KR960032774A - Method for manufacturing thin film semiconductor device - Google Patents

Method for manufacturing thin film semiconductor device Download PDF

Info

Publication number
KR960032774A
KR960032774A KR1019960002664A KR19960002664A KR960032774A KR 960032774 A KR960032774 A KR 960032774A KR 1019960002664 A KR1019960002664 A KR 1019960002664A KR 19960002664 A KR19960002664 A KR 19960002664A KR 960032774 A KR960032774 A KR 960032774A
Authority
KR
South Korea
Prior art keywords
thin film
cross
energy beam
semiconductor thin
insulating substrate
Prior art date
Application number
KR1019960002664A
Other languages
Korean (ko)
Other versions
KR100402548B1 (en
Inventor
마사후미 구니이
야스히로 가나야
Original Assignee
이데이 노부유키
소니 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이데이 노부유키, 소니 가부시기가이샤 filed Critical 이데이 노부유키
Publication of KR960032774A publication Critical patent/KR960032774A/en
Priority to KR1020030059922A priority Critical patent/KR100411334B1/en
Application granted granted Critical
Publication of KR100402548B1 publication Critical patent/KR100402548B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

박막반도체장치의 제조방법은 절연기판상에 반도체박막을 성막하고, 입경의 불균일이 최소로 되는 원하는 입경의 결정을 얻기 위하여, 빔단면강도분포를 제어하면서 소정의 빔단면형상을 가지는 에너지빔을 반도체박막에 조사(照射)하여 반도체박막을 결정화하고, 결정화된 반도박막을 활성층으로 하여 박막트랜지스터를 집적 형성한다. 바람직하게는, 박막트랜지스터는 표시장치의 일부이고, 그러므로 각 박막트랜지스터에 접속된 화소전극을 형성하고, 트랜지스터와 화소전극을 가지는 기판을 전극을 가지는 제2의 절연기판에 사이에 공간을 두어 접합하면, 그 공간을 전기 광학재료로 충전하는 공정을 포함한다. 하나의 양태의 강도제어공정은 단면강도분포의 최대치가 다결정반도체박막의 입경의 급격한 불균일을 초래하는 특정의 스레시홀드치를 초과하지 않도록 제어하는 있다. 변형예에 있어서, 단면강도분포의 최대치와 최소치의 차가 단면강도분포의 평균치의 1/10이하로 되도록 제어한다.A method of manufacturing a thin film semiconductor device is a method of forming a semiconductor thin film on an insulating substrate and forming an energy beam having a predetermined beam cross-sectional shape while controlling the beam cross-section intensity distribution in order to obtain a desired grain diameter, The semiconductor thin film is crystallized by irradiating the thin film, and the thin film transistor is integrated by using the crystallized semiconductive thin film as the active layer. Preferably, the thin film transistor is a part of a display device, and therefore, a pixel electrode connected to each thin film transistor is formed, and a substrate having a transistor and a pixel electrode is bonded to a second insulating substrate having electrodes by placing a space therebetween , And filling the space with an electro-optic material. The intensity control process of one embodiment controls so that the maximum value of the cross-sectional intensity distribution does not exceed a certain threshold value which causes a sharp nonuniformity of the grain size of the polycrystalline semiconductor thin film. In the modified example, the difference between the maximum value and the minimum value of the cross-sectional intensity distribution is controlled to be 1/10 or less of the average value of the cross-sectional intensity distribution.

Description

박막반도체장치의 제조방법Method for manufacturing thin film semiconductor device

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음Since this is a trivial issue, I did not include the contents of the text.

제1도는 결정구조를 가지는 반도체막의 성막방법을 행하는 장치의 요부를 나타낸 설명도.FIG. 1 is an explanatory diagram showing a main part of a device for performing a film formation method of a semiconductor film having a crystal structure; FIG.

제2도는 두께55nm의 단결정재료막의 레이저빔의 에너지 강도와 결정입경(結晶粒徑)과의 관계를 나타낸 그래프.2 is a graph showing the relationship between the energy intensity of a laser beam and the crystal grain diameter of a single crystal material film having a thickness of 55 nm.

Claims (18)

절연기판상에 반도체박막을 성막하는 공정과, 소정의 빔단면형상을 가지는 에너지빔을 조사(照射)하여 이 반도체박막을 다결정 반도체박막으로 변환하는 공정과, 이 다결정반도체박막을 활성층으로 하여 박막트랜지스터를 집적형성하는 공정을 행하는 박막반도체장치의 제조방법으로서, 상기 조사공정은 최대치와 최소치의 사이에서 불규칙으로 변동하는 단면강도분포를 가지는 에너지빔을 사용하여 이 반도체박막을 조사할 때, 이 단면강도분포의 최대치가 다결정반도체박막의 입경의 급격한 불균일을 초래하는 특정의 스레시홀드치를 초과하지 않도록 제어하는 것을 특징으로 하는 박막반도체장치의 제조방법.A step of forming a semiconductor thin film on an insulating substrate, a step of irradiating an energy beam having a predetermined beam cross-sectional shape to convert the semiconductor thin film into a polycrystalline semiconductor thin film, Wherein when the semiconductor thin film is irradiated with an energy beam having a cross-sectional intensity distribution irregularly varying between a maximum value and a minimum value, the cross-sectional intensity Wherein the control is performed so that the maximum value of the distribution does not exceed a specific threshold value which causes a sharp unevenness of the grain size of the polycrystalline semiconductor thin film. 제1항에 있어서, 상기 에너지빔은 장척형(長尺形)의 빔단면형상을 가지는 것을 특징으로 하는 박막반도체장치의 제조방법.The method of claim 1, wherein the energy beam has an elongated beam cross-sectional shape. 제1항에 있어서, 상기 에너지빔은 엑시머레이저빔인 것을 특징으로 하는 박막반도체장치의 제조방법.The manufacturing method of a thin film semiconductor device according to claim 1, wherein the energy beam is an excimer laser beam. 제1항에 있어서, 절연기판상에 반도체박막을 성막하는 공정은 CVD법으로 비정질 실리콘의 박막을 성막하는 것을 특징으로 하는 박막반도체장치의 제조방법.The manufacturing method of a thin film semiconductor device according to claim 1, wherein the step of forming the semiconductor thin film on the insulating substrate comprises forming a thin film of amorphous silicon by CVD. 절연기판상에 반도체박막을 성막하는 공정과, 소정의 빔단면형상을 가지는 에너지빔을 조사하여 이 반도체박막을 다결정반도체 박막으로 변환하는 공정과, 이 다결정반도체박막을 활성층으로 하여 박막트랜지스터를 집적형성하는 공정을 행하는 박막반도체장치의 제조방법으로서, 상기 조사공정은 최대치와 최소치의 사이에서 불규칙으로 변동하는 단면강도분포를 가지는 에너지빔을 사용하여 이 반도체박막을 조사할 때, 단면강도분포의 최대치와 최소치의 차가 단면강도분포의 평균치의 1/10이하로 되도록 제어하는 것을 특징으로 하는 박막반도체장치의 제조방법.A step of forming a semiconductor thin film on an insulating substrate, a step of irradiating an energy beam having a predetermined beam cross-sectional shape to convert the semiconductor thin film into a polycrystalline semiconductor thin film, and a step of forming a thin film transistor Wherein when the semiconductor thin film is irradiated with an energy beam having a cross-sectional intensity distribution irregularly varying between a maximum value and a minimum value, the maximum value and the minimum value of the cross-sectional intensity distribution And the difference between the minimum values is controlled to be 1/10 or less of the average value of the cross-sectional strength distributions. 제5항에 있어서, 상기 에너지빔은 장척형의 빔단면형상을 가지는 것을 특징으로 하는 박막반도체장치의 제조방법.6. The method of claim 5, wherein the energy beam has an elongated beam cross-sectional shape. 제5항에 있어서, 빔단면형상의 주변부를 차단하여, 실효적 단면강도분포를 규일화하는 변형된 빔을 생성하는 것을 특징으로 하는 박막반도체장치의 제조방법.6. The method of claim 5, wherein the peripheral portion of the beam cross-sectional shape is cut off to generate a deformed beam that defines the effective cross-sectional strength distribution. 제7항에 있어서, 차단공정은 에너지빔의 단면보다 작은 크기를 가지는 마스크의 광학 개구를 통하여 에너지빔을 조사하여 상기 변형된 에너지빔을 형성하는 것을 특징으로 하는 박막반도체장치의 제조방법.8. The method of claim 7, wherein the blocking process irradiates the energy beam through the optical aperture of the mask having a size smaller than the cross section of the energy beam to form the deformed energy beam. 제5항에 있어서, 상기 에너지빔은 엑시머레이저빔인 것을 특징으로 하는 박막반도체장치의 제조방법.6. The method of claim 5, wherein the energy beam is an excimer laser beam. 제5항에 있어서, 절연기판상에 반도체박막을 성막하는 공정은 CVD법으로 비정질의 박막을 성막하는 것을 특징으로 하는 박막반도체장치의 제조방법.The method for manufacturing a thin film semiconductor device according to claim 5, wherein the step of forming the semiconductor thin film on the insulating substrate comprises forming an amorphous thin film by CVD. 제1의 절연기판상에 반도체박막을 성막하는 공정과, 소정의 빔단면형상을 가지는 에너지빔을 조사하여 이 반도체박막을 다결정반도체 박막으로 변환하는 공정과, 이 다결정반도체박막을 활성층으로 하여 박막트랜지스터를 집적형성하는 공정과, 이 박막트랜지스터에 접속하여 화소전극을 형성하는 공정과, 전극이 형성된 제2의 절연기판을 제1의 절연기판에 그 사이에 공간을 두어 접합하는 공정과, 제1 및 제2이 절연기판의 사이에 전기광학물질을 주입하는 공정을 행하는 표시장치의 제조방법으로서, 상기 조사공정은 최대치와 최소치의 사이에서 불규칙으로 변동하는 단면강도분포를 가지는 에너지빔을 사용하여 이 반도체박막을 조사할 때, 이 단면강도분포의 최대치가 다결정반도체박막의 입경의 급격한 불균일을 초래하는 특정의 스레시홀드치를 초과하지 않도록 제어하는 것을 특징으로 하는 표시장치의 제조방법.A step of forming a semiconductor thin film on the first insulating substrate, a step of irradiating an energy beam having a predetermined beam cross-sectional shape to convert the semiconductor thin film into a polycrystalline semiconductor thin film, A step of forming a pixel electrode by connecting to the thin film transistor, a step of bonding a second insulating substrate on which electrodes are formed to a first insulating substrate by providing a space therebetween, And a second step of injecting electro-optic material between the insulating substrates, wherein the step of irradiating is performed using an energy beam having a cross-sectional intensity distribution irregularly varying between a maximum value and a minimum value, When the thin film is irradiated, the maximum value of the cross-sectional intensity distribution is a specific threshold value which causes a sharp unevenness of the particle diameter of the polycrystalline semiconductor thin film Is not exceeded. ≪ / RTI > 제11항에 있어서, 상기 에너지빔은 장척형의 빔단명형상을 가지는 것을 특징으로 하는 표시장치의 제조방법.12. The method of claim 11, wherein the energy beam has an elongated beam short shape. 제1의 절연기판상에 반도체박막을 성막하는 공정과, 소정의 빔단면형상을 가지는 에너지빔을 조사하여 이 반도체박막을 다결정반도체 박막으로 변환하는 공정과, 이 다결정반도체박막을 활성층으로 하여 박막트랜지스터를 집적형성하는 공정과, 이 박막트랜지스터에 접속하여 화소전극을 형성하는 공정과, 전극이 형성된 제2의 절연기판을 제1의 절연기판에 그 사이에 공간을 두어 접합하는 공정과, 제1 및 제2의 절연기판의 사이에 전기광학물질을 주입하는 공정을 행하는 표시장치의 제조방법으로서, 상기 조사공정은 최대치와 최소치의 사이에서 불규칙으로 변동하는 단면강도분포를 가지는 에너지빔을 사용하여 이 반도체박막을 조사할 때, 단면강도분포의 최대치와 최소치의 차가 단면강도분포의 평균치의 1/10 이하로 되도록 제어하는 것을 특징으로 하는 표시장치의 제조방법.A step of forming a semiconductor thin film on the first insulating substrate, a step of irradiating an energy beam having a predetermined beam cross-sectional shape to convert the semiconductor thin film into a polycrystalline semiconductor thin film, A step of forming a pixel electrode by connecting to the thin film transistor, a step of bonding a second insulating substrate on which electrodes are formed to a first insulating substrate by providing a space therebetween, And a step of injecting an electro-optical material between the first insulating substrate and the second insulating substrate, characterized in that the irradiating step is a step of irradiating the semiconductor substrate with an energy beam having a cross-sectional intensity distribution irregularly varying between a maximum value and a minimum value, When the thin film is irradiated, the difference between the maximum value and the minimum value of the cross-sectional intensity distribution is controlled to be 1/10 or less of the average value of the cross-sectional intensity distribution Of the display device. 제13항에 있어서, 상기 에너지빔은 장척형의 빔단면형상을 가지는 것을 특징으로 하는 표시장치의 제조방법.14. The method of claim 13, wherein the energy beam has an elongated beam cross-sectional shape. 제13항에 있어서, 상기 에너지빔은 엑시머레이저빔인 것을 특징으로 하는 표시장치의 제조방법.14. The method of claim 13, wherein the energy beam is an excimer laser beam. 제13항에 있어서, 조사공정은 빔단면형상의 주변부를 차단하여, 실효적 단면강도 분포를 균일화하는 변형된 빔을 생성하는 것을 특징으로 하는 표시장치의 제조방법.14. The method of claim 13, wherein the irradiating step is to cut off the periphery of the beam cross-sectional shape to produce a deformed beam that homogenizes the effective cross-sectional intensity distribution. 제16항에 있어서, 차단공정은 변형된 빔의 단면에 대응하는 크기의 광학 개구를 가지는 마스크를 통하여 에너지빔을 통과시키는 것을 특징으로 하는 표시장치의 제조방법.17. The method of claim 16, wherein the blocking process passes the energy beam through a mask having optical apertures of a size corresponding to the cross-section of the deformed beam. 제17항에 있어서, 상기 광학 개구는 장척형의 빔단면형상을 가지는 슬릿인 것을 특징으로 하는 표시장치의 제조방법.18. The method according to claim 17, wherein the optical aperture is a slit having an elongated beam cross-sectional shape. ※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: It is disclosed by the contents of the first application.
KR1019960002664A 1995-02-07 1996-02-05 Method for manufacturing thin film semiconductor device KR100402548B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030059922A KR100411334B1 (en) 1995-02-07 2003-08-28 Process for fabricating thin film semiconductor devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP04357595A JP3477888B2 (en) 1995-02-07 1995-02-07 Method for manufacturing thin film semiconductor device
JP1995-43575 1995-02-07
JP95-43575 1995-02-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020030059922A Division KR100411334B1 (en) 1995-02-07 2003-08-28 Process for fabricating thin film semiconductor devices

Publications (2)

Publication Number Publication Date
KR960032774A true KR960032774A (en) 1996-09-17
KR100402548B1 KR100402548B1 (en) 2004-04-29

Family

ID=12667562

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019960002664A KR100402548B1 (en) 1995-02-07 1996-02-05 Method for manufacturing thin film semiconductor device
KR1020030059922A KR100411334B1 (en) 1995-02-07 2003-08-28 Process for fabricating thin film semiconductor devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020030059922A KR100411334B1 (en) 1995-02-07 2003-08-28 Process for fabricating thin film semiconductor devices

Country Status (2)

Country Link
JP (1) JP3477888B2 (en)
KR (2) KR100402548B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033278A (en) * 2000-07-14 2002-01-31 Nec Corp Thin-film transistor, semiconductor film, manufacturing method thereof, and evaluating method for it
US7105048B2 (en) * 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US7078322B2 (en) * 2001-11-29 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor
JP3949564B2 (en) 2001-11-30 2007-07-25 株式会社半導体エネルギー研究所 Laser irradiation apparatus and method for manufacturing semiconductor device
JP3967259B2 (en) * 2001-12-11 2007-08-29 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR100916656B1 (en) * 2002-10-22 2009-09-08 삼성전자주식회사 laser irradiation apparatus and manufacturing method for polysilicon thin film transistor using the apparatus
JP2004193201A (en) * 2002-12-09 2004-07-08 Semiconductor Energy Lab Co Ltd Laser irradiation method
JP4799825B2 (en) * 2003-03-03 2011-10-26 株式会社半導体エネルギー研究所 Laser irradiation method
JP4942959B2 (en) * 2004-07-30 2012-05-30 株式会社半導体エネルギー研究所 Laser irradiation apparatus and laser irradiation method
JP5188718B2 (en) * 2007-01-31 2013-04-24 株式会社ジャパンディスプレイイースト Manufacturing method of display device
JP5907530B2 (en) * 2012-11-20 2016-04-26 株式会社日本製鋼所 Laser annealing method and laser annealing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641101B2 (en) * 1988-04-12 1997-08-13 株式会社日立製作所 Method and apparatus for manufacturing semiconductor device

Also Published As

Publication number Publication date
KR100402548B1 (en) 2004-04-29
JPH08213629A (en) 1996-08-20
JP3477888B2 (en) 2003-12-10
KR100411334B1 (en) 2003-12-24

Similar Documents

Publication Publication Date Title
TW556350B (en) A method to increase device-to-device uniformity for polycrystalline thin-film transistors by deliberately mis-aligning the microstructure relative to the channel region
KR100489749B1 (en) Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display, and infrared irradiating device
US6242292B1 (en) Method of producing a semiconductor device with overlapped scanned linear lasers
KR960032774A (en) Method for manufacturing thin film semiconductor device
CN106783536B (en) Laser annealing equipment, polycrystalline silicon thin film and preparation method of thin film transistor
US20050272184A1 (en) Crystallizing method, thin-film transistor manufacturing method, thin-film transistor, and display device
KR100672909B1 (en) Surface planarization of thin silicon films during and after processing by the sequential lateral solidification method
JPH07249591A (en) Laser annealing method for semiconductor thin film and thin-film semiconductor element
TW535194B (en) Semiconductor device, manufacturing method therefor, and semiconductor manufacturing apparatus
JPS6476715A (en) Manufacture of polycrystalline semiconductor thin film
US6686978B2 (en) Method of forming an LCD with predominantly <100> polycrystalline silicon regions
KR20090042787A (en) Systems and methods for optimizing crystallization of amorphous silicon
KR101216719B1 (en) Thin Film Transistor, Semiconductor Device, Display, Crystallization Method, And Method of Manufacturing Thin Film Transistor
JPS5868939A (en) Method of annealing surface of semiconductor material
CN101631641B (en) Device for processing substrate
US20030003242A1 (en) Pulse width method for controlling lateral growth in crystallized silicon films
JPH0273623A (en) Apparatus and method for radiating of laser beam
KR19990058636A (en) Laser irradiation method
JPH0562924A (en) Laser annealing device
JP3316278B2 (en) Method for manufacturing thin film semiconductor device
JP2709376B2 (en) Method for manufacturing non-single-crystal semiconductor
JP2701711B2 (en) Method for manufacturing polycrystalline silicon thin film
KR20050078191A (en) Manufacturing method of semiconductor film and image display device
CN109742024B (en) Laser annealing method and array substrate
JP2003151904A (en) Crystallizing method of semiconductor thin film, the semiconductor thin film, and thin-film semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130927

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140926

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 13

EXPY Expiration of term