KR970004991B1 - Making method of high carbon steel strip and the same product - Google Patents

Making method of high carbon steel strip and the same product Download PDF

Info

Publication number
KR970004991B1
KR970004991B1 KR1019940034276A KR19940034276A KR970004991B1 KR 970004991 B1 KR970004991 B1 KR 970004991B1 KR 1019940034276 A KR1019940034276 A KR 1019940034276A KR 19940034276 A KR19940034276 A KR 19940034276A KR 970004991 B1 KR970004991 B1 KR 970004991B1
Authority
KR
South Korea
Prior art keywords
steel
temperature
annealing
toughness
carbon steel
Prior art date
Application number
KR1019940034276A
Other languages
Korean (ko)
Other versions
KR960023128A (en
Inventor
유재화
송태식
윤석채
Original Assignee
포항종합제철 주식회사
김만제
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 김만제 filed Critical 포항종합제철 주식회사
Priority to KR1019940034276A priority Critical patent/KR970004991B1/en
Publication of KR960023128A publication Critical patent/KR960023128A/en
Application granted granted Critical
Publication of KR970004991B1 publication Critical patent/KR970004991B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The high carbon steel rod is produced by (a) reheating the steel containing 0.6-0.9wt% of carbon, 0.1-0.5wt% of silicone, 0.3-0.8wt% of manganese, 0.1-0.5wt% of chromium, 0.005-0.015wt% of aluminum, 0.005-0.015wt% of nitrogen, below 0.006wt% of sulfur, iron and other impurities for less than 250 minutes at 1250 degree C reheating temperature, and then producing hot soft steel tape using hot rolling, (b) winding hot soft steel rod at 580-670 degree C and rinsing in acid, and doing spherophyric annealing in non-oxidizing condition at 650 degree C-A1 critical point for 5-20 hours and cooling at below 60% of draft percentage, (c) doing softness annealing in non-oxidizing condition at 600 degree C-A1 critical point for 5-20 hours, and then heating in non-decarbonization condition at over A3 critical point for 5-30 minutes, cooling and tempering it.

Description

인성이 우수한 고탄소강대 및 그 제조방법High carbon steel strip with excellent toughness and manufacturing method

본 발명은 경도가 높으면서도 인성이 우수한 고탄소강대의 제조방법에 관한 것이다.The present invention relates to a method for producing a high carbon steel sheet having high hardness and excellent toughness.

근래와 와서 토목, 건축, 조경 및 목재 산업의 발달과 더불어 콘크리트, 석재 및 목재의 고속 절단용 원형톱에 대한 수요가 급증하고 있다. 이러한 원형톱의 소재는 주로 탄소공구강인 SK5, 합금공구강인 SKS5가 사용되고 있다.In recent years, with the development of the civil, building, landscaping and timber industries, the demand for circular saws for high speed cutting of concrete, stone and wood is increasing. The material of the circular saw is mainly used SK5 carbon alloy, SKS5 alloy alloy.

원형톱에는 톱날을 만들때 발생되는 노치에 계속된 충격하중이 가해지기 때문에 원형톱에서 가장 중요하게 요구되는 재질특성은 충격인성이다. 과거에는 원형톱의 수요도 적고, 절단속도도 느릴뿐 아니라 원판 및 톱날이 같은 재료로 사용되어 톱날이 먼저 마모되기 때문에 원형톱의 원판에 대한 인성은 그다지 중요하지 않았다.Since the circular saw is subjected to continuous impact loads on the notch generated when the saw blade is made, the most important material property of the circular saw is impact toughness. In the past, the toughness of the circular saw was not very important because the circular saw was less demanded, the cutting speed was slow, and the disc and saw blade were used as the same material, so the saw blade was worn out first.

그러나 최근에는 톱날의 재질로서 내마모성이 우수한 다이아몬드칩이 사용됨에 따라 톱날의 사용수명이 크게 증가되었고, 절단속도도 아주 빨라지고, 생산성 향상에 따른 충격하중도 증가됨에 따라 원형톱 원판의 인성이 원형톱의 수명을 지배하게 되었다.Recently, however, the use of diamond chips with excellent wear resistance as the material of the saw blade has greatly increased the service life of the saw blade, the cutting speed is very fast, and the impact load due to the improvement of the productivity is increased. It has come to dominate life.

또한 고속절단시 원형톱날의 파손이 발생하면 인평피해가 발생할 가능성이 높을 뿐만 아니라 작업성 및 생산성을 크게 저하시킬 수 있으므로 원형톱의 원판에 대한 고인성의 요구가 한층더 높게 되었다.In addition, when the circular saw blade breaks during high-speed cutting, not only the damage of the circular saw is more likely to occur, but also the workability and productivity can be greatly reduced.

따라서, 원형톱으로 사용되는 공구강의 인성향상을 위한 종래의 기술로는 JIS G 3311에 규정되어 있는 탄소공구강인 SK5에 Ni, Cr을 첨가한 SKS5가 있으나, Ni, Cr등의 합금의 첨가에 따라 제조값이 증가되는 단점이 있다.Therefore, conventional techniques for improving the toughness of tool steels used as circular saws include SKS5 in which Ni and Cr are added to SK5, which is a carbon steel ball specified in JIS G 3311, but with addition of alloys such as Ni and Cr. There is a disadvantage that the manufacturing value is increased.

이런점에서 기존 사용중인 공구강에 부가적인 합금성분의 첨가없이 우수한 인성을 가지는 소재가 요망되고 있다.In this regard, there is a demand for a material having excellent toughness without the addition of additional alloying components to existing tool steels.

이에, 본 발명자는 상기와 같은 요구에 부응하여 고탄소강대의 인성을 향상시키고자 고탄소강의 인성에 영향을 미치는 원소인 Al과 N의 작용 및 제조조건을 종합적으로 연구한 결과, Al 및 N를 적정량 함유시킨 강에 있어서 인성이 우수한 강을 제조할 수 있다는데 착안하고 본 발명을 제안하게 된 것이다.Accordingly, the present inventors have comprehensively studied the action and manufacturing conditions of Al and N, which are elements affecting the toughness of high carbon steel, to improve the toughness of the high carbon steel in response to the above demands, The present invention has been made in view of the fact that steels having excellent toughness can be produced in the steels contained therein.

본 발명은 탈산제로 첨가되는 Al량과 강중에 들어있는 N량의 적정 제어와 석출을 통해 열처리시 오스테나이트 결정립을 미세화시키고, 인성에 유해한 S를 저감하므로서 별도의 합금원소 첨가없이 저렴한 제조원가로 인성이 우수한 고탄소강대를 제조하는데 그 목적이 있다.The present invention refines austenite grains during heat treatment through proper control and precipitation of the amount of Al added to the deoxidizer and the amount of N contained in the steel, and reduces the harmful S to toughness, thereby reducing toughness at low cost without adding an alloying element. The purpose is to produce an excellent high carbon steel strip.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 중량%로, C : 0.6-09%, Si : 0.1-0.5%, Mn : 0.3-0.8%, Cr : 0.1-0.5%, Al : 0.005-0.015%, N : 0.005-0.015%, S : 0.006% 이하, 나머지 Fe 및 불순물로 조성되며, 그 조직이 마르텐사이트 조직인 인성이 우수한 고탄소강대에 관한 것이다.In the present invention, by weight, C: 0.6-09%, Si: 0.1-0.5%, Mn: 0.3-0.8%, Cr: 0.1-0.5%, Al: 0.005-0.015%, N: 0.005-0.015%, S : 0.006% or less, and is composed of the remaining Fe and impurities, and relates to a high carbon steel strip having excellent toughness, the structure of which is martensite.

본 발명은 중량%로, C : 0.6-09%, Si : 0.1-0.5%, Mn : 0.3-0.8%, Cr : 0.1-0.5%, Al : 0.005-0.015%, N : 0.005-0.015%, S : 0.006% 이하, 나머지 Fe 및 불순물로 조성되는 강을 재가열온도 : 1250℃ 이하 및 재로시간 : 250분 이하로 재가열한 후, 통상의 방법으로 열간 압연하여 열연강대를 만들고, 이 열연강대를 580-670℃ 온도범위에서 권취하여 산세한 다음, 650℃-A1변태점온도 범위에서 비산화성 분위기로 5-20시간 구상화소둔 후 60% 이하의 압하율로 냉간압연하고, 이어서 600℃-A1변태점온도 범위에서 비산화성 분위기로 5-20시간 연화소둔 후, 통상의 방법으로 조질압연하고 A3변태점 이상의 온도로 비탈탄분위기에서 5-30분 가열유지하여 유냉한다음 템퍼링하여 인성이 우수한 고탄소강대를 제조하는 방법에 관한 것이다.In the present invention, by weight, C: 0.6-09%, Si: 0.1-0.5%, Mn: 0.3-0.8%, Cr: 0.1-0.5%, Al: 0.005-0.015%, N: 0.005-0.015%, S : 0.006% or less, steel composed of the remaining Fe and impurities are reheated to a reheating temperature of 1250 ° C. or less and a reheating time of 250 minutes or less, and then hot rolled by a conventional method to form a hot rolled steel strip. Winding and pickling at a temperature range of 670 ° C., followed by 5-20 hours of spheroidization in a non-oxidizing atmosphere at a temperature range of 650 ° C.-A 1 , followed by cold rolling at a rolling reduction of 60% or less, followed by 600 ° C.-A 1 transformation temperature. After softening annealing for 5-20 hours in a non-oxidizing atmosphere in the range, it is temper-rolled by the usual method and maintained at a temperature above the A 3 transformation point for 5-30 minutes in a non-carburizing atmosphere. It relates to a manufacturing method.

C는 강의 경도를 높이는데 가장 중요한 원소이다. 켄칭과 템퍼링에 의해 원형톱에 필요한 경도(HRC:40-47)를 얻기 위해서 저어도 0.6% 이상 함유하는 것이 필요하다. 그러나 C량이 너무 많으면 초석세멘타이트가 입계에 석출하여 인성이 크게 떨어지며, 켄칭시 균열이 생성되기 쉽기 때문에 0.9% 이하로 한다.C is the most important element for increasing the hardness of steel. In order to obtain the hardness (HRC: 40-47) required for the circular saw by quenching and tempering, it is necessary to contain at least 0.6%. However, if the amount of C is too high, the cementite cementite precipitates at the grain boundary and the toughness is greatly reduced, and cracking is likely to occur when quenching.

Si는 탈산제로서 아주 중요한 원소이다. Si량이 너무 작으면 탈산의 효과가 적으므로 0.1% 이상 함유시킨다. 그러나 Si량이 너무 많으면 재가열시 표면 탈탄이 심하게 되고, 또한 적스케일이 발생하여 산세가 어렵고 표면결함이 발생하기 쉬우므로 0.5% 이하로 제한한다.Si is a very important element as a deoxidizer. If the amount of Si is too small, since the effect of deoxidation is small, it contains 0.1% or more. However, if the amount of Si is too high, the surface decarburization becomes severe during reheating, and since red scale is generated, pickling is difficult and surface defects are likely to occur, so it is limited to 0.5% or less.

Mn은 경화능을 향상시키는 중요한 원소이면서 고탄소강의 소둔시 흑연의 발생을 저해하는 원소이다. 이러한 효과를 얻기 위해서는 0.3% 이상 함유시켜야 한다.Mn is an important element for improving the hardenability and an element that inhibits the generation of graphite during annealing of high carbon steel. In order to obtain such an effect, it must contain 0.3% or more.

그러나, Mn량이 너무 많으면 구상화소둔시 세멘타이트의 구상화가 어려워져 구상화소둔 시간을 길게해야 하며, 또한 인성도 저하되므로 상한을 0.8%로 설정하였다.However, when the amount of Mn is too large, the nodularization of cementite during spheroidizing annealing becomes difficult, and the spheroidizing annealing time needs to be lengthened, and the toughness also decreases, so the upper limit is set to 0.8%.

Cr은 열간압연을 위해 재가열시 표면탈탄을 억제하는 중요한 원소이다. 이에 더하여 Mn과 마찬가지로 경화능을 향상시키고 흑연발생을 저해하는 원소이다. 이를 위해 0.1% 이상은 함유되어야 한다. 그러나 Cr량이 너무 많으면 구상화소둔이 어렵고, 산세성이 열화되며 인성도 감소되므로 0.5%를 상한으로 설정하였다.Cr is an important element for suppressing surface decarburization during reheating for hot rolling. In addition, like Mn, it is an element that improves hardenability and inhibits graphite generation. To this end, at least 0.1% must be contained. However, if the amount of Cr is too high, spheroidizing annealing is difficult, pickling deteriorates and toughness is also reduced, so 0.5% is set as an upper limit.

Al은 탈산제로서 중요한 원소일뿐만 아니라 열처리시 AIN을 형성하여 결정립 미세화 원소로도 큰 역할을 한다. 이를 위해 Al량은 0.005% 이상 함유하는 것이 좋다. 그러나 Al량이 너무 많으면 소둔시 흑연의 발생이 쉽고, 알루미나계 개재물에 의해 인성이 열화되므로 0.015% 이하로 설정하였다.Al is not only an important element as a deoxidizer, but also forms a AIN during heat treatment and plays a large role as a grain refining element. For this purpose, the Al content is preferably contained 0.005% or more. However, if the amount of Al is too large, it is easy to generate graphite during annealing and the toughness is degraded by the alumina inclusions, so it is set to 0.015% or less.

N은 Al과 함께 AIN로 석출하여 열처리시 결정립을 미세화시키는 아주 중요한 원소이다. 이를 위해 0.005% 이상은 함유되어야 한다. 그러나 N량이 너무 많으면 인성이 저하되므로 0.015% N 이하로 설정하였다.N is a very important element that precipitates AIN together with Al to refine the grains during heat treatment. To this end, 0.005% or more must be contained. However, if the amount of N is too large, toughness is lowered, so it is set at 0.015% N or less.

S는 Mn과 함께 MnS를 생성하여 인성 감소에 큰 영향을 주는 원소이다. S량이 적을수록 인성이 좋지만 특히 0.006% 이상에서는 인성을 크게 열화시키기 때문에 상한을 0.006%로 설정하였다.S is an element which produces MnS together with Mn and greatly affects the toughness reduction. The smaller the amount of S, the better the toughness, but especially at 0.006% or more, the toughness deteriorated greatly, so the upper limit was set to 0.006%.

이하, 본 발명의 고탄소강대 제조방법에 관해 설명한다.Hereinafter, the manufacturing method of the high carbon steel strip of this invention is demonstrated.

본 발명에서는 상기와 같은 성분을 갖는 강을 재가열 한 다음, 통상의 방법으로 열간압연한다. 열간압연공정에서는 표면 탈탄 방지 및 조직미세화가 중요하다.In the present invention, the steel having the above components is reheated and then hot rolled in a conventional manner. In the hot rolling process, it is important to prevent surface decarburization and to refine the structure.

표면탈탄은 통상 열간압연전 재가열온도가 높을수록, 시간이 길수록 그 정도가 증가하는데, 그 정도가 열연판두께의 0.5% 이하일 경우에는 최종 열처리재의 경도 및 변형에 큰 영향을 주지 않는다.Surface decarburization usually increases with a higher reheating temperature before hot rolling, and with a longer time. If the surface decarburization is less than 0.5% of the thickness of the hot rolled sheet, it does not significantly affect the hardness and deformation of the final heat treatment material.

그러나 그 이상의 표면탈탄은 고탄소강의 표면 경도를 감소시켜 내마모성을 저해할 뿐만 아니라, 열처리시에 변형도 초래하는 문제점이 있다. 이를 방지하기 위해 열간압연전 재가열 온도를 낮추고 시간을 줄여야 하는데, 본 발명에서는 재가열온도는 1250℃ 이하, 가열로에서의 유지시간인 재로시간은 250분 이하로 제한함이 바람직하다.However, further surface decarburization reduces the surface hardness of the high carbon steel, which not only inhibits wear resistance but also causes deformation during heat treatment. In order to prevent this, the reheating temperature before hot rolling should be lowered and the time should be shortened. In the present invention, the reheating temperature is preferably 1250 ° C. or less, and the holding time, which is a holding time in a heating furnace, is limited to 250 minutes or less.

상기와 같이 재가열된 강은 통상의 방법으로 열간압연되어 권취되는데, 이때 조직미세화는 구상화소둔성, 냉간압연성 및 인성을 향상시키기 위해 중요하다. 즉, 조직이 미세할수록 구상화가 미세하고 조기에 이루어지며, 이에따라 냉간압연성이 향상되고, 열처리 온도 및 시간을 단축할 수 있으므로 열처리조직이 미세하여 인성이 크게 향상된다.The reheated steel as described above is hot rolled and wound in a conventional manner, in which tissue micronization is important for improving spheroidizing annealing, cold rolling and toughness. That is, the finer the texture, the more spherical and finer the spheroidization is. Thus, the cold rolling property is improved and the heat treatment temperature and time can be shortened, so that the heat treatment structure is fine and the toughness is greatly improved.

통상 열연강판에서의 조직미세화는 권취온도에 가장 크게 좌우되는데, 권취온도가 높을수록 조직이 조대하게 되어 구상화가 어려워진다. 그러나 권취온도가 너무 낮으면 항복강도가 너무 높아 권취가 어렵고, 권취시 균열발생이 쉽다. 따라서 권취온도는 580-670℃로 제한함이 바람직한데, 그 이유는 권취온도가 670℃ 이상에서는 조대한 조직이되고 580℃ 이하에서는 베이나이트조직이 되면서 권취성이 악화되고 열연판에서의 엣지균열이 발생하기 쉽기때문이다.In general, the microstructure of the hot rolled steel sheet is most dependent on the coiling temperature. The higher the coiling temperature is, the more coarse the tissue is, the more difficult it is to form. However, if the coiling temperature is too low, the yield strength is too high, the winding is difficult, and cracking easily occurs during winding. Therefore, it is preferable to limit the winding temperature to 580-670 ℃, because the winding temperature becomes coarse structure above 670 ℃ and bainite structure below 580 ℃, and the winding property deteriorates and edge cracks in the hot rolled sheet. This is easy to occur.

상기 온도범위로 권취된 열연강대를 산세한 다음 구상화소둔처리를 하게되는데, 구상화소둔 공정에 있어 처리온도가 A1변태점(공석변태온도, 720℃) 이상일 경우에는 구상화된 세멘타이트의 크기가 조대화하여, 열처리를 위해 가열시 오스테나이트상으로 탄화물을 고용시키기 위해서는 고온에서 장시간이 필요하므로 인성을 저하시킨다. 그러나 650℃ 이하에서는 구상화소둔이 어려워 장시간이 필요할 뿐만 아니라 구상화율도 떨어진다. 그래서 구상화소둔 온도는 650℃-A1변태점으로 설정하였다.The hot rolled steel coil wound in the above temperature range is pickled and then subjected to spheroidizing annealing. When the treatment temperature is higher than A 1 transformation point (vacant transformation temperature, 720 ° C.) in the nodular annealing process, the size of spheroidized cementite is coarsened. Therefore, in order to solidify the carbide in the austenite phase during heating for heat treatment, toughness is lowered because a long time is required at high temperature. However, below 650 ° C, spheroidization annealing is difficult, so long time is required and spheroidization rate is lowered. Therefore, the nodular annealing temperature was set at 650 ° C-A 1 transformation point.

이때, 구상화소둔은 비산화성 분위기에서 5-20시간 동안 하는 것이 바람직하다.At this time, the spheroidizing annealing is preferably performed for 5-20 hours in a non-oxidizing atmosphere.

구상화소둔처리된 강대는 냉간압연되는데, 이때, 냉간압하율은 60% 이하로 함이 바람직하다. 그 이유는 상기 냉간압하율이 60% 이상에서는 가공경화에 의해 엣지균열이 발생되기 쉽기 때문이다.Spherical annealing steel strip is cold rolled, wherein the cold reduction rate is preferably 60% or less. This is because edge cracking is likely to occur due to work hardening when the cold reduction ratio is 60% or more.

연화소둔 공정에 있어 온도가 너무 높으면 세멘타이트가 조대화되고, 온도가 너무 낮으면 냉간압연에 의해 가공경화된 페라이트가 충분히 재결정되지 못해 소둔후에 경도가 높게되어 냉간압연성이 저하된다. 따라서 연화소둔 온도를 600℃-A1변태점 이하로 설정하였다.In the soft annealing process, if the temperature is too high, the cementite becomes coarse. If the temperature is too low, the work hardened ferrite by cold rolling cannot be sufficiently recrystallized and the hardness becomes high after annealing, thereby deteriorating the cold rolling property. Therefore, the softening annealing temperature was set to 600 ° C-A 1 transformation point or less.

이때, 연화소둔은 산화가 일어나지 않는 분위기에서 5-20시간 동안 열처리하는 것이 바람직하다.At this time, the soft annealing is preferably heat-treated for 5-20 hours in an atmosphere where oxidation does not occur.

연화소둔후 조질압연된 냉연판을 원형톱에 필요한 경도(HRC : 40-47)를 얻기 위해 A3변태점(페라이트에서 오스테나이트로 변태하는 온도) 이상의 온도에서 세멘타이트가 충분히 고용되도록 탈탄이 일어나지 않는 분위기로 5-30분동안 유지한 다음 기름에 켄칭하고 템퍼링한다.After soft annealing, decarburization does not occur so that cementite is sufficiently employed at temperatures above the A 3 transformation point (the temperature at which ferrite to austenite is transformed) to obtain the hardness (HRC: 40-47) required for the rough-rolled cold rolled sheet. Hold for 5-30 minutes in the atmosphere, then quench and temper the oil.

상기 템퍼링은 최종제품에서 요구되는 경도에 따라 열처리온도 및 시간을 조절하여 대기중에서 열처리하는 것이 바람직하다.The tempering is preferably heat treated in the atmosphere by adjusting the heat treatment temperature and time according to the hardness required in the final product.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

하기 표 1과 같은 화학성분을 갖는 강을 재가열온도 1240℃, 제로시간 230분의 조건에서 재가열한 후 통상의 열간압연으로 두께 4.0mm로 마무리압연후 650℃로 권취하였다. 이와 같이 권취된 열연판을 산세하고 비산화성 분위기에서 구상화소둔을 행하였다. 이때, 구상화소둔은 A1변태점 이하인 720℃에서 10시간 실시하였다. 상기와 같이 구상화된 소재를 압하율 40%로 냉간압연후 700℃에서 7시간 연화소둔후 조질압연을 실시하여 2.3mm 조질압연판을 제조하였다. 이와 같이 조질압연판을 A3변태점 이상의 온도인 825℃에서 15분 열처리한 후, 60% 온도의 기름에 켄칭하였다. 켄칭후 소재를 450℃에서 30분동안 템퍼링하였다.The steel having the chemical composition shown in Table 1 was reheated at a reheating temperature of 1240 ° C. and a zero time of 230 minutes, and then wound up to 650 ° C. after finishing rolling to a thickness of 4.0 mm using normal hot rolling. The hot rolled sheet thus wound was pickled and spheroidized annealing was performed in a non-oxidizing atmosphere. At this time, the spheroidizing annealing is A 1 transformation point or less was performed at 720 ℃ 10 hours. The spheroidized material as described above was cold-rolled at a rolling reduction of 40%, followed by temper rolling after softening annealing at 700 ° C. for 7 hours to prepare a 2.3 mm tempered rolled plate. Thus, the tempered rolled sheet was heat-treated at 825 ° C. for 15 minutes or more at A 3 transformation point, and then quenched in oil at 60% temperature. After quenching the material was tempered at 450 ° C. for 30 minutes.

하기 표 1에서 강종(1-5)는 본 발명에서 규정하는 화학성분 범위내의 발명재이고, 강종(6-11)은 본 발명에서 비교를 위해 용해한 비교재이다.In the following Table 1, steel grade (1-5) is an invention material within the chemical component range prescribed | regulated by this invention, and steel grade (6-11) is the comparative material melt | dissolved for comparison in this invention.

상기 표 1의 강종중 발명재(1)과 비교재(11)을 재가열온도 1270℃, 재로시간 260분의 조건으로 재가열한 후 두께 4.0mm로 열간압연한 강판의 탈탄층 깊이와, 1240℃에서 230분 재가열한 경우의 탈탄층 깊이를 측정하여 그 결과를 하기 표 2에 나타내었다.After reheating the invention material (1) and the comparative material (11) of the steel grades of Table 1 under the condition of reheating temperature of 1270 ℃, 260 minutes of reheating time and the thickness of the decarburized layer of the hot rolled steel sheet to 4.0mm, 230 at 1240 ℃ The decarburized layer depth in the case of reheating was measured and the results are shown in Table 2 below.

상기 표 2에서 알 수 있는 바와 같이 Cr이 첨가되지 않은 비교재(11)의 경우에는 발명재(1)의 경웨 비해 탈탄층이 매우 큼을 알 수 있으며, 또한 비교를 위해 재가열 조건을 1270℃×260분으로 했을때 탈탄층 깊이가 크게 증가함을 알 수 있다. 따라서 열연판에서 탈탄층을 목표하는 깊이인 20㎛ 이하로 얻기 위해서는 재가열조건을 본 발명의 범위인 재가열온도 : 1250℃ 이하, 재로시간 : 250분 이하로 제한해야한다.As can be seen from Table 2, in the case of the comparative material 11 without Cr added, the decarburized layer was much larger than that of the inventive material 1, and the reheating condition was 1270 ° C × 260 for comparison. It can be seen that the depth of the decarburized layer is greatly increased when the powder is divided into minutes. Therefore, in order to obtain a decarburized layer in the hot rolled sheet to a target depth of 20 μm or less, the reheating conditions should be limited to a reheating temperature of 1250 ° C. or less, 250 min or less of the present invention.

권취온도가 열연판의 균열발생 및 구상화에 미치는 영향을 알기 위해 상기 표 1의 발명재(1)의 강종을 하기 표 3의 권취온도로 권취한후 균열발생 유무를 관찰하고, 720℃에서 10시간 구상화소둔처리한 후 구상화율을 측정하여 그 결과를 하기 표 3에 나타내었다.In order to know the effect of the winding temperature on the crack formation and spheroidization of the hot rolled sheet, after winding the steel grade of the invention material (1) of Table 1 to the winding temperature of the following Table 3 and observed the crack occurrence, 10 hours at 720 ℃ After the spheroidizing annealing treatment, the spheroidization rate was measured and the results are shown in Table 3 below.

(*구상화소둔 조건 : 720℃×10시간)(* Spherical annealing condition: 720 ℃ × 10 hours)

상기 표 3에 나타난 바와 같이, 권취온도가 본 발명의 범위보다 낮을 경우에는 구상화율은 증가하나 엣지균열이 발생하고, 반면에 권취온도가 본 발명의 범위보다 높아지면 균열발생은 억제되나 구상화율은 감소하게됨을 알 수 있다.As shown in Table 3, when the coiling temperature is lower than the range of the present invention, the spheroidization rate is increased but edge cracking occurs. On the other hand, when the coiling temperature is higher than the range of the present invention, cracking is suppressed, but the spheroidization rate is It can be seen that the decrease.

상기 표 1의 발명재(1, 2, 4) 강종과 비교재(9, 10) 강종을 각각 하기 표 4와 같은 구상화소둔처리 조건으로 구상화처리한 후, 구상화율을 측정하고 그 결과를 하기 표 4에 나타내었다.After spheroidizing the inventive material (1, 2, 4) steel grade and the comparative material (9, 10) steel of Table 1 under the spheroidizing annealing conditions as shown in Table 4, respectively, the spheroidization rate was measured and the results are shown in the following table. 4 is shown.

상기 표 4에서 알 수 있는 바와 같이, Mn, Cr 함유량이 높은 No.9과 No.10은 구상화율이 현저하게 떨어짐을 알 수 있다. 구상화조건에서 구상화온도가 낮은 경우에도 구상화율이 떨어진다. 구상화율이 낮으면 냉간압연시 균열발생 가능성이 높고, 열처리성이 떨어지게 된다.As can be seen from Table 4, it can be seen that No. 9 and No. 10 having a high Mn and Cr content significantly decreased the spheroidization rate. In the nodularization conditions, the nodularization rate drops even when the nodularization temperature is low. If the spheroidization rate is low, there is a high possibility of cracking during cold rolling, and the heat treatment is inferior.

상기 표 4에서 알 수 있을 바와 같이, 본 발명의 강종범위를 벗어나는 비교재(9, 10) 강종의 경우에는 Mn 및 Cr 함유량이 많으므로 인하여 구상화율이 본 발명의 강종범위를 만족하는 발명재(1, 2, 4) 강종의 경우보다 현저하게 떨어짐을 알 수 있으며, 또한 각 강종에서 구상화소둔처리 온도가 본 발명의 구상화소둔처리 온도보다 낮은 경우에도 구상화율이 떨어짐을 알 수 있다. 이와 같이 구상화율이 낮으면 냉간압연시 균열발생 가능성이 높고, 열처리성이 떨어지게된다. 따라서 본 발명에서는 구상화소둔처리시 온도를 650℃-A변태점 온도범위로 함이 바람직하다.As can be seen in Table 4, in the case of the comparative materials (9, 10) steel grades outside the steel grade range of the present invention, the spheroidization rate satisfies the steel grade range of the present invention due to the high content of Mn and Cr ( 1, 2, 4) It can be seen that the steel sheet is significantly lower than the case, and also the spheroidizing annealing temperature in each steel class is lower than the nodular annealing temperature of the present invention. As such, the low spheroidization rate increases the likelihood of cracking during cold rolling and lowers the heat treatment property. Therefore, in the present invention, the spheroidizing annealing temperature is preferably set to a temperature range of 650 ° C-A transformation point.

상기 표 1의 발명재(1) 강종을 하기 표 5와 같은 냉간압연 압하율로 냉간압연하고 균열발생 유무를 관찰하여 그 결과를 하기 표 5에 나타내었다.The invention (1) steel grade of Table 1 was cold-rolled at the cold rolling reduction rate as shown in Table 5 and observed for the occurrence of cracks are shown in Table 5 below.

상기 표 5에서 알 수 있는 바와 같이, 냉간압하율이 본 발명의 범위를 만족하는 경우에는 균열발생이 없었으나, 본 발명의 범위를 만족하기 못하였을 경우에는 냉간압하율이 증가되어 가공경화에 의해 엣지균열이 발생함을 알 수 있다.As can be seen in Table 5, if the cold reduction rate does not satisfy the range of the present invention, there was no cracking, but if the cold reduction rate did not satisfy the range of the present invention, the cold reduction rate was increased to increase the cold reduction rate. It can be seen that edge cracking occurs.

따라서 본 발명에서는 냉간압하율을 60% 이하로 함이 바람직하다.Therefore, in the present invention, it is preferable that the cold reduction rate is 60% or less.

상기 표 1의 발명재(1, 2) 강종과 비교재(8) 강종을 조질압연후 흑연 발생유무를 관찰하고 그 결과를 하기 표 6에 나타내었다.After the temper rolling of the inventive material (1, 2) and the comparative material (8) of Table 1, the presence of graphite was observed and the results are shown in Table 6 below.

상기 표 6에서 알 수 있는 바와 같이, 본 발명의 강종범위를 만족하는 발명재(1, 2) 강종의 경우에는 흑연발생이 없었으나, 본 발명의 범위를 벗어나는 비교재 강종중 특히, Al 함량이 많은 비교재(8) 강종에서 흑연이 발생됨을 알 수 있다. 이와 같이 냉연판에서 흑연이 발생되는 열처리성이 크게 떨어지게되는 문제점이 있다.As can be seen in Table 6, the invention (1, 2) steel grades satisfying the steel grade range of the present invention, there was no graphite generation, especially among the comparative steel grades outside the scope of the present invention, the Al content is high It can be seen that graphite is generated in the steel of the comparative material 8. As such, there is a problem in that the heat treatment property in which graphite is generated in the cold rolled sheet is greatly degraded.

따라서 본 발명에서 강종중 Al의 함량범위는 0.005-0.015중량%로 함이 바람직하다.Therefore, the content range of Al in the steel species in the present invention is preferably set to 0.005-0.015% by weight.

상기 표 1의 발명재(1-5) 강종과 비교재(6, 7) 강종 및 하기 표 7의 종래재인 SK5 강종, SKS5 강종을 열처리한 후 결정립 크기와 템퍼링후 경도 및 충격치를 측정하여 그 결과를 하기 표 7에 나타내었다.After the heat treatment of the inventive material (1-5) steel and the comparative material (6, 7) of the Table 1 and the conventional SK5 steel, SKS5 steel of the conventional material of Table 7 and then measured the grain size and the hardness and impact value after tempering It is shown in Table 7 below.

상기 표 7에서 템퍼링후 충격치 시험치 시험온도는 0℃였다. 그리고 종래재 SK5와 SKS5 강종의 템퍼링 후 경도 및 충격치 값은 吉井, 齊藤 等 : 住友金屬, Vol. 42,No. 5(1990)P. 71로부터 인용한 것이다.In Table 7, the impact test value test temperature after tempering was 0 ° C. The hardness and impact values of the conventional SK5 and SKS5 steels after tempering were 吉 井, 藤 藤: 住友 金 屬, Vol. 42, No. 5 (1990) P. From 71.

상기 표 7에서 알 수 있는 바와 같이, 세멘타이트가 충분히 오스테나이트로 용해될 수 있는 열처리조건에서 오스테나이트의 결정립 크기를 보면 Al과 N가 함유되어 있는 발명재(1-5) 강종 및 비교재(6) 강종은 결정립 크기가 미세한데 비해, Al량이 거의 없는 비교재(7) 강종에서는 결정립이 조대함을 알 수 있다. 이와 같이 Al과 N이 함유되어 있는 강에서 결정립 크기가 작은 이유는 AlN의 석출에 의해 결정립 성장을 억제하기 때문이다. 템프링된 마르텐사이트의 인성은 오스테나이트의 결정립의 크기에 지배되므로 오스테나이트 결정립 크기가 크게되면 인성은 저하된다. 그러므로 본 발명재(1-5) 강종의 경우 우수한 인성을 얻을 수 있음을 알 수 있다.As can be seen in Table 7, the grain size of the austenite and the comparative material containing Al and N were found in the grain size of the austenite under heat treatment conditions in which cementite was sufficiently dissolved in austenite. 6) Although the grain size is fine, the grain size is coarse in the comparative steel material (7) having little Al content. The reason why the grain size is small in the steel containing Al and N is that grain growth is suppressed by precipitation of AlN. Since the toughness of the tempered martensite is governed by the size of the austenite grains, the toughness decreases when the austenite grain size increases. Therefore, it can be seen that excellent toughness can be obtained in the case of the inventive steel (1-5).

상기 표 7에서 템퍼링후 경도는 본 발명재(1-5) 강종의 경우 비교재(6-7) 강종 및 종래재 SK5, SKS5 강종과 비교하여볼때, 동등한 수준의 경도를 나타냄을 알 수 있다.In Table 7, it can be seen that the hardness after the tempering of the present invention material (1-5) is comparable to that of the comparative material (6-7) and the conventional SK5 and SKS5 steel grades.

템프링후의 경도는 오스테나이트 경정립 크기와는 거의 무관하고 탄소의 함량에 의해 좌우되므로 탄소함량이 낮은 발명재(5) 강종은 경도가 다소 낮다.Since the hardness after tempering is almost independent of the size of the austenite hard grain and depends on the carbon content, the steel of the invention material (5) having a low carbon content has a somewhat low hardness.

그러나 탄소의 함량이 0.8 이상이 되면 탄소함량의 증가에 따라 경도의 변화는 거의 없다. 템프링후의 충격치를 보면 Cr과 Mn량이 다소 많은 발명재(2) 강종과 (4)강종에서는 충격치는 다소 낮지만 본 발명재가 비교재와 SK5에 비해 40% 이상 충격치가 향상되었으며, Ni이 1.2% 이상 첨가된 SKS5와 유사한 값을 가짐을 알 수 있다. 이는 본 발명에서 개발한 방법에 의해 값싸고 인성이 우수한 고탄소강대를 제조할 수 있음을 나타낸다.However, when the carbon content is more than 0.8, there is little change in hardness as the carbon content increases. In the impact value after tempering, the impact value of the invention materials (2) and (4) steels, which have a large amount of Cr and Mn, is slightly lower, but the invention materials have improved the impact value by more than 40% compared to the comparative materials and SK5, and Ni is 1.2%. It can be seen that it has a value similar to the SKS5 added above. This indicates that the high-carbon steel sheet which is cheap and excellent in toughness can be manufactured by the method developed in the present invention.

상술한 바와 같이, 본 발명은 탈산제로 첨가되는 Al과 강중에 존재하는 N를 적정하게 관리하고, 소량의 합금원소를 첨가하므로서 인성이 우수한 고탄소강대를 저렴하게 제조할 수 있어 원형톱의 안전성 향상, 고탄소강대의 수요 증대에 크게 기여하는 효과가 있다.As described above, the present invention properly manages Al added as a deoxidizer and N present in the steel, and by adding a small amount of alloying elements, a high-carbon steel sheet excellent in toughness can be manufactured at low cost, thereby improving the safety of the circular saw. As a result, it has the effect of greatly increasing the demand for high carbon steel strips.

Claims (2)

중량%로, C : 0.6-09%, Si : 0.1-0.5%, Mn : 0.3-0.8%, Cr : 0.1-0.5%, Al : 0.005-0.015%, N : 0.005-0.015%, S : 0.006% 이하, 나머지 Fe 및 불순물로 조성되며, 그 조직이 마르텐사이트 조직임을 특징으로 하는 인성이 우수한 고탄소강대.By weight, C: 0.6-09%, Si: 0.1-0.5%, Mn: 0.3-0.8%, Cr: 0.1-0.5%, Al: 0.005-0.015%, N: 0.005-0.015%, S: 0.006% Hereinafter, a high carbon steel strip having excellent toughness, which is composed of the remaining Fe and impurities, and whose structure is a martensite structure. 중량%로, C : 0.6-09%, Si : 0.1-0.5%, Mn : 0.3-0.8%, Cr : 0.1-0.5%, Al : 0.005-0.015%, N : 0.005-0.015%, S : 0.006% 이하, 나머지 Fe 및 불순물로 조성되는 강을 재가열온도 : 1250℃ 이하 및 재로시간 : 250분 이하로 재가열한 후, 통상의 방법으로 열간 압연하여 열연강대를 만들고, 이 열연강대를 580-670℃ 온도범위에서 권취하여 산세한 다음, 650℃-A1변태점온도 범위에서 비산화성 분위기로 5-20시간 구상화소둔 후 60% 이하의 압하율로 냉간압연하고, 이어서 600℃-A1변태점온도 범위에서 비산화성 분위기로 5-20시간 연화소둔 후, 통상의 방법인 A3변태점 이상의 온도로 비탈탄분위기에서 5-30분 가열유지하고 유냉한다음 템퍼링하여 이루어지는 것을 특징으로 하는 인성이 우수한 고탄소강대의 제조방법.By weight, C: 0.6-09%, Si: 0.1-0.5%, Mn: 0.3-0.8%, Cr: 0.1-0.5%, Al: 0.005-0.015%, N: 0.005-0.015%, S: 0.006% The steel, which is composed of the remaining Fe and impurities, is then reheated to a reheating temperature of 1250 ° C. or lower and a 250 min or less of time, and then hot rolled in a conventional manner to form a hot rolled steel strip, and the hot rolled steel strips of 580-670 ° C. Winding and pickling in the range, and then annealed for 5-20 hours in a non-oxidizing atmosphere in the 650 ℃ -A 1 transformation temperature range, cold-rolled to a rolling reduction of less than 60%, then scattered in the 600 ℃ -A 1 transformation temperature range. After softening annealing for 5-20 hours in a Martian atmosphere, the method of manufacturing high-carbon steel sheet having excellent toughness, characterized in that it is maintained by heating for 5-30 minutes in a non-carburizing atmosphere at a temperature not lower than A 3 transformation point, which is a common method, and then cooled and tempered. .
KR1019940034276A 1994-12-14 1994-12-14 Making method of high carbon steel strip and the same product KR970004991B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940034276A KR970004991B1 (en) 1994-12-14 1994-12-14 Making method of high carbon steel strip and the same product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940034276A KR970004991B1 (en) 1994-12-14 1994-12-14 Making method of high carbon steel strip and the same product

Publications (2)

Publication Number Publication Date
KR960023128A KR960023128A (en) 1996-07-18
KR970004991B1 true KR970004991B1 (en) 1997-04-10

Family

ID=19401560

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940034276A KR970004991B1 (en) 1994-12-14 1994-12-14 Making method of high carbon steel strip and the same product

Country Status (1)

Country Link
KR (1) KR970004991B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276285B1 (en) * 1996-08-30 2000-12-15 이구택 The manufacturing method for decarburizing steel sheet with excellent bending workability
KR100524617B1 (en) * 2000-12-27 2005-11-02 주식회사 포스코 High carbon tool steel strip with high impact toughness
KR100815748B1 (en) * 2001-12-12 2008-03-20 주식회사 포스코 Method of manufacturing high carbon tool steel strip for thick plate with high hardenability and impact resistance

Also Published As

Publication number Publication date
KR960023128A (en) 1996-07-18

Similar Documents

Publication Publication Date Title
JPH08337843A (en) High carbon hot rolled steel sheet excellent in punching workability and its production
JPH09170017A (en) Production of steel plate with high strength and high toughness
JPH07179985A (en) High strength suspension spring excellent in corrosion resistance and its production
CN113692456A (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JPH039168B2 (en)
JPH04349A (en) Bearing steel excellent in workability and rolling fatigue characteristic
KR970004991B1 (en) Making method of high carbon steel strip and the same product
JPS6362568B2 (en)
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JP2004124190A (en) Induction-tempered steel having excellent twisting property
KR101353551B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR100524617B1 (en) High carbon tool steel strip with high impact toughness
KR102485008B1 (en) High carbon cold rolled steel sheet having high toughness and method of manufacturing the same
KR102494553B1 (en) High toughness high carbon cold rolled steel sheet having excellnet formability and method of manufacturing the same
KR101115718B1 (en) High strength steel having excellent delayed fracture resistance and elongation and method for producing the same
KR102502011B1 (en) Qt heat treated high carbon hot rolled steel sheet, high carbon cold rolled steel sheet, qt heat treated high carbon cold rolled steel shhet and method of manufacturing thereof
JPS59159971A (en) Steel for cold forging with superior hardenability
KR102348549B1 (en) Steel having excellent workability and manufacturing method thereof
KR100815748B1 (en) Method of manufacturing high carbon tool steel strip for thick plate with high hardenability and impact resistance
KR100742871B1 (en) A Process for manufacturing High Carbon Containing Steels with Smooth Sheared Planes
KR100605723B1 (en) High strength steel having excellent delayed fracture resistance and method for producing the same
KR101115716B1 (en) High strength steel having excellent delayed fracture resistance and low yield ratio and method for producing the same
KR101115769B1 (en) High strength steel having excellent delayed fracture resistance and low yield ratio and method for producing the same
KR101115811B1 (en) High strength steel having excellent delayed fracture resistance and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100727

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee