KR970001220B1 - Method for preparing cyclohexylamine - Google Patents

Method for preparing cyclohexylamine Download PDF

Info

Publication number
KR970001220B1
KR970001220B1 KR1019930022379A KR930022379A KR970001220B1 KR 970001220 B1 KR970001220 B1 KR 970001220B1 KR 1019930022379 A KR1019930022379 A KR 1019930022379A KR 930022379 A KR930022379 A KR 930022379A KR 970001220 B1 KR970001220 B1 KR 970001220B1
Authority
KR
South Korea
Prior art keywords
cyclohexanol
catalyst
cyclohexylamine
mol
ammonia
Prior art date
Application number
KR1019930022379A
Other languages
Korean (ko)
Other versions
KR950011395A (en
Inventor
여은호
정원기
추학보
허만
Original Assignee
한국카프로락탐 주식회사
문영갑
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국카프로락탐 주식회사, 문영갑 filed Critical 한국카프로락탐 주식회사
Priority to KR1019930022379A priority Critical patent/KR970001220B1/en
Publication of KR950011395A publication Critical patent/KR950011395A/en
Application granted granted Critical
Publication of KR970001220B1 publication Critical patent/KR970001220B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The process for preparing cyclohexylamine by reacting cyclohexanol with ammonia consists of; a) adding cyclohexanol:ammonia:hydrogen= 1:6:2~4, b) using the cobalt type catalyst made by soaking cobalt into diatomite or silica, c) reacting at 1 atm,165~210deg.C in condition that the spacial velocity is 0.3~0.7l/catalyst.

Description

시클로헥실아민의 제조방법Method for preparing cyclohexylamine

본 발명은 시클로헥사놀과 암모니아를 수소존재하 코발트계 촉매층을 통하여 반응시켜 시클로헥실아민의 제조방법에 관한 것이다. 더 상세히는 LHS h-1의 속도를 높이고 코발트계 촉매를 사용함으로서 높은 전환율, 수득율, 선택도로 시클로헥실아민의 제조방법에 관한 것이다.The present invention relates to a method for producing cyclohexylamine by reacting cyclohexanol and ammonia through a cobalt catalyst layer in the presence of hydrogen. More specifically, it relates to a method for preparing cyclohexylamine with high conversion, yield and selectivity by increasing the rate of LHS h- 1 and using a cobalt based catalyst.

종래, 시클로헥실아민을 얻기 위한 방법으로는 아닐린을 환원시키는 아닐린법과 시클로헥사놀과 암모니아를 반응시키는 아미노화법이 알려져 있다.Conventionally, as the method for obtaining cyclohexylamine, the aniline method which reduces aniline, and the amination method which reacts cyclohexanol and ammonia are known.

아미노화법에 의한 시클로헥실아민의 제조방법은 그 반응식은 교과서에서도 알려져 있으나, 반응조건이나 사용되는 촉매에 따라 최종제품으로서 전환율, 수득율, 선택도 등이 크게 다르며, 이들의 공지된 반응조건은 통상 반응온도가 160~1300℃, 반응압력은 1~20기압, 시클로헥사놀의 공간속도는 0.1~0.3ℓ/촉매 ℓ/시간, 시클로헥사놀 : 암모니아 : 수소의 몰비가 약 1 : 4~15 : 2~10이며 사용되는 촉매로는 닉켈, 코발트, 크롬, 구리, 루테늄, 팔라듐, 백금등의 금속성분을 실리카, 알루미나, 규조토 등에 담지시킨 촉매가 사용되고 있다.The reaction method for the preparation of cyclohexylamine by the amination method is known in textbooks, but the conversion rate, yield, selectivity, etc. as a final product varies greatly depending on the reaction conditions and the catalyst used. Temperature is 160 ~ 1300 ℃, reaction pressure is 1 ~ 20 atm, space velocity of cyclohexanol is 0.1 ~ 0.3l / catalyst l / hour, cyclohexanol: ammonia: hydrogen molar ratio is about 1: 4 ~ 15: 2 The catalyst used is a catalyst having nickel, cobalt, chromium, copper, ruthenium, palladium, platinum, and other metal components supported on silica, alumina, diatomaceous earth, and the like.

특히, 시클로헥사놀을 이용한 아미노화법의 경우 촉매와 반응조건에 의해 시클로헥실아민의 수율의 차이가 크고, 선택도등의 차이도 크기 때문에 적정의 촉매와 반응조건을 선정하는 것이 공정화의 최대의 관건이었다.In particular, in the case of amination using cyclohexanol, the difference in yield of cyclohexylamine is large and the selectivity is large depending on the catalyst and reaction conditions. It was.

이러한 목적을 달성하기 위해 여러가지 방법이 시도되어 왔으나(예, 일본국특허공개소 51-14627호, 미합중국 특허 제3,551,487호 등). 이들 방법은 대부분 시클로헥실아민 수율이 65~70%로 낮거나, 반응압력이 10기압 이상으로 높아 경제성 및 반응공정의 면에서 문제가 있었다.Various methods have been attempted to achieve this purpose (for example, Japanese Patent Laid-Open No. 51-14627, US Patent No. 3,551,487, etc.). Most of these methods have a low cyclohexylamine yield of 65 to 70%, or a reaction pressure of 10 atm or higher, which is problematic in terms of economic efficiency and reaction process.

본 발명자는 상기의 문제점을 해결하고 시클로헥실아민의 생성율을 향상시키기 위하여 예의 연구한 바, 시클로헥사놀, 암모니아 및 수소존재하에서 165~210℃ 대기압, 시클로헥사놀, 암모니아 및 수소의 몰비를 1 : 6 : 2~4로 조정하고 시클로헥사놀의 공간속도(LHSV h-1)를 0.2~1.0ℓ/촉매 ℓ/hr로 하고 Co계 촉매(Co함량 30~60%)를 사용하여 반응시킨 바, 반응수율이 80~90%에 이르러, 시클로헥실아민의 선택성이 90~99몰%로 극히 우수한 것을 발견하고 본 발명을 완성하게 되었다.MEANS TO SOLVE THE PROBLEM The present inventor earnestly researched in order to solve the said problem and to improve the production rate of cyclohexylamine, The molar ratio of 165-210 degreeC atmospheric pressure, cyclohexanol, ammonia, and hydrogen in the presence of cyclohexanol, ammonia, and hydrogen is 1: 1: 6: adjusted to 2 to 4, and the cyclohexanol space velocity (LHSV h -1 ) was 0.2 to 1.0 l / catalyst L / hr and reacted using a Co-based catalyst (Co content 30 to 60%). When the reaction yield reached 80 to 90%, the selectivity of cyclohexylamine was found to be extremely excellent at 90 to 99 mol%, and the present invention was completed.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 촉매로서는 Co 함유량이 30~60%를 규조토 또는 실리카 담체에 성형한 촉매를 사용했다. 이 촉매를 사용하는 경우 반응온도 165~210℃, 반응압력이 대기압이고, 시클로헥사놀 : 암모니아 : 수소의 몰비가 1 : 6 : 2~4이고, 특히 바람직하기로는 1 : 6 : 2이고, 시클로헥사놀의 공간속도가 0.2~1.0ℓ/촉매 ℓ/시간, 바람직하기로는 0.3~0.7ℓ/촉매 ℓ/시간에서 시클로헥사놀에 대한 반응수율은 80~90%이며, 공간속도를 0.5~0.7로 높여도 시클로헥사놀의 전환율이 85%이상 유지되고, 더욱이 본 발명에서는 선택성이 90~99몰%로 극히 높을 뿐만 아니라 시클로헥산을 산화시켜 얻어진 불순물이 함유된 원료(시클로헥사놀 90%, 시클로헥사논, BCHE, NP-시클로헥산 등 함유)를 사용한 경우에도 반응성이 전혀 저하되지 않는다.As the catalyst of the present invention, a catalyst obtained by shaping Co content of 30 to 60% on diatomaceous earth or silica carrier was used. When using this catalyst, reaction temperature is 165-210 degreeC, reaction pressure is atmospheric pressure, and the molar ratio of cyclohexanol: ammonia: hydrogen is 1: 6: 2-4, Especially preferably, it is 1: 6: 2 and cyclo The reaction yield for cyclohexanol is 80-90% at a hexanol space velocity of 0.2-1.0 L / catalyst L / hour, preferably 0.3-0.7 L / L catalyst / hour, and the space velocity is 0.5-0.7. Although the conversion rate of cyclohexanol is maintained at 85% or more even more, in the present invention, the selectivity is extremely high (90-99 mol%), and the raw material containing impurities obtained by oxidizing cyclohexane (90% cyclohexanol, cyclohexan Even in the case of using paddy, BCHE, NP-cyclohexane, etc.), the reactivity does not decrease at all.

본 발명의 반응온도는 상기 범위에서 반응시켜야 하며 그 이상의 온도 즉, 210℃ 이상에서 반응시키면 부생물이 다량 발생하고, 또한 165℃ 이하에서 반응시키면 반응진행이 바람직하지 못하다. 특히 바람직하기로는 175~185℃이다.The reaction temperature of the present invention should be reacted in the above range, a large amount of by-products are generated when the reaction temperature is higher than that, 210 ℃ or more, and the reaction progress is not preferred if the reaction temperature is less than 165 ℃. Especially preferably, it is 175-185 degreeC.

또한 시클로헥사놀 공간속도를 낮추면 전환율이 높아지고, 그 반대로 공간속도를 높이면 전환율이 떨어지기 때문에, 종래 공업적으로는 0.1~0.3의 범위 이상 높이지 못하였으나, 본 발명에서는 1.0/촉매 ℓ/시간까지 높여서 반응을 진행시킬 수 있다.In addition, if the cyclohexanol space velocity is lowered, the conversion rate is higher, and conversely, if the space velocity is increased, the conversion rate is lowered. However, in the present invention, it is not higher than the range of 0.1 to 0.3, but in the present invention, up to 1.0 / catalyst l / hour You can raise the reaction to proceed.

본 발명의 출원에서 실험결과는 아래 방법에 의해 산출했다.Experimental results in the application of the present invention was calculated by the following method.

이하 실시예로서 본 발명을 예시한다.The present invention is illustrated by the following examples.

실시예 1Example 1

1/2 인치 SUS 튜브에 Co계 촉매(Co 함량 60%, 담체 : 규조토) 10g(약 10cc)를 넣고 히팅 테이프(Heating tape)로 온도를 230℃로 유지한 채 10cc/분의 속도로 수소를 공급하여 약 3시간 동안 촉매를 활성화하고, 반응기의 온도를 175℃로 유지하면서 시클로헥사놀의 공간속도 LHSV를 0.3ℓ/촉매 L/hr, 시클로헥사놀 : 암모니아 : 수소=1 : 6 : 2(몰비), 대기압하에서 반응시켰으며 반응생성물을 개스크로마토그래피로 분석한 결과 시클로헥사놀의 전환율 95몰%, 시클로헥실아민 수득율 92%이었다.10 g (about 10 cc) of Co-based catalyst (60% Co, carrier: diatomaceous earth) was put in a 1/2 inch SUS tube and hydrogen was heated at a rate of 10 cc / min while maintaining the temperature at 230 ° C. with a heating tape. The catalyst was activated for about 3 hours, and the space velocity LHSV of cyclohexanol was 0.3 L / catalyst L / hr while maintaining the reactor temperature at 175 ° C., cyclohexanol: ammonia: hydrogen = 1: 6: 2 ( Molar ratio), and the reaction product was analyzed by gas chromatography to give 95 mol% of cyclohexanol and 92% of cyclohexylamine.

실시예 2Example 2

시클로헥사놀의 공간속도 LHSV를 0.5ℓ/촉매 ℓ/hr 조건 이외는 실시예 1과 같은 방법으로 수행하였으며 그 결과는 시클로헥사놀의 전환율 90.1몰%, 선택율 96.8몰%, 수득율 87.2몰%이었다.The space velocity LHSV of cyclohexanol was carried out in the same manner as in Example 1 except for 0.5 L / L catalyst / hr. The result was 90.1 mol%, 96.8 mol%, and 87.2 mol% of conversion of cyclohexanol.

실시예 3Example 3

시클로헥사놀의 공간속도 LHSV를 0.65ℓ/촉매 ℓ/hr 조건 이외는 실시예 1과 같은 방법으로 수행하였으며 그 결과는 시클로헥사놀의 전환율 84.8몰%, 선택율 94.1몰%, 수득율 79.8몰%이었다.The space velocity LHSV of cyclohexanol was carried out in the same manner as in Example 1 except for 0.65 L / L catalyst / hr. The result was 84.8 mol% of conversion of cyclohexanol, 94.1 mol% of selectivity, and 79.8 mol% of yield.

실시예 4Example 4

시클로헥사놀의 공간속도 LHSV를 0.5ℓ/촉매 ℓ/hr, 반응온도 195℃ 조건 이외는 실시예 1과 같은 방법으로 수행하였으며 그 결과, 시클로헥사놀의 전환율 93.9몰%, 선택율 89.2몰%, 수득율 83.7몰%이었다.The spatial velocity LHSV of cyclohexanol was carried out in the same manner as in Example 1 except for 0.5 l / l catalyst / hr and reaction temperature of 195 ° C. As a result, the conversion rate of cyclohexanol was 93.9 mol%, the selectivity 89.2 mol%, and the yield was obtained. 83.7 mol%.

실시예 5Example 5

시클로헥사놀을 시클로핵산의 산화공정에서 얻어진 일부 불순물을 포함한 것(시클로헥사놀 90wt%, 기타 시클로헥사놀, BCHE, NP-시클로헥산등 10중량%을 포함)이외는 실시예 2와 같은 방법으로 약 3개월의 연속 운전하였으며, 그 결과를 평균한 바, 시클로헥사놀의 전환율 86~90몰%, 선택율 96~99몰%, 수득율 83~89몰%이었다.Except cyclohexanol containing some impurities obtained in the oxidation process of cyclonucleic acid (including 90 wt% cyclohexanol, other cyclohexanol, BCHE, NP-cyclohexane, etc.) in the same manner as in Example 2 Continuous operation was performed for about 3 months, and the average of the results was 86-90 mol% conversion of cyclohexanol, 96-99 mol% selectivity, and 83-89 mol% yield.

Claims (2)

시클로헥사놀과 암모니아를 반응시켜 시클로헥실아민을 제조하는 방법에 있어서, 시클로헥사놀 : 암모니아 : 수소의 몰비로 1 : 6 : 2~4의 비율로 주입되고 Co를 규조토 또는 실리카에 담지시켜 성형한 Co계 촉매를 사용하고 상압, 165~210℃의 온도, 및 시클로헥사놀의 공간속도가 0.3~0.7ℓ/촉매 ℓ/시간의 조건에서 반응시킴을 특징으로 하는 시클로헥실아민의 제조방법.In the method for producing cyclohexylamine by reacting cyclohexanol and ammonia, it is injected in a molar ratio of cyclohexanol: ammonia: hydrogen in a ratio of 1: 6: 2 to 4 and formed by supporting Co on diatomaceous earth or silica. A process for producing a cyclohexylamine using a Co-based catalyst and reacting at atmospheric pressure, a temperature of 165 to 210 ° C, and a space velocity of cyclohexanol at 0.3 to 0.7 L / L of catalyst / hour. 제 1 항에 있어서, Co 촉매중 Co 성분이 50~60% 담지된 것이 특징인 방법.The method according to claim 1, wherein the Co component in the Co catalyst is supported by 50 to 60%.
KR1019930022379A 1993-10-26 1993-10-26 Method for preparing cyclohexylamine KR970001220B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930022379A KR970001220B1 (en) 1993-10-26 1993-10-26 Method for preparing cyclohexylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930022379A KR970001220B1 (en) 1993-10-26 1993-10-26 Method for preparing cyclohexylamine

Publications (2)

Publication Number Publication Date
KR950011395A KR950011395A (en) 1995-05-15
KR970001220B1 true KR970001220B1 (en) 1997-02-04

Family

ID=19366624

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930022379A KR970001220B1 (en) 1993-10-26 1993-10-26 Method for preparing cyclohexylamine

Country Status (1)

Country Link
KR (1) KR970001220B1 (en)

Also Published As

Publication number Publication date
KR950011395A (en) 1995-05-15

Similar Documents

Publication Publication Date Title
EP0642493B1 (en) Preparation of 6-aminocapronitrile
JPS61183237A (en) Hydrogenation of acetic acid
KR970001220B1 (en) Method for preparing cyclohexylamine
US4885389A (en) Process for manufacturing p-aminophenol
KR100344962B1 (en) Preparation method of gamma butyrolactone using maleic anhydride
JP2723621B2 (en) Method for producing isopropyl alcohol
CN1030915A (en) The process for selective reduction of 2-quinoxaline-4-oxide compound
US3553268A (en) Process for preparing aniline
US3962333A (en) Process for the production of acrylamide and methacrylamide
CN111495383B (en) Method and catalyst for preparing hexamethylene diamine from hexanediol and ammonia gas
US20230150918A1 (en) Process for the preparation of hexamethylenediamine by hydrogenation of adiponitrile with reduced formation of diaminocyclohexane
US4294968A (en) Method for preparing α-picoline from 5-oxohexanenitrile
US4480127A (en) Process for the production of variable amounts of DPA and aniline using only phenol and ammonia as the feedstock
US6046356A (en) Preparation of solutions of betaine
CN1017994B (en) Process for production of 2-quinoxalines
US4737354A (en) Preparation of hydroxylamine-O-sulfonic acid
US4476103A (en) Catalytic production of metal carbonyls from metal oxides
JP2001293372A (en) Structure of substituted aromatic amine
US3551486A (en) Process for preparing dicyclohexylamine
US5124485A (en) Catalysts and methods of separation thereof
WO2021122955A1 (en) Process for producing cyclohexanol and cyclohexanone
KR880008981A (en) Method for preparing 2,6-di-tert-butyl-4-mercaptophenol and 4,4'-isopropylidenedithio-bis- (2,6-di-tert-butylphenol)
KR100502425B1 (en) Method for preparing 4-amino-1-butanol
JP2998377B2 (en) Method for producing methacrylamide
KR900001197B1 (en) Process for preparing 2-alkyl-4-amino-5-aminomethyl pyrimidine

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130128

Year of fee payment: 17

EXPY Expiration of term