KR970001328B1 - Method for manufacturing maraging steel - Google Patents

Method for manufacturing maraging steel Download PDF

Info

Publication number
KR970001328B1
KR970001328B1 KR1019940001134A KR19940001134A KR970001328B1 KR 970001328 B1 KR970001328 B1 KR 970001328B1 KR 1019940001134 A KR1019940001134 A KR 1019940001134A KR 19940001134 A KR19940001134 A KR 19940001134A KR 970001328 B1 KR970001328 B1 KR 970001328B1
Authority
KR
South Korea
Prior art keywords
electrode
slag
maraging steel
esr
vim
Prior art date
Application number
KR1019940001134A
Other languages
Korean (ko)
Other versions
KR950023734A (en
Inventor
서창규
구명희
Original Assignee
삼미종합특수강 주식회사
이성규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼미종합특수강 주식회사, 이성규 filed Critical 삼미종합특수강 주식회사
Priority to KR1019940001134A priority Critical patent/KR970001328B1/en
Publication of KR950023734A publication Critical patent/KR950023734A/en
Application granted granted Critical
Publication of KR970001328B1 publication Critical patent/KR970001328B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Process for preparing a maraging steel consists i)melting a conventional maraging steel by VIM(vacuum induction melting) to give an electrode for consumption electrode slag remelting(ESR) under vacuum, ii)melting the electrode with slag which is composed of 60-70 wt.% of CaF2, 10-20 wt.% of Al2O3, and 10-20 wt.% of TiO2 followed by adding an aluminium shot in an argon atmosphere. The maraging steel has an improved impact tenacity.

Description

충격인성이 향상된 마르에이징강(Maraging steel)의 제조방법Manufacturing method of maraging steel with improved impact toughness

제1도는 산화물계 비금속 개재물의 함량을 비교한 그래프.1 is a graph comparing the content of the oxide-based non-metal inclusions.

제2도는 충격인성 비교 그래프.2 is a comparison graph of impact toughness.

본 발명은 마르에이징강(Maraging steel)의 제조방법에 관한 것으로, 특히 진공유도용해(VIM)와 소모전극식 스라그재용해(ESR)를 이용하여 강도를 유지하면서 충격인성을 향상시키는 제조방법에 관한 것이다.The present invention relates to a method of manufacturing maraging steel, and more particularly, to a method of improving impact toughness while maintaining strength by using vacuum induction melting (VIM) and consumed electrode slag dissolution (ESR). It is about.

마르에이징강은 항공산업의 구조재로나 기계부품, 정밀공업 및 방위산업 등에 사용되는 고강도, 고인성 특수합금이다.Maraging steel is a high strength, high toughness special alloy used in structural materials of the aerospace industry, machine parts, precision industry and defense industry.

이런 용도에 사용되는 마르에이징강 조성은 일반적으로 니켈(Ni), 몰리브덴(Mo), 티타늄(Ti), 알루미늄(Al), 코발트(Co), 필료에 따라 미량의 지르코늄(Zr), 붕소(B) 및 칼슘(Ca)이 첨가되어지고, 탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S)으로 된 불순물과 나머지는 철(Fe)로 이루어진다.The maraging steel composition used for these applications is generally nickel (Ni), molybdenum (Mo), titanium (Ti), aluminum (Al), cobalt (Co), trace amounts of zirconium (Zr), boron (B) ) And calcium (Ca) are added, and impurities of carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulfur (S) and the remainder are made of iron (Fe).

이런 마르에이징강은 재료특성을 확보하기 위해 1차용해 및 재용해공정의 최적화를 통해 불순물 원소들의 극미량제어, 비금속 개재물의 최소화, 합금성분의 엄밀제어, 응고조직 및 편석의 개선이 확보되어야 한다.In order to secure the material properties, such maraging steels should be optimized for the primary melting and re-melting process to minimize the control of impurity elements, minimize the non-metallic inclusions, control the rigidity of alloy components, and improve the solidification structure and segregation.

이러한 목적은 달성하기 위해 현재까지 대표적으로 적용되는 용해공정은 고품위의 원재료를 사용하여 진공유도용해법(VIM)에 의해 1차 용해를 실시하여 소모전극을 제조하고 이 전극을 다시 진공아크재용해(VAR)하여 성분의 엄밀데어, 불순물 원소 및 가스함량의 저하, 비금속 개재물 저하, 응고조직의 미세화등의 효과를 얻는 VIM+VAR 처리공정이다(국내특허공보 87-2074호에서는 Co를 함유사키지 않은 마르에이징강으로서 이때의 용해공정 역시 VIM+VAR공정으로 처리하고 있다).In order to achieve this purpose, the typical dissolution process is to perform primary dissolution by vacuum induction dissolution method (VIM) using high quality raw materials to manufacture the consumed electrode, and then vacuum arc remelting (VAR). VIM + VAR treatment process to obtain the effect of rigidity of components, lowering of impurity elements and gas content, lowering of non-metallic inclusions, miniaturization of solidification structure, etc. (Korean Patent Publication No. 87-2074). As the aging steel, the melting process at this time is also treated by VIM + VAR process).

그러나 이러한 방법은 저렴한 고철(scarp)의 사용이 제한되어 제조원가가 증가되며 진고유도용해(VIM)에서 생성된 산화물계 비금속 개재물이 재용해 공정에서 제거되지 못하고 잔존하는 문제점이 있다.However, this method has a problem in that the use of inexpensive scrap is limited and the manufacturing cost is increased, and oxide-based nonmetallic inclusions generated in true induction melting (VIM) cannot be removed in the remelting process and remain.

또한 상기한 공정과는 달리 제조원가의 절감을 위한 방법으로서 다량의 고철(scrap)을 사용하여 전기로용해 및 진공산소탈탄법(VOD) 또는 아르곤산소탈탄법(AOD)을 통해 전극을 제조한 후 이를 소모전극식 스라그 재용해(ESR)를 통해 비금속 개재물이 저하된 강피(Ingot)를 제조하고 있다.In addition, unlike the above-described process, as a method for reducing the manufacturing cost, the electrode is manufactured by using an electric furnace melting and vacuum oxygen decarburization (VOD) or argon oxide decarburization (AOD) using a large amount of scrap, and then consume it. Electrode slag redissolution (ESR) produces ingots with reduced non-metallic inclusions.

상기한 소모전극식 스라그 재용해(ESR) 처리시 스라그는 CaF270중량%, Al2O320중량%, TiO210중량%로 하거나 CaF 58중량%, Al2O330중량%, TiO212중량% 사용하고 있다.In the above-mentioned electrode electrode slag redissolution (ESR) treatment, slag is 70% by weight of CaF 2 , 20% by weight of Al 2 O 3 , 10% by weight of TiO 2 , or 58% by weight of CaF 2 , 30% by weight of Al 2 O 3. , and using TiO 2 12% by weight.

그러나 이 방법은 전극주조시 티타늄(Ti)계 탄질화물이 다량 생성되고 특히 이런 탄질화물은 ESR 공정에서 완전히 제거되지 못하는 단점이 있고, 가스함량에 있어서도 상기한 공정(VIM+VAR)에 비해 높기 때문에 고품위의 재료가 요구되는 분야에서는 그 사용이 제한적이다.However, this method has a disadvantage in that a large amount of titanium (Ti) -based carbonitride is produced during electrode casting, and in particular, such a carbonitride cannot be completely removed in an ESR process, and also has a higher gas content than the aforementioned process (VIM + VAR). In areas where high quality materials are required, their use is limited.

이에 본 발명은 상기한 종래의 문제점을 해결하기 위해 안출한 것으로, ESR 공정에서는 탄질화물 및 가스함량의 제거가 어렵기 때문에 1차 용해를 고품위의 원재료를 사용하는 VIM 공정으로 탄질화물 및 가스함량을 최소화 하고, 이어서 ERS 처리 함으로서 VIM에서 생성된 산화물계 비금속 개잼눌을 낮추고, 응고조직의 미세화 및 편석감소글 통해 강도를 유지하면 특히 충격인성이 향상된 마르에이징강을 제조하고자 하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above-mentioned problems, and in the ESR process, since it is difficult to remove carbonitride and gas content, the primary dissolution is performed by the VIM process using high quality raw materials. The purpose of the present invention is to reduce the oxide-based non-metallic antagonism produced by VIM by minimizing the ERS treatment and to maintain the strength through miniaturization of the solidified structure and segregation soggle.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 불가피한 불순물이 함유한 고품위의 여러원소로 조성된 마르에이징강 원료를 진공유도용해(VIM)하여 진공하에서 소모전극식 스라그 재용해(ESR)용 전극을 제조한 후 이를 중량%로서 CaF260~70%, Al2O310~20%, TiO210~20%의 스라그(slag)를 사용하여 아르곤(Ar)분위기하에서 스라그의 연속적인 탈산은 행하는 소모전극식 스라그 재용해(ESR)하는 공정으로 이루어짐을 특징으로 하는 충격인성이 향상된 마르에이징강을 제조하는 방법으로 구성된다.In the present invention, a vacuum-induced melting (VIM) of a raw material of maraging steel composed of various elements of high quality containing unavoidable impurities is made to produce an electrode for consumed electrode slag re-dissolution (ESR) under vacuum, and the CaF as a weight% is CaF. 2 Consumable electrode slag for continuous deoxidation of slag under argon (Ar) atmosphere using slag of 60 ~ 70%, Al 2 O 3 10 ~ 20%, TiO 2 10 ~ 20% It is composed of a method for producing mar aging steel with improved impact toughness, characterized in that it comprises a step (ESR).

이와 같이 본 발명은 진공유도용해(VIM)을 실시함으로써 불순미량원소 및 가스성분을 최소화 할 수 있으며, 또한 Ti계 탄, 질화물의 생성을 최소화하기 위해 탄소(C) 함량을 0.01% 이하로 제어함이 바람직하다.As such, the present invention can minimize impurities and gas components by performing vacuum induction melting (VIM), and also controls the carbon (C) content to 0.01% or less to minimize the generation of Ti-based carbon and nitride. This is preferred.

이와 같은 진공유도 용해법으로 ESR용 전극을 진공주조하여 산화물과 탄, 질화물이 최소화된 전극을 얻은 후, 용융스라그에 의해 산화물계 비금속 개재물의 저하와 응고조직의 개선이 가능한 소모전극식 스라그 재용해 법을 적용하여 저탄소이면서 산화물 및 탄질화물이 최소화된 강괴를 얻게 된다.After vacuum casting the ESR electrode by the vacuum induction melting method, the electrode, which has minimized oxide, carbon, and nitride, is obtained, and the molten slag is used for the consumption of electrode slag which can reduce the oxide-based nonmetal inclusions and improve the solidification structure. The solution is applied to obtain a low carbon ingot with minimal oxides and carbonitrides.

이때 사용되는 스라그의 조성은 탄소함량이 0.01% 이하로 관리되는 CaF2-Al2O3-TiO2이며 이들의 조성비는 중량%로써 60-70% : 10-20% : 10-20%가 된다.At this time, the composition of the slag used is CaF 2 -Al 2 O 3 -TiO 2 which is managed to less than 0.01% carbon content and the composition ratio thereof is 60% by weight 60-70%: 10-20%: 10-20% do.

상기한 스라그 조성에서 사용범위 이하에서는 Al과 Ti의 성분제어가 어렵고, 사용범위를 초과하면 사용량에 비하여 바람직한 효과를 기대할 수 없다.In the slag composition, it is difficult to control the components of Al and Ti below the use range, and when the use range is exceeded, a desirable effect cannot be expected compared to the amount used.

또한 재용해서 Ti, Al 등 활성원소의 산화손실을 방지하기 위해 알루미늄 쇼트(shot)를 일정한 간격으로 적정량 투입하여 스라그를 탈산함이 바람직하다.In addition, in order to prevent oxidation loss of active elements such as Ti and Al, an appropriate amount of aluminum shot is added at regular intervals to deoxidize slag.

이와 같은 본 발명의 용해공정은 하기에서 설명되는 실시예에서는 하나의 조성을 예시하였으나 여타의 마르에이징강의 성분에도 적용할 수 있음으로 그에 한정하지 않는다.Such a dissolution process of the present invention is not limited to the embodiment described below, which is exemplified as one composition but can be applied to other components of the maraging steel.

다음은 실시예에 따라 설명한다.The following is described according to the embodiment.

하기 (표 1)은 본 발명의 진공유도용해(VIM) 및 소모전극식 스라그 재용해(ESR)후의 화학성분을 나타낸 것이다.Table 1 below shows the chemical components after vacuum induction dissolution (VIM) and consumed electrode slag redissolution (ESR) of the present invention.

ESR에서는 저탄소, 저규소(Si)의 스라그를 사용하고 알곤 분위기하에서 스라그를 아루미늄으로 탈산함으로써 C, Si 및 S 성분의 최소화가 가능하였으며 Ti과 Al의 안정적인 균일제어가 가능하였다.ESR uses low carbon, low silicon (Si) slag and deoxidizes the slag to aluminum in argon atmosphere to minimize C, Si and S components, and stable uniform control of Ti and Al.

하기 (표 2)는 본 발명강의 가스함량을 비교한 것이다.Table 2 below compares the gas contents of the inventive steels.

상기 (표 2)에서 비교강에 따른 ESR 적용시 스라그는 CaF 58중량%, AlO30중량%, TiO12중량%를 사용한 것이다.In the application of ESR according to the comparative steel in Table 2, the slag is 58% by weight of CaF, 30% by weight of AlO, 12% by weight of TiO12.

상기 (표 2)와 같이 본 발명은 비교강에 비해 가스함량, 특히 질소 함량이 낮은데 이는 고품위의 원재를 사용하여 진공유도용해후 진공중에서 ESR용 전극을 제조하였기 때문이며 질소가 낮기 때문에 취성의 원인이 되는 Ti계 탄질화물이 적으면서 인성이 향상된 마르에이징강을 얻을 수 있었다.As shown in Table 2, the present invention has a lower gas content, especially nitrogen, than the comparative steel, because the electrode for ESR was manufactured in vacuum after vacuum induction melting using high quality raw materials. It was possible to obtain mar aging steel with improved toughness while reducing Ti-based carbonitride.

한편 제1도는 본 발명강과 VIM+VAR법으로 제조된 비교강의 산화물계 비금속 개재물의 분포를 비교한 것으로서 본 발명강의 개재물 함량이 비교강에 비해 낮은데 이는 용융스라그에 의해 1차 용해에서 생성된 산화물들이 제거되기 때문이다.1 is a comparison of the distribution of the oxide-based non-metallic inclusions of the inventive steel and the comparative steel produced by the VIM + VAR method, and the inclusion content of the inventive steel is lower than that of the comparative steel, which is an oxide produced by primary melting by molten slag. Because they are removed.

하기(표 3)은 본 발명강과 비교강의 횡방향 기계적 강도를 비교한 것이며 제2도는 종방향과 횡방향의 충격인성을 비교한 것이다.Table 3 below compares the transverse mechanical strength of the inventive steel and the comparative steel, and FIG. 2 compares the impact toughness in the longitudinal and transverse directions.

(표 3)과 제2도에서 본 발명강은 비교강에 비해 강도수준은 비슷하나 충격 인성이 훨씬 우수함을 알 수 있다.In Table 3 and Figure 2 it can be seen that the steel of the present invention is similar in strength level to that of the comparative steel but much better in impact toughness.

이와 같이 VIM+ESR법은 VOD+ESR법에 비해 Ti계 탄질화물이 적으며 VIM+VAR법에 비해서는 산화물이 적기 때문에 마르에이징강의 충격인성을 향상시키는 방법임이 입증되었다.Thus, the VIM + ESR method has been proven to improve the impact toughness of mar aging steels because it has less Ti-based carbonitride and less oxide than the VIM + ESR method.

Claims (1)

불가피한 불순원소를 포함한 여러원소로 조성된 공지의 마르에이징(Maraging steel) 원료를 진공유도용해(VIM)하여 소모전극식 스라그 재용해(ESR)용 전극을 얻는 공정과, 이 전극을 중량%로써 60~70%의 CaF210~20%의 Al2O3, 10~20%의 TiO2로 이루어진 스라그(slag)를 사용하여 아르곤(Ar) 분위기하에서 알루미늄 쇼트(shot)를 투입하여 탈산을 행하면서 소모전극식 스라그 재용해(ESR)하는 공정으로 이루어짐을 특징으로 하는 충격인성이 향상된 마르에이징강(Maraging steel)의 제조방법.Vacuum-induced melting (VIM) of a known maraging steel raw material composed of various elements including an inevitable impurity element to obtain an electrode for consumption electrode slag re-dissolution (ESR), and the electrode by weight% Deoxidation is performed by adding an aluminum shot in an argon atmosphere using slag composed of 60 to 70% of CaF 2 10 to 20% of Al 2 O 3 and 10 to 20% of TiO 2 . A method of manufacturing maraging steel with improved impact toughness, characterized in that it comprises a step of re-dissolving a consumable electrode slag (ESR).
KR1019940001134A 1994-01-21 1994-01-21 Method for manufacturing maraging steel KR970001328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940001134A KR970001328B1 (en) 1994-01-21 1994-01-21 Method for manufacturing maraging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940001134A KR970001328B1 (en) 1994-01-21 1994-01-21 Method for manufacturing maraging steel

Publications (2)

Publication Number Publication Date
KR950023734A KR950023734A (en) 1995-08-18
KR970001328B1 true KR970001328B1 (en) 1997-02-05

Family

ID=19376064

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940001134A KR970001328B1 (en) 1994-01-21 1994-01-21 Method for manufacturing maraging steel

Country Status (1)

Country Link
KR (1) KR970001328B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813335A (en) * 2021-01-25 2021-05-18 苏州金立鑫特材科技有限公司 Treatment method of V-shaped air inlet flange 410L steel for automobile

Also Published As

Publication number Publication date
KR950023734A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
CN109988971B (en) Method for producing ultra-grade pure high-speed tool steel
CN101654761A (en) Carbon-manganese composite microalloyed steel for engineering machinery and preparation method thereof
WO2023056792A1 (en) Magnesium-containing steel 45 and preparation process therefor
CN111286677B (en) Ultralow-sulfur low-aluminum high-nitrogen steel and smelting method
WO2023098919A1 (en) Manufacturing method for low-carbon nitrogen-containing austenitic stainless steel bar
US4684506A (en) Master alloy for the production of titanium-based alloys and method for producing the master alloy
KR970001328B1 (en) Method for manufacturing maraging steel
CN101323891B (en) Manufacturing method of pure high manganese steel cross frog
JPS62294150A (en) High-quality bearing steel and its production
US3907547A (en) Method of preparing vacuum-treated steel for making ingots for forging
JPS6263626A (en) Production of low oxygen ti alloy
RU2385948C2 (en) Method of receiving of stainless austenitic steel
US3107995A (en) Refining material for iron and steel and method of producing same
US5225156A (en) Clean steel composition
RU2233339C1 (en) Method of making steel
KR100331962B1 (en) Method for manufacturing high cleanliness tool steel with improved macro/micro-solidification structure
SU1705390A1 (en) Alloying additive for steel
CN105908077A (en) Nitriding steel for shaft type materials and preparing method of nitriding steel
RU2639080C1 (en) Method of steel production
JPS59153824A (en) Manufacture of maraging steel
RU1786109C (en) Process for producing titanium steel
SU804695A1 (en) Method of smelting mean and high-carbon low-alloy steels
SU577249A1 (en) Alloy for deoxidizing and alloying steel
US3899321A (en) Method of producing a vaccum treated effervescing boron steel
SU840179A1 (en) Alloy for deoxidizing and alloying steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111109

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 16

EXPY Expiration of term