lowering the sintering temperature and promoting the growth of crystal grains, and the grain boundary of the magnetic composition. It is composed of a grain boundary insulating agent diffused in the magnetic composition.

상기 입계절연화제는 일반적으로 금속산화물로 이루어지며, 본 발명에서는 삼산화비스무스(Bi2O3)를 사용하였다.The grain boundary insulating agent is generally made of a metal oxide, bismuth trioxide (Bi 2 O 3 ) was used in the present invention.

이상과 같이 구성된 상기 조성물의 구성상 특징을 살펴보면 다음과 같다.Looking at the structural features of the composition configured as described above are as follows.

먼저, 본 발명의 인산화망간(MnO2)은 결정입자의 성장에 기여하고, 유전율의 온도변화율을 감소시키는 기능을 가지고 있다. 이산화망간의 첨가량이 일정량 이상이 되면, 결정입자의 성장이 억제되고 유전율이 저하되며 유전손실도 증가하는 특성을 가지고 있다.First, the manganese phosphate (MnO 2 ) of the present invention contributes to the growth of crystal grains and has a function of reducing the temperature change rate of dielectric constant. When the amount of manganese dioxide is more than a certain amount, the growth of crystal grains is suppressed, the dielectric constant is lowered, and dielectric loss is also increased.

티탄산동(CuTiO3)은 소결조제로 소결온도를 낮추고 적정량 첨가되면 결정입자의 성장을 촉진시키며 일정량 이상이 첨가되면, 유전율 감소 및 유전손실이 증가되는 경향이 있다.Copper titanate (CuTiO 3 ) is a sintering aid that lowers the sintering temperature and is added in an appropriate amount to promote the growth of crystal grains.

원가가제어제인 산화란탄(La2O3)은 티탄산스트론튬의 반도체화를 촉진하며, 첨가량이 부족하면 반도체의 체적저항률이 작아지고 유전율이 저하된다. 반면에 일정량 이상이 첨가되면, 결정입자의 성장이 억제되고 유전율이 저하되며 절연저항이 감소되는 경향을 나타낸다.Lanthanum oxide (La 2 O 3 ), which is a cost control agent, promotes the semiconductorization of strontium titanate, and when the addition amount is insufficient, the volume resistivity of the semiconductor decreases and the dielectric constant decreases. On the other hand, when a certain amount or more is added, growth of crystal grains is suppressed, dielectric constant is lowered, and insulation resistance tends to be decreased.

이어서, 상기 조성물의 제조 방법의 일예를 상세히 살펴본다.Next, an example of a method of preparing the composition will be described in detail.

티탄산스트론튬(SrTiO3), 산화란탄(La2O3), 이산화망간(MnO2), 티탄산동(CuTiO3)을 표 1의 조성과 같이 평량하여 탈이온수와 함께 혼합한다.Strontium titanate (SrTiO 3 ), lanthanum oxide (La 2 O 3 ), manganese dioxide (MnO 2 ) and copper titanate (CuTiO 3 ) are weighed as shown in Table 1 and mixed with deionized water.

혼합은 볼밀링 방법을 이용하며, 알루미나볼과 플라스틱단지를 이용한다. 건조된 파우더를 900~1000℃, 3~5시간 동안 하소하고 폴리비닐알콜과 함께 지르코니아유발에서 혼합한다.The mixing is performed using a ball milling method, using an alumina ball and a plastic jar. The dried powder is calcined at 900-1000 ° C. for 3-5 hours and mixed with polyvinyl alcohol in zirconia induction.

혼합된 재료는 금형과 유압프레스를 사용하여 직경 15㎜의 원판형 시편으로 성형한다. 성형시의 압력은 1ton/㎠이고 성형후 시편의 두께는 1.2~1.3㎜로 한다.The mixed material is molded into disc shaped specimens of 15 mm in diameter using a mold and hydraulic press. The pressure at the time of molding is 1 ton / ㎠ and the thickness of the specimen after molding is 1.2 ~ 1.3㎜.

이렇게 하여 성형된 시편을 지르코니아 셋터에 놓고, 환원성분위기(질소 92~98%, 수소2~8%)의 전기로 중에서 소결하는데, 소결온도 1300~1400℃, 소결시간 2시간으로 하는데 각각의 조성에 따른 제조 조건은 표1에 상세히 나타내었다.The specimen thus formed is placed in a zirconia setter and sintered in an electric furnace with a reducing component (92-98% nitrogen, 2-8% hydrogen). The sintering temperature is 1300-1400 ° C and the sintering time is 2 hours. The preparation conditions according to are shown in detail in Table 1.

환원분위기중에서 소결된 반도체 자기의 표면에 금속산화물로 구성된 입계절연화제인 삼산화비스무스(Bi2O3)와 폴리비닐알콜(PVA)를 적당량 섞어 도포한 후 대기중에서 1150℃~1250℃, 1시간의 조건으로 확산시켜 결정입계를 절연화하여 본 발명에서 요구하는 입계절연형 반도체 자기조성물 시편을 형성한다.Bismuth trioxide (Bi 2 O 3 ), a grain boundary insulating agent composed of metal oxides, and polyvinyl alcohol (PVA) are mixed and applied to the surface of the semiconductor porcelain sintered in a reducing atmosphere, and then applied at 1150 ° C to 1250 ° C for 1 hour. By dispersing under conditions, the grain boundaries are insulated to form the grain boundary insulating semiconductor magnetic composition specimens required by the present invention.

[표 1] 제조조건[Table 1] Manufacturing conditions

이와 같이 절연화된 시편의 양면에서 은전극을 실크스크린 인쇄도포방법으로 10㎜ 직경의 원형으로 도포한 다음 590℃, 30분간 열처리하여 전기적특성을 측정하였다.The silver electrodes on both sides of the insulated specimens were coated in a circular shape having a diameter of 10 mm by silk screen printing coating method, and then heat treated at 590 ° C. for 30 minutes to measure electrical characteristics.

유전율과 유전손실 및 유전율의 온도의존성은 임피던스/게인페이즈 분석기(Impendance/Gain Phase Analyser(HP 419AA)) 및 항온조를 이용하여 측정하고, 절연저항은 메가옴미터(Megaohmmeter)를 이용하여 측정한다.The dielectric constant, dielectric loss, and temperature dependence of dielectric constant are measured using an impedance / gain phase analyzer (HP 419AA) and a thermostat, and the insulation resistance is measured using a megaohmmeter.

유전율은 1㎑의 측정주파수 및 0.5V의 오실레이션전압에서 측정하고, 절연저항은 25V의 직류전압을 인가한 상태에서 1분 경과후에 측정한다. 그리고 측정된 입계절연형 반도체 자기조성물의 유전특성은 표 2와 같다.The dielectric constant is measured at a measurement frequency of 1 kHz and an oscillation voltage of 0.5 V, and the insulation resistance is measured after 1 minute with a DC voltage of 25 V applied. The dielectric properties of the measured grain boundary insulating semiconductor magnetic composition are shown in Table 2.

[표 2] 측정치TABLE 2 MEASUREMENTS

상기 표 2에 나타난 것과 같이 본 발명의 자기조성물은 상온에서 50,000이상의 유전율과 1% 이하의 유전손실 및 ±10% 이하의 온도변화율을 갖는 것을 알 수 있다.As shown in Table 2, the magnetic composition of the present invention has a dielectric constant of 50,000 or more, dielectric loss of 1% or less, and temperature change rate of ± 10% or less at room temperature.

그러므로, 본 발명의 조성물은 높은 유전율과 안전한 온도특성을 가지고 있기 때문에 반도체 자기 캐패시터 및 정전기흡수용다기능소자로 이용할 수 있고, 또한 기존의 높은 소결온도에 비해 비교적 낮은 온도에서 소결하기 때문에 제조원가를 절감할 수 있는 효과가 있다.Therefore, since the composition of the present invention has high dielectric constant and safe temperature characteristics, it can be used as a semiconductor magnetic capacitor and a multifunctional device for absorbing static electricity, and also sintered at a relatively low temperature compared to the existing high sintering temperature, thereby reducing manufacturing costs It can be effective.

Claims (8)

입계절연형 반도체 자기조성물에 있어서, 티탄산스트론튬(SrTiO3)을 92~97mol%, 원자가제어제인 산화란탄(La2O3)을 0.1~0.2mol%, 결정입자성장제인 이산화망간(MnO2)을 2.8~4.8mol%, 소결온도를 낮추고 결정입자를 성장을 촉진시키는 티탄산동(CuTiO3)을 0.1~3mol%로 첨가하여 형성된 자기조성물, 상기 자기조성물에 확산되어 결정입계를 절연하는 입계절연화제로 이루어지는 것을 특징으로 하는 입계절연형 반도체 자기조성물.In the mouth, season-isolated semiconductor ceramic composition, strontium titanate (SrTiO 3) to 92 ~ 97mol%, the valence control agent lanthanum oxide (La 2 O 3) of 0.1 ~ 0.2mol%, crystal grain growth agent manganese dioxide (MnO 2) 2.8 ~ 4.8 mol%, a magnetic composition formed by adding 0.1-3 mol% of copper titanate (CuTiO 3 ) which lowers the sintering temperature and promotes the growth of crystal grains, and a grain boundary insulating agent which diffuses into the magnetic composition to insulate grain boundaries A grain boundary insulation type semiconductor magnetic composition, characterized in that. 제1항에 있어서, 상기 입계절연화제는 삼산화비스무스(Bi2O3)인 것을 특징으로 하는 입계절연형 반도체 자기조성물.The grain boundary insulation type semiconductor magnetic composition according to claim 1, wherein the grain boundary insulation agent is bismuth trioxide (Bi 2 O 3 ). 입계절연형 반도체 자기조성물 제조 방법에 있어서, 티탄산스트론튬(SrTiO3), 산화란탄(La2O3), 이산화망간(MnO2), 티탄산동(CuTiO3)을 표1의 조성과 같이 평량하여 탈이온수와 함께 혼합하는 단계, 상기 혼합물을 건조하여 형성된 파우더를 하소하여 혼합하는 단계, 하소된 혼합물을 성형하는 단계, 상기 성형된 혼합물을 환원분위기의 전기로 중에서 소결하는 단계 및 상기 소결된 자기조성물에 결정입계 절연을 위한 입계절연화제를 상기 조성물 표면에 도포하여 조성물 내부로 확산시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 입계절연형 반도체 자기조성물 제조 방법.Mouth season-isolated semiconductor method for producing the ceramic composition, strontium titanate (SrTiO 3), lanthanum oxide (La 2 O 3), manganese dioxide (MnO 2), the basis weight of such a titanic acid copper (CuTiO 3) to the composition of Table 1, deionized water Mixing with, drying the mixture to calcinate the powder formed, forming a calcined mixture, sintering the shaped mixture in an electric furnace in a reducing atmosphere and crystallizing the sintered magnetic composition. A method of manufacturing a grain boundary insulation-type semiconductor magnetic composition comprising applying a grain boundary insulating agent for grain boundary insulation to a surface of the composition and diffusing it into the composition. 제3항에 있어서, 상기 하소는 온도 900~1000℃에서 3~5시간 동안 수행하는 것을 특징으로 하는 입계절연형 반도체 자기조성물 제조 방법.The method of claim 3, wherein the calcination is performed at a temperature of 900 to 1000 ° C. for 3 to 5 hours. 제2항에 있어서, 상기 소결은 온도 1300~1400℃에서 소결하는 것을 특징으로 하는 입계절연형 반도체 자기조성물 제조 방법.The method of claim 2, wherein the sintering is performed at a temperature of 1300 to 1400 ° C. 4. 제3항에 있어서, 상기 환원분위기는 질소 92~98%, 수소 2~8%로 이루어지는 것을 특징으로 하는 입계절연형 반도체 자기조성물 제조 방법.The method of claim 3, wherein the reducing atmosphere is 92 to 98% nitrogen and 2 to 8% hydrogen. 제3항에 있어서, 상기 입계절연화제의 조성물 내로의 확산은 자기조성물 표면에 삼산화비스무스(Bi2O3)와 폴리비닐알콜(PVA)를 섞어 도포한 후 조성물 내로 확산시키는 것을 특징으로 하는 입계절연형 반도체 자기조성물 제조 방법.4. The grain boundary season according to claim 3, wherein the diffusion of the grain boundary insulating agent into the composition is performed by mixing bismuth trioxide (Bi 2 O 3 ) and polyvinyl alcohol (PVA) on the surface of the magnetic composition and then spreading the composition into the composition. Method for producing a soft semiconductor self-composition. 제3항 또는 제5항에 있어서, 상기 입계절연화제의 자기조성물 내로의 확산은 대기중에서 1150℃~1250℃로 이루어지는 것을 특징으로 하는 입계절연형 반도체 자기조성물 제조 방법.A method according to claim 3 or 5, wherein the diffusion of the intergranular insulating agent into the magnetic composition is performed in the atmosphere at 1150 ° C to 1250 ° C.
KR1019930020761A 1993-10-07 1993-10-07 Semiconductor ceramic composition and manufacturing method thereof KR970008814B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930020761A KR970008814B1 (en) 1993-10-07 1993-10-07 Semiconductor ceramic composition and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930020761A KR970008814B1 (en) 1993-10-07 1993-10-07 Semiconductor ceramic composition and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR950012724A KR950012724A (en) 1995-05-16
KR970008814B1 true KR970008814B1 (en) 1997-05-29

Family

ID=19365420

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930020761A KR970008814B1 (en) 1993-10-07 1993-10-07 Semiconductor ceramic composition and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR970008814B1 (en)

Also Published As

Publication number Publication date
KR950012724A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
US3933668A (en) Intergranular insulation type polycrystalline ceramic semiconductive composition
JPS6257245B2 (en)
GB2068931A (en) Grain boundary barrier layer ceramic capacitors and ceramic dielectric compositions
EP0261419A2 (en) Semiconductive ceramic composition
JPH0223005B2 (en)
KR940001654B1 (en) Semiconductive ceramic composition
US4367265A (en) Intergranular insulation type semiconductive ceramic and method of producing same
US4761711A (en) Barrier layer ceramic dielectric capacitor containing barium plumbate
KR970008814B1 (en) Semiconductor ceramic composition and manufacturing method thereof
KR940006425B1 (en) Composition of ferroelectric ceramics
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
KR940011059B1 (en) Semiconductor condenser
KR940003971B1 (en) Ceramic capacitor
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
Komornicki et al. The influence of cationic ratio on dielectric properties of yttrium doped SrTiO3 based ceramics
KR940003970B1 (en) Ceramic capacitor
KR100225498B1 (en) Material of ferovskite system thermistor
JP2936876B2 (en) Semiconductor porcelain composition and method for producing the same
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JP2773479B2 (en) Grain boundary insulated semiconductor porcelain material and method of manufacturing the same
JP2729515B2 (en) High dielectric constant dielectric composition
KR920009172B1 (en) Semiconductive ceramic composition and semiconductive ceramic capacitor
JPS6053451B2 (en) Manufacturing method of dielectric porcelain
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030728

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee