TW535194B - Semiconductor device, manufacturing method therefor, and semiconductor manufacturing apparatus - Google Patents

Semiconductor device, manufacturing method therefor, and semiconductor manufacturing apparatus Download PDF

Info

Publication number
TW535194B
TW535194B TW90120943A TW90120943A TW535194B TW 535194 B TW535194 B TW 535194B TW 90120943 A TW90120943 A TW 90120943A TW 90120943 A TW90120943 A TW 90120943A TW 535194 B TW535194 B TW 535194B
Authority
TW
Taiwan
Prior art keywords
semiconductor
thin film
energy beam
film
scope
Prior art date
Application number
TW90120943A
Other languages
Chinese (zh)
Inventor
Akito Hara
Fumiyo Takeuchi
Kenichi Yoshino
Nobuo Sasaki
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Application granted granted Critical
Publication of TW535194B publication Critical patent/TW535194B/en

Links

Abstract

An a-Si film is patterned into a linear shape (ribbon shape) or island shape on a glass substrate. The upper surface of the a-Si film or the lower surface of the glass substrate is irradiated and scanned with an energy beam output continuously along the time axis from a CW laser in a direction indicated by an arrow, thereby crystallizing the a-Si film. This implements a TFT in which the transistor characteristics of the TFT are made uniform at high level, and the mobility is high particularly in a peripheral circuit region to enable high-speed driving in applications to a system-on glass and the like.

Description

535194 A7 B7 五、發明説明ί ) 相關申請案之對照參考資料 本申請案係基於並請求於2000年8月25曰以 及2001年7月3曰所提申之曰本專利申請案第 2000-255646與2001-202730號的優先權,該二申 請案之内容係併於此作參考。 發明背景 [發明領域] 本發明係有關於半導體元件、其製造方法,以 及半導體製造裝置,特別是,用於適合應用至所謂 的系統面板,其中含有薄膜電晶體與包含薄膜電晶 體之周邊電路的像素區域係形成在諸如非鹼性玻 璃基材之非結晶(非晶形)基材上。 [相關技藝描述] TFT(薄膜電晶體)係形成於非常薄、微小的作 為半導體薄膜上。在近來對於區域增加之需求的考 量下,TFT係被審視安裝至一大螢幕液晶面板,或 其等類似之物上。特別是,期望應用至系統面板與 其等類似之物。 在系統面板上,多結晶半導體TFT (特別是多 晶矽TFT (p-Si TFT))係形成於諸如非鹼性玻璃基 材之非結晶基材上。於此情況下,作為一廣泛的方 法,一非晶形矽(a-Si)薄膜係形成作為一半導體薄 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂— :s. 535194 A7 B7 五、發明説明3() 膜,而後以紫外線短脈衝激光雷射加以照射,以在 不影響玻璃基材下,僅熔化與結晶該a-Si薄膜,藉 此獲得作為一作用半導體薄膜之P_Si薄膜。 已發展發射複製大區域系統面板之高輸出線 性光束的激光雷射。以激光雷射結晶所獲得之P_Si 薄膜不僅容易受到照射能量密度的影響,且會受到 光束外形、薄膜表面狀態,或其等類似之物的影 響。難以在大區域内之結晶顆粒尺寸内形成大量均 勻的p-Si薄膜。以激光雷射結晶之樣品係以AFM 觀察,以發現到自隨機產生之核心等向成長的結晶 顆粒係呈現接近正多邊形的形狀,在結晶顆粒互相 碰撞之結晶顆粒邊界係觀察到突起,且結晶顆粒尺 寸係小於1 // m,如第3 7圖所示。 於此方法中,當TFT以使用激光雷射之結晶 所獲得之P-Si薄膜製造時,一通道區域係包含許多 結晶顆粒。設若結晶顆粒尺寸為大,存在於通道内 之顆粒邊界的數目則少,移動度(mobility)則高。設 若結晶顆粒在通道區域部分尺寸為小,而存在於通 道内之顆粒邊界的數目則大,移動度(mobility)則 低。因此,TFT之電晶體特性係非常容易依賴於顆 粒尺寸。再者,結晶顆粒邊界具有許多缺點,且存 在於通道内之顆粒邊界係抑制電晶體特性。以此技 術所獲得之TFT的移動度為約150cm2/Vs。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) •訂, .MW, 535194 A7 B7 五、發明説明ί ) 發明概述 本發明之一目的在於提供一種含有TFT之半 導體元件,其中TFT之電晶體特性係被製得高度均 勻,且在周邊電路區域内之移動度係特別高,以達 成在應用至周邊積體電路TFT-LCD、系統面板、系 統玻璃,以及其等類似之物時之高速驅動。 本發明之另一目的在於提供一種半導體元 件,其中相對於時間連續地輸出能量之能量光束輸 出的不足係得到補償,以增進半導體薄膜之結晶的 生產量,藉此實現高效能的TFT(其在周邊電路區域 内之移動度係特別高,以達成高速驅動) 本發明之另一目的在於提供該等半導體元件 之製造方法。 本發明之另一目的在於提供用於製造該等半 導體元件之裝置。 根據本發明之第一面,係提供一種製造半導體 元件之方法,其中具有薄膜電晶體之像素區域與周 邊電路區域係形成於一非結晶基材上,包含以一能 量光束使形成於該周邊電路區域内之半導體薄膜 結晶,該能量光束係至少對該周邊電路區域沿一時 間軸連續地輸出能量,藉此形成將半導體薄膜形成 於各別薄膜電晶體之作用半導體薄膜内。 於此情況下,能量光束較佳為一 CW雷射光 束,更特定言之,為一固態雷射光束(DPSS (二極體 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) (請七閲讀背面之注意事項再填寫本頁) 、可_ 5194 A7 B7 五、發明説明4 ) 泵唧固態雷射)雷射光束)。 藉由以沿時間軸連續輸出能量之能量光束使 半導體薄膜結晶,結晶顆粒尺寸係被增加,例如, 在能量掃瞄方向内,半導體薄膜之結晶狀態係形成 為具有長結晶顆粒之流線流動圖案。在此情況下之 結晶顆粒尺寸為藉由使用目前可取得之激光雷射 之結晶所獲得之尺寸的10至100倍。 於本發明之第一面中,各半導體薄膜較佳係在 該非結晶基材上形成線形或島形圖案。 使用CW雷射之結晶技術已在SOI領域中被研 讀,但玻璃基材係被認為不耐熱。當以雷射照射玻 璃基材,同時一 a-Si薄膜係形成在整個表面上作為 半導體薄膜時,玻璃基材的溫度係隨著a-Si薄膜溫 度上升而上升,且係觀察到諸如破裂之損壞。於本 發明中,半導體薄膜係被預先加工成線形或島形, 以防止玻璃基材的溫度上升,以及雜質擴散進入薄 膜。甚至在將TFT之作用半導體薄膜形成於諸如玻 璃基材之非結晶基材上中,係可使用自CW雷射或 其等類似之物而沿時間軸連續地輸出能量的能量 光束,而不產生任何問題。 在本發明之第一面中,對應於各形成圖案之半 導體薄膜的能量光束照射位置記號係形成在該非 結晶基材上。 此記號可防止能量光束之照射位置偏移。穩定 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -、tr— :φ. 五、發明説明$ ) 連績光束之供給係可產生所謂的側邊成長,且具有 大尺寸結晶顆粒之半導體薄膜可被可靠地形成。 於本發明之第-面中,較佳縫隙係形成於各在 非結晶基材上形成圖案之半導體薄膜内,或是細線 (thin-line)絕緣薄膜係形成在各半導體薄膜上,且半 導體薄膜係在幾近該縫隙之縱向方向上以能量光 束照射。 於此情況下,該縫隙或絕緣薄膜(為了方便, 以下簡稱為縫隙)係封鎖藉由能量光束照射而在結 晶中自邊緣向内成長之結晶顆粒與顆粒邊界。僅平 订於縫隙而成長之結晶顆粒係形成於該縫隙之 間。$又右縫隙間之區域係滿足地狹窄,單結晶係形 成於此區域内。於此方法中,藉由形成縫隙,通道 區域可選擇性地改變成單結晶狀態,以設定形成大 尺寸顆粒的區域,例如,在縫隙間之區域係作為諸 如薄膜電晶體之半導體構件的通道區域。 於本發明之第一面中,較佳沿時間軸連續輸出 能量之能量光束的照射條件可於像素區與周邊電 路區域間改變,使形成於像素區域内之半導體薄膜 係以輸出能量脈衝之能量光束而結晶,且形成於周 邊電路區域内之半導體薄膜係以沿時間軸連續輸 出月€ ϊ之能ϊ光數加以結晶(更特定言之,形成於像 素區域内之半導體薄膜係被結晶,而後形成於周邊 電路區域内之半導體薄膜係被結晶),或是形成於周 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 r----—~— BZ___ 五、發明説明θ[) " —- '電,區域内之半導體薄膜係以沿時間軸連續輸 出此里之犯里光束加以結晶,該結晶的半導體薄膜 係被設定作為-仙半導體薄膜,而形成於像素區 域内之半導體薄膜係被設定作為一未變之作用半 導體薄膜.。 儘管對像素與周邊區域任一者而言,位置控制 能力是重要的,任何形成於周邊電路區域内之薄膜 電晶體係需要較像素區域内為高的效能,且必須在 製造中最佳化。為了此目的,一連續輸出能量且可 可靠地形成一具有大尺寸結晶顆粒之作用半導體 薄膜,同時使薄膜電晶體之操作特性高度均勻的能 量光束係特別施加至周邊電路區域。在所需效能低 的像素區域中,能量光束照射時間係較短,或者係 施加一類脈衝(pulse-like)能量光束。於此方式中, 結晶程序係改變於周邊電路區域與像素區域之 間。因此,可完成一非常有效地滿足各別位置所需 效能的所欲系統面板。 I 根據本發明之第》—方面’係提供一種半導體元 件’其中具有薄膜電晶體之像素區域與周邊電路區 域係形成於一非結晶基材上,其中構成至少周邊電 路區域之各別薄膜電晶體的作用半導體薄膜係形 成為具有大尺寸結晶顆粒之流線流動圖案的結晶 狀態。 於此情況下,作用半導體薄膜可被改變成大結 - ----- ---------------------—_ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公董) 〇535194 A7 B7 V. Description of the invention) Cross-references to related applications This application is based on and claims the patent application No. 2000-255646 filed on August 25, 2000 and July 3, 2001 With priority of 2001-202730, the contents of the two applications are incorporated herein by reference. BACKGROUND OF THE INVENTION [Field of the Invention] The present invention relates to a semiconductor element, a method of manufacturing the same, and a semiconductor manufacturing apparatus. In particular, the present invention relates to a semiconductor device including a thin film transistor and a peripheral circuit including the thin film transistor. The pixel region is formed on an amorphous (amorphous) substrate such as a non-alkali glass substrate. [Related technology description] TFT (Thin Film Transistor) is formed on a very thin and minute semiconductor film. In consideration of the recent increase in demand for the area, TFTs have been examined for mounting on a large-screen LCD panel or the like. In particular, it is expected to be applied to a system panel and the like. On the system panel, a polycrystalline semiconductor TFT (especially a polycrystalline silicon TFT (p-Si TFT)) is formed on an amorphous substrate such as a non-alkali glass substrate. In this case, as a broad method, an amorphous silicon (a-Si) thin film system is formed as a semiconductor thin paper. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the back Note: Please fill in this page again) Order —: s. 535194 A7 B7 V. Description of the invention 3 () film, and then irradiated with ultraviolet short-pulse laser laser, so as not to affect the glass substrate, only melt and crystallize the a -Si film, thereby obtaining a P_Si film as a functioning semiconductor film. Laser lasers have been developed that emit high output linear beams that replicate large area system panels. The P_Si thin film obtained by laser laser crystallization is not only easily affected by the irradiation energy density, but also affected by the beam shape, the surface state of the thin film, or the like. It is difficult to form a large number of uniform p-Si films within a crystalline particle size in a large area. The laser crystallized samples were observed with AFM, and it was found that the crystalline particles growing from the randomly generated cores were approximately regular polygons, and protrusions were observed at the crystalline particle boundary systems where the crystalline particles collided with each other. The particle size is less than 1 // m, as shown in Figure 37. In this method, when a TFT is manufactured from a P-Si thin film obtained by crystallization using a laser, a channel region contains many crystal particles. Suppose that the size of the crystalline particles is large, the number of particle boundaries existing in the channel is small, and the mobility is high. Suppose that the size of the crystalline particles in the channel region is small, while the number of particle boundaries existing in the channel is large, and the mobility is low. Therefore, the transistor characteristics of a TFT are very dependent on the particle size. Furthermore, crystalline particle boundaries have many disadvantages, and the particle boundaries existing in the channels suppress the transistor characteristics. The mobility of the TFT obtained by this technology is about 150 cm2 / Vs. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the notes on the back before filling this page) • Order, .MW, 535194 A7 B7 V. Description of the invention) Summary of the invention An object is to provide a semiconductor element including a TFT, in which the transistor characteristics of the TFT are made highly uniform, and the mobility in the peripheral circuit region is particularly high, so as to achieve the application to peripheral integrated circuit TFT-LCD, High-speed drive for system panels, system glass, and the like. Another object of the present invention is to provide a semiconductor device in which the shortage of the energy beam output that continuously outputs energy with respect to time is compensated to increase the production of crystals of a semiconductor thin film, thereby realizing a high-efficiency TFT (which is The mobility in the peripheral circuit area is particularly high to achieve high-speed driving. Another object of the present invention is to provide a method for manufacturing such semiconductor elements. Another object of the present invention is to provide a device for manufacturing such semiconductor elements. According to a first aspect of the present invention, there is provided a method for manufacturing a semiconductor device, in which a pixel region having a thin film transistor and a peripheral circuit region are formed on an amorphous substrate, and include forming the peripheral circuit with an energy beam. The semiconductor thin film in the region is crystallized, and the energy beam continuously outputs energy along at least a time axis to the peripheral circuit region, thereby forming a semiconductor thin film formed in a semiconductor film that functions as a respective thin film transistor. In this case, the energy beam is preferably a CW laser beam, more specifically, a solid-state laser beam (DPSS (diode paper size applies to Chinese National Standard (CNS) A4 specifications (210X297 mm)). (Please read the precautions on the back and fill in this page), OK_ 5194 A7 B7 V. Description of the invention 4) Pump 唧 solid-state laser) Laser beam). By crystallizing a semiconductor film with an energy beam that continuously outputs energy along the time axis, the crystal particle size is increased. For example, in the energy scanning direction, the crystalline state of the semiconductor film is formed into a streamline flow pattern with long crystal particles. . The crystal particle size in this case is 10 to 100 times the size obtained by using crystals currently available for laser lasers. In the first aspect of the present invention, each semiconductor thin film is preferably formed in a linear or island pattern on the amorphous substrate. Crystallization technology using CW lasers has been studied in the SOI field, but glass substrates are considered to be heat resistant. When a glass substrate is irradiated with a laser while an a-Si thin film is formed on the entire surface as a semiconductor thin film, the temperature of the glass substrate rises as the temperature of the a-Si thin film rises, and it is observed that such as cracked damage. In the present invention, the semiconductor thin film is processed into a linear shape or an island shape in advance to prevent the temperature of the glass substrate from rising and the impurities from diffusing into the thin film. Even in the case where the semiconductor film of the TFT function is formed on an amorphous substrate such as a glass substrate, an energy beam that continuously outputs energy along the time axis using a CW laser or the like can be used without generating any problem. In the first aspect of the present invention, the energy beam irradiation position mark corresponding to each of the patterned semiconductor films is formed on the amorphous substrate. This mark can prevent the irradiation position of the energy beam from shifting. Stable This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page)-, tr—: φ. V. Description of the invention $) Continuous beam supply system A semiconductor film that can produce so-called side growth and has large-sized crystal particles can be reliably formed. In the first aspect of the present invention, it is preferable that the gap is formed in each semiconductor film formed with a pattern on an amorphous substrate, or a thin-line insulating film is formed on each semiconductor film, and the semiconductor film It is irradiated with an energy beam in the longitudinal direction near the gap. In this case, the gap or insulating film (for convenience, hereinafter referred to as the gap) is to block the crystal grains and grain boundaries that grow from the edge to the inside in the crystal by the irradiation of the energy beam. The crystalline particles grown only by the gap are formed between the gaps. The area between the right slits is satisfactorily narrow, and a single crystal system is formed in this area. In this method, by forming a gap, the channel region can be selectively changed to a single crystal state to set a region where large-sized particles are formed. For example, the region between the gaps is used as a channel region of a semiconductor member such as a thin film transistor. . In the first aspect of the present invention, the irradiation condition of the energy beam that preferably continuously outputs energy along the time axis can be changed between the pixel region and the peripheral circuit region, so that the semiconductor thin film formed in the pixel region can output the energy of the energy pulse. It is crystallized by a light beam, and a semiconductor thin film formed in a peripheral circuit region is crystallized by continuously outputting a light amount of 月 沿 along the time axis (more specifically, a semiconductor thin film formed in a pixel region is crystallized, and then The semiconductor thin film formed in the peripheral circuit area is crystallized), or it is formed on the paper of this week, which is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 r ----— ~ — BZ___ V. Invention Explanation θ [) " —- 'The semiconductor thin film in the region is crystallized by continuously outputting the light beam here along the time axis. The crystallized semiconductor thin film is set as a -semiconductor thin film and formed in a pixel. The semiconductor thin film in the area is set as an unchanged semiconductor thin film. Although the position control capability is important for either the pixel or the peripheral area, any thin film transistor system formed in the peripheral circuit area requires higher efficiency than the pixel area and must be optimized in manufacturing. For this purpose, an energy beam that continuously outputs energy and can reliably form a semiconductor thin film having large-sized crystalline particles while making the operating characteristics of the thin film transistor highly uniform is particularly applied to the peripheral circuit area. In a pixel area with a low required efficiency, the irradiation time of the energy beam is short, or a pulse-like energy beam is applied. In this method, the crystallization process is changed between the peripheral circuit area and the pixel area. As a result, a desired system panel can be completed which is very effective in satisfying the performance required in each position. I According to the first aspect of the present invention-a "semiconductor element" is provided, in which a pixel region having a thin film transistor and a peripheral circuit region are formed on an amorphous substrate, wherein the respective thin film transistors constitute at least a peripheral circuit region The semiconductor thin film is formed in a crystalline state with a streamlined flow pattern of large-sized crystal particles. In this case, the active semiconductor film can be changed to a large junction------ -----------------------_ This paper size applies to Chinese national standards (CNS) A4 specification (210X297 public director) 〇

、可 (請先閱讀背面之注意事項再填寫本頁) 535194 A7 _B7_ 五、發明説明t ) 晶顆粒(large-crystal-grain)狀態,且較佳為沿流動圖 案之流線形的單結晶狀態。舉例而言,薄膜電晶體 的通道區域可被改變成單結晶狀態。可完成絕佳電 晶體特性之高速驅動薄膜電晶體。 此外,半導體薄膜較佳係以緩衝層插置於其間 的方式形成於非結晶基材上方。該緩衝層含有一薄 膜,該薄膜包含Si與N,或Si、Ο及N。在半導體 薄膜内之氫的密度較佳為1 X l〇2()/cm3或更低,更 佳,在緩衝層内之氫的密度為lx l〇22/cm3或更低。 藉由此結構,TFT之電晶體特性可藉由使用以 連續對時間輸出能量之能量光束來結晶而高度均 勻化。再者,TFT可在不產生針孔或剝落下穩定地 形成。藉此可實現非常高可靠度的TFT。 根據本發明之第三方面,係提供一種半導體製 造裝置其用於發射一用以將形成於一非結晶基材 上之半導體薄膜結晶的能量光束,其中該半導體製 造裝置可沿時間軸連續輸出能量光束,並具有將能 量光束掃瞄至欲被照射之物體的功能,且該能量光 束之輸出不穩定度為具有小於± 1 %的值。 於此情況下,能量光束之輸出不穩定度係設定 為小於± 1%的值,且較佳表現能量光束之不穩定度 的雜訊對時間係設定為0.1 rms%或更低。因此可施 加一穩定連續的光束。連續的光束可被掃瞄,以在 大尺寸結晶狀態(流動圖案)下,均勻地形成許多薄 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -10- 535194 A7 B7 五、發明説明8ί ) 膜電晶體之作用半導體薄膜。 根據本發明之第四方面,類似第三方面,係提 供一種半導體製造裝置。該裝置包含設置裝置,其 用於將一非結晶基材設置於一形成有半導體薄膜 之表面上,使得該非結晶基材可自由地在平行於半 導體薄膜之表面的平面移動,雷射擺動裝置,其可 相對於時間連續輸出能量光束,以及光束分裂裝 置,其用於光學地將發射自雷射擺動裝置之能量光 束分裂成次光束(sub-beams)。施加各次光束,以相 對地掃瞄半導體薄膜之對應部分,以進行結晶。 於此情況下,藉由分裂次光束,對應於各別次 光束之半導體薄膜的預定部分可被即刻結晶。因 此,許多薄膜電晶體之各作用半導體薄膜可在大尺 寸結晶狀態(流動圖案)下均勻地形成。此外,即使 是使用輸出低於諸如CW雷射之激光雷射的雷射擺 動裝置時,亦可獲得不差於使用激光雷射時之非常 高生產量。藉此可有效地獲致用於薄膜電晶體之結 晶。 於本發明之第四方面中,各次光束較佳係被控 制成僅形成薄膜電晶體之部分係在用於結晶之最 佳能量強度下被光束照射,且光束係快速地通過未 形成薄膜電晶體之部分。藉此,可獲得較高的生產 量,同時可實現用於薄膜電晶體之非常高效的結 晶0 -11- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 ------------B7 _ 五、發明説明9() " - 根據本發明之第五方面,類似第三方面,係提 供一種半導體製造裝置。該裝置包含設置裝置,其 用於將一非結晶基材設置於一形成有半導體薄膜 之表面上使侍邊非結晶基材可自由地在平行於半 導體薄膜之表面的平面移動,雷射擺動裝置,其可 相對於時間連續輸出能量光束,以及間歇(脈衝)發 射裝置,其具有用於能量光束之傳輸區與遮斷區, 以間歇傳輸能量光束。藉由將移動能量光束 ,以相 對地掃瞄非結晶基材,能量光束係間歇地施加至半 導體薄膜,以選擇性地僅結晶形成薄膜電晶體之部 分。 於此情況下,主要藉由間歇發射裝置控制能量 光束的傳輸,可選擇性地僅結晶所描述之半導體薄 膜部分。亦即,可選擇性地僅結晶在非圖案狀態下 之半導體薄膜的所欲部分。因此,無需預先設定以 光束照射之部分,即,形成薄膜電晶體之部分(類帶 或類島)。因此,可縮短製造步驟的數目,並可增進 生產率。 於本發明之第五方面中,較佳能量光束係間歇 地施加至除了形成薄膜電晶體之若干部分上,以形 成用於將各結晶成預定形狀之薄膜電晶體的位置 記號。藉由形成位置記號,同時使形成薄膜電晶體 處結晶’可縮短製造步驟之數目並使有效且正確之 薄膜電晶體的形成變成可能。 本紙張尺度適用中國國家標準(CNS) A4規格(21〇χ297公釐) -12- (請先閲讀背面之注意事項再填寫本頁) •訂— 535194 A7 _____B7 I、發明説明(0~~) ~ ~^ 本發明係包含對應上述第四與第五方面之半 導體元件及該等半導體元件之製造方法。 圖式簡單說明 第1A與1B圖係顯示在本發明第一實施例 中,半導體薄膜之結晶狀態的概略平面圖; 第2A與2B圖係分別為顯示將半導體薄膜形 成帶形圖案之狀態的平面圖與光顯微圖; 第3A與3B圖係顯示形成TFT島之狀態的光 顯微圖; 第4圖係顯示以CW雷射(流動圖案)結晶之半 -導體薄膜狀態的SEM圖; 第5圖係顯示以CW雷射結晶成激光圖案之半 導體薄膜狀態的SEM圖; 第6圖係顯示環繞半導體薄膜之SIMS分析圖; 弟7圖係顯不J哀繞半導體薄膜之截面TEM的 光學圖; 第8A至8C圖係分別顯示在製造根據第一實 施例之TFT中之步驟的概略截面圖; 第9A至9C圖係分別顯示在製造根據第一實 施例之TFT中接續於第8C圖之步驟的概略截面圖; 第10A與10B圖係分別顯示在製造根據第一 實施例之TFT中接續於第9C圖之步驟的概略截面 圖; 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -13- (請先閲讀背面之注意事項再填寫本頁) .訂丨 # 535194 A7 B7 五、發明説明1(1 (請先閲讀背面之注意事項再填寫本頁) 第11A至lie圖係分別顯示在製造根據第一 實施例之TFT中接續於第10B圖之步驟的概略截面 圖; 第12圖係顯示結晶圖案與半導體薄膜之移動 度間的關係圖; 第13圖係顯示結晶圖案與半導體薄膜之移動 度間之關係的光顯微圖; 第14圖係顯示在第一實施例之第一改良中, 帶形半導體薄膜與位置記號的概略平面圖; 第15A至15D圖係顯示在第一實施例之第二 改良中’半導體薄膜之狀態的概略平面圖; ’、可| 第16A至16D圖係顯示在第一實施例之第三 改良中,半導體薄膜之狀態的概略圖; 第17圖係顯示在第一實施例之第四改良中, 半導體薄膜之狀態的概略平面圖; 第18A至18C圖係顯示在第一實施例之第五 改良中,半導體薄膜之狀態的概略圖; 第19圖係顯示在本發明第二實施例中, 雷射裝置的概略圖; 第20圖係顯示在本發明第二實施例之第一改 良中,DPSS雷射裝置的概略圖; 第21圖係顯示在本發明第二實施例之第二改 良中,DPSS雷射裝置的概略圖; 一 第22圖係顯示根據本發明第三實施例之Yes, (please read the notes on the back before filling this page) 535194 A7 _B7_ V. Description of the invention t) Large-crystal-grain state, and preferably a single crystal state along the streamline of the flow pattern. For example, the channel region of a thin film transistor can be changed to a single crystal state. High-speed driving thin-film transistor with excellent transistor characteristics. In addition, the semiconductor thin film is preferably formed over the amorphous substrate with a buffer layer interposed therebetween. The buffer layer includes a thin film including Si and N, or Si, O, and N. The density of hydrogen in the semiconductor film is preferably 1 × 10 (2) / cm3 or lower, and more preferably, the density of hydrogen in the buffer layer is 1 × 1022 / cm3 or lower. With this structure, the transistor characteristics of the TFT can be highly uniformized by crystallization using an energy beam that continuously outputs energy to time. Furthermore, the TFT can be formed stably without causing pinholes or peeling. This makes it possible to realize a very highly reliable TFT. According to a third aspect of the present invention, there is provided a semiconductor manufacturing apparatus for emitting an energy beam for crystallizing a semiconductor thin film formed on an amorphous substrate, wherein the semiconductor manufacturing apparatus can continuously output energy along a time axis The beam has the function of scanning the energy beam to the object to be irradiated, and the output instability of the energy beam has a value less than ± 1%. In this case, the output instability of the energy beam is set to a value of less than ± 1%, and the noise versus time that better expresses the instability of the energy beam is set to 0.1 rms% or less. Therefore, a stable and continuous beam can be applied. Continuous light beams can be scanned to form many thin papers evenly in a large-sized crystalline state (flowing pattern). Standards for Chinese paper (CNS) A4 (210X297 mm) are applicable. -10- 535194 A7 B7 V. Description of the invention 8) The effect of the film transistor is a semiconductor thin film. According to a fourth aspect of the present invention, similar to the third aspect, a semiconductor manufacturing apparatus is provided. The device includes a setting device for setting an amorphous substrate on a surface on which a semiconductor film is formed, so that the amorphous substrate can freely move on a plane parallel to the surface of the semiconductor film, a laser swing device, It can output energy beam continuously with respect to time, and a beam splitting device for optically splitting the energy beam emitted from the laser oscillating device into sub-beams. Each beam is applied to scan a corresponding portion of the semiconductor film relatively to perform crystallization. In this case, by splitting the sub-beams, predetermined portions of the semiconductor thin film corresponding to the respective sub-beams can be immediately crystallized. As a result, many thin-film transistor semiconductor films can be formed uniformly in a large-sized crystalline state (flow pattern). In addition, even when using a laser pendulum device with an output lower than that of a laser laser such as a CW laser, a very high throughput is obtained which is not worse than that when using a laser laser. This makes it possible to effectively obtain a crystal for a thin film transistor. In the fourth aspect of the present invention, each of the secondary beams is preferably controlled so that only a portion where the thin film transistor is formed is irradiated with the beam at an optimal energy intensity for crystallization, and the beam is rapidly passed through the non-formed thin film transistor. The part of the crystal. Thereby, a higher production volume can be obtained, and at the same time, a very efficient crystallization for thin film transistors can be achieved. 0 -11- (Please read the precautions on the back before filling this page) This paper size applies to Chinese national standards (CNS ) A4 specification (210X297 mm) 535194 A7 ------------ B7 _ V. Invention description 9 () "-According to the fifth aspect of the present invention, similar to the third aspect, it provides a Semiconductor manufacturing equipment. The device includes a setting device for setting an amorphous substrate on a surface on which a semiconductor film is formed so that the side amorphous substrate can move freely on a plane parallel to the surface of the semiconductor film. The laser swing device It can output energy beam continuously with respect to time, and intermittent (pulse) emission device, which has a transmission area and a blocking area for the energy beam to intermittently transmit the energy beam. By scanning the moving energy beam to relatively scan the amorphous substrate, the energy beam is intermittently applied to the semiconductor film to selectively crystallize only the portion of the thin film transistor. In this case, the transmission of the energy beam is controlled mainly by the intermittent emission device, and only the semiconductor thin film portion described can be selectively crystallized. That is, only a desired portion of the semiconductor thin film in a non-patterned state can be selectively crystallized. Therefore, it is not necessary to set in advance the portion irradiated with the light beam, that is, the portion (band-like or island-like) forming the thin film transistor. Therefore, the number of manufacturing steps can be shortened, and productivity can be improved. In the fifth aspect of the present invention, it is preferable that the energy beam is intermittently applied to portions other than the thin film transistor to form a position mark for forming each thin film transistor into a predetermined shape. By forming the position mark and crystallizing the thin film transistor at the same time, the number of manufacturing steps can be shortened and the formation of an effective and accurate thin film transistor becomes possible. This paper size applies Chinese National Standard (CNS) A4 specification (21〇χ297mm) -12- (Please read the notes on the back before filling this page) • Order — 535194 A7 _____B7 I. Description of the invention (0 ~~) ~ ~ ^ The present invention includes semiconductor devices corresponding to the above-mentioned fourth and fifth aspects and a method for manufacturing the semiconductor devices. 1A and 1B are schematic plan views showing a crystalline state of a semiconductor thin film in the first embodiment of the present invention; and FIGS. 2A and 2B are plan views showing a state in which a semiconductor thin film is formed into a stripe pattern and Light micrographs; Figures 3A and 3B are light micrographs showing the state of forming TFT islands; Figure 4 is a SEM image showing the state of a semi-conductor film crystallized by a CW laser (flow pattern); Figure 5 Fig. 6 is a SEM image showing the state of a semiconductor film crystallized into a laser pattern by a CW laser; Fig. 6 is a SIMS analysis image showing a surrounding semiconductor film; Fig. 7 is an optical image showing a cross-section TEM of a semiconductor film; 8A to 8C are schematic cross-sectional views respectively showing steps in manufacturing the TFT according to the first embodiment; and FIGS. 9A to 9C are respectively showing steps subsequent to FIG. 8C in manufacturing the TFT according to the first embodiment. Schematic cross-sectional views; Figures 10A and 10B are schematic cross-sectional views respectively showing the steps following Figure 9C in manufacturing the TFT according to the first embodiment; this paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) Li) -13- (Please read the notes on the back before filling this page). Order # 535194 A7 B7 V. Invention Description 1 (1 (Please read the notes on the back before filling this page) Figures 11A to lie FIG. 12 is a schematic cross-sectional view showing the steps subsequent to FIG. 10B in manufacturing the TFT according to the first embodiment; FIG. 12 is a diagram showing a relationship between a crystal pattern and a mobility of a semiconductor thin film; FIG. 13 is a diagram showing a crystal pattern A light micrograph of the relationship with the mobility of the semiconductor thin film; FIG. 14 is a schematic plan view showing a band-shaped semiconductor thin film and a position mark in the first modification of the first embodiment; and FIGS. 15A to 15D are shown in FIG. 16A to 16D are schematic plan views showing the state of a semiconductor thin film in the third modification of the first embodiment in the second modification of the first embodiment; 17 FIG. 18 is a schematic plan view showing a state of a semiconductor thin film in a fourth modification of the first embodiment; FIGS. 18A to 18C are schematic views showing a state of a semiconductor thin film in a fifth modification of the first embodiment; FIG. 9 is a schematic diagram showing a laser device in a second embodiment of the present invention; FIG. 20 is a diagram showing a DPSS laser device in a first modification of the second embodiment of the present invention; FIG. 21 is a diagram A schematic diagram showing a DPSS laser device in a second modification of the second embodiment of the present invention; FIG. 22 is a diagram showing a third embodiment of the present invention.

-14- 535194 A7 B7 五、發明説明卩 ) DPSS雷射裝置的部分概略圖; 第23圖係顯示使用四DPSS雷射所產生共計 28次光束之狀態的概略圖; 第24A與24B圖係顯示使用DPSS雷射之另 一照射方法的概略圖; 第25圖係顯示僅選擇性地在半導體薄膜形成 TFT之區域結晶之狀悲的概略圖; 第26A-26B圖係顯示使用於第三實施例之改 良中,DPSS雷射之照射系統的概略圖; 第27圖係顯示根據本發明第四實施例,DPSS 雷射裝置之主要部分的概略圖; 第28圖係顯示在像素區域中,一 TFT之設置 實例的概略圖; 第29圖係顯示根據第四實施例之改良2, DPSS雷射裝置之主要部分的概略圖; 第30圖係顯示根據第四實施例之改良3, DPSS雷射裝置之主要部分的概略圖; 第31圖係顯示根據第四實施例之改良4, DPSS雷射裝置之主要部分的概略圖; 第32圖係顯示藉由檢測在由SiN或SiON,以 及一 Si層所製成之緩衝層内的氫分佈所獲得的結 果; 第33圖係顯示一 a-Si薄膜剝落狀態之光顯微 圖; 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -15- (請先閲讀背面之注意事項再填寫本頁) 訂· 0 535194 A7 B7 五、發明説明1〇 ) 第34圖係一概略截面圖,其顯示一 a-Si薄膜 係形成於一具有緩衝層插置於其間之玻璃基材上 方的狀態; 第35圖係顯示在500。0下,進行熱處理2小 時後,玻璃基材/SiN/Si02/a-Si結構之SIMS分析結 果; 第36圖係顯示半導體薄膜於結晶後之光顯微 圖;以及 第37圖係一 AFM圖,其顯示使用習知激光雷 射所結晶之石夕薄膜的狀態。 較佳實施例的詳細描述 以下將參照圖式詳細描述應用本發明之較佳 實施例。 (第一實施例) -以沿時間軸之連續能量光束輸出進行結晶- 將揭露本發明第一實施例之主要部分,即,使 用沿時間軸連續地輸出能量之能量光束,例如,半 導體激光(LD激光)之固態雷射(DPSS(二極體泵唧 固態雷射)雷射),使半導體薄膜結晶。 一連續沿時間軸之能量光束係可照射與掃目苗 如一非晶矽(a-Si薄膜),以形成大尺寸多晶矽結 晶。此時之結晶顆粒尺寸係約數,可形成非常 大的結晶。此結晶顆粒尺寸係為藉由使用目前可取 -16- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 至100倍。因 邊電路部分的 得之激光雷射的所獲得之尺寸的10 此,此結晶對在需要高速操作之周 TFT係非常有利的。 如弟1A至2B圖戶斤示,在呈古 於其間之玻璃美材i上,„ 102層形成 性_2 溥膜2係被形成線 佳(帶)形(第以圖)或島形(第⑺圖)。該a_si薄膜2 ,表面與該玻璃基材i之下表面係藉由自^雷 十之連續沿時間軸輸出之能量光束3,以箭矢所示 的方向進行照射與掃猫。於此之後,如第3入盥3β ;所示:各帶形半導體薄膜2(第Μ圖)或各島形 、’導體薄膜2 (第3Β S1)係被形成圖案並蚀刻,以經 由在半導體薄膜2内之通道區域4,形成具有源極 與沒極區域5之TFT島區域6。 …由於導因於熱擴散至周邊區域的高冷卻速 率,於導區域6周圍係形成微結晶。然而,在島區 域6内之冷卻速率可藉由適宜地選擇cw雷射3之 照射條件(能量與掃瞄速度)而設定足夠低,並形成 寬度上數// m與長度上數十# m之結晶顆粒。因 此’可增加通道部分之結晶顆粒尺寸。 使用連續沿時間軸之能量光束的結晶技術已 在SOI (絕緣體上之矽)領域中被加以研習,但玻璃 基材係被認為不耐熱。當以雷射照射玻璃基材,同 時一 a-Si薄膜係形成於整個表面上時,玻璃基材的 溫度係隨著a-Si薄膜之溫度上升而上升,因而觀察 535194 、發明説明1(5 < 解決此1題,』薄膜 =被加工成帶形或島形’以防止破璃基材的溫 度上升、產生破裂’以及雜質擴散至薄膜内。 為了:大區域内形成許多TFT,必須穩定能量 +導體⑶激光之固態雷射係具有 由 〜1/Q/h的能量穩定 度’因而優於其他能量光束。 以下將描述-使用具半導體激光⑽激光)之 二極體泵·態雷射(DPSS雷射)之結晶的實例。 該固態雷射之波長為532 nm (Nd:YV〇4之二 次諧波、Nd:YAG之二次諧波,或其等類似之物)。 能量光束輸出穩定度係< 〇. 1 r m s %雜訊,且輸出時 間穩定度係< ± 1%/h。注意波長係非限制於此,而 可使用任何可結晶一半導體薄膜之波長。輸出係為 10 W,且NA35玻璃係使用作為一非結晶基材。非 結晶基材之材料係非限制於此,而可為另一具有非 晶形絕緣層、陶瓷、塑膠,或其等類似之物的非鹼 性玻璃、矽石玻璃、單結晶矽。 一 Si〇2阻擔層係以約400 nm之薄膜厚度形成 於一玻璃基材與一半導體薄膜之間。注意的是,阻 擔層係非限制於此,而可為一 Si〇2薄膜與SiN薄膜 之層結構。半導體薄膜係為一藉由電漿CVD而形 成之矽薄膜。用於脫氫之熱處理係於能量照射前在 450°下進行2小時。脫氫係非限制於熱處理,而可 本紙張尺度適用中國國家標準(CNS) A4规格(210X297公釐) -18- (請先閲讀背面之注意事項再填寫本頁) 、可_ 五、發明説明1(6 ) 猎由多次照射能量光束,同時將能量等級自低能量 側逐漸增加而達成。於此實施例中,半導體薄膜係 :工由玻璃而自下表面被照射’但係非限制於此。半 導體薄膜可自半導體薄膜側被照射。 能量光束係形成400 寸的延 長線形光束(長方形光束)。能量光束的尺寸與形狀 係非限制於此,且該能量光束可被調整為結晶所需 的最佳尺寸。作為光束的形狀,可合宜地使用長方 形(或橢圓形)光束、線形(或橢圓形)光束,或其等 類似之形狀。儘管較佳此一長線形(或橢圓形)光 束、長方形(或橢圓形)光束,或線形(或橢圓形)光 束係具有在光束内均勻的能量強度分佈,但並不是 都需要如此。此-光束可具有最大強度係在光束中 心的能量輪廓。 於此實施例中,如第2A與2B圖所示,a_Si 薄膜2係在形成TFT之矽區域内形成帶形圖案。相 鄰的帶形a-Si薄膜2係以預定的距離分離開來,且 存在;又有a-Si薄膜2之區域。此a_y薄膜2的配置 係可大幅降低對NA3 5玻璃基材1的熱損害。注意 a-Si溥膜係非限制於帶形,而可形成島形圖案。 第4圖係顯示在20 cm/s之能量光束掃瞄速度 下’結晶一 a-Si薄膜的結果。 係發現形成結晶顆粒尺寸為5 或更大的 結晶。此結晶顆粒尺寸係相當於1 〇至1 〇〇倍之以 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明1(7 ) 激光雷射結晶的顆粒尺寸。假如觀察到結晶顆粒在 掃瞄方向内流動,則此結晶圖案在此實施例中係定 義為一”流動圖案”。此名稱並非限制於此,而為於 此實施例中描述方便。作為具有與流動圖案之結晶 顆粒尺寸不同的圖案,有時係形成顯示在第5圖的 圖案,其類似於顯示在第37圖之以激光雷射所形 成的結晶圖案。於此實施例中,此結晶顆粒圖案係 定義為”激光圖案"。激光圖案係因不當能量密度或 掃瞄速度(或兩者)而形成。 以下將描述觀察大量存在於結晶薄膜上之玻 璃内之雜質之影響的結果。 於此實施例中,以PECVD形成之厚度約400 nm的Si02薄膜係插置於NA35玻璃基材1與作為 半導體薄膜之a-Si薄膜2之間。該缓衝層係非限制 於此,而可為薄膜厚度為200 nm或更厚之單一 Si02 或可使用Si02薄膜與SiN薄膜之層合結構。 第6圖係顯示SIMS分析的結果。 確認的是,在玻璃内的雜質(鋁、硼、鈉及鋇) 並未存在於結晶的半導體薄膜内。於資料中係觀察 到鋁,但僅為幻影。鋁事實上並未存在於薄膜内。 鈉的密度係低於偵測極限。 第7圖係顯示偵測對NA35玻璃熱損害的結果 (觀察截面TEM的結果)。 如第7圖所示,玻璃與緩衝層間之界面係清楚 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -20- (請先閲讀背面之注意事項再填寫本頁)-14- 535194 A7 B7 V. Description of the invention 卩) Partial schematic diagram of DPSS laser device; Figure 23 is a schematic diagram showing the state of a total of 28 beams generated by using four DPSS lasers; Figures 24A and 24B show A schematic diagram of another irradiation method using a DPSS laser; FIG. 25 is a schematic diagram showing the state of crystallizing only selectively in a region where a TFT is formed on a semiconductor thin film; and FIGS. 26A to 26B are diagrams used in a third embodiment In the improvement, a schematic diagram of a DPSS laser irradiation system; FIG. 27 is a schematic diagram showing a main part of a DPSS laser device according to a fourth embodiment of the present invention; FIG. 28 is a TFT shown in a pixel area A schematic diagram of a setting example; FIG. 29 is a schematic diagram showing a main part of a DPSS laser device according to a modification 2 of the fourth embodiment; FIG. 30 is a diagram showing a DPSS laser device according to a modification 3 of the fourth embodiment; Fig. 31 is a schematic diagram showing a main part of a DPSS laser device according to a modification 4 of the fourth embodiment; Fig. 32 is a diagram showing a SiN or SiON and a Si layer by inspection Made buffer The results obtained by the hydrogen distribution in the graph; Figure 33 is a light micrograph showing the peeling state of an a-Si film; This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) -15- (please first Read the notes on the back and fill out this page) Order · 0 535 194 A7 B7 V. Description of the invention 1) Figure 34 is a schematic cross-sectional view showing an a-Si thin film formed with a buffer layer interposed therebetween. The state above the glass substrate; Figure 35 shows the SIMS analysis results of the glass substrate / SiN / Si02 / a-Si structure after heat treatment at 500.0 for 2 hours; Figure 36 shows the semiconductor film on Light micrograph after crystallization; and FIG. 37 is an AFM diagram showing the state of the Shixi film crystallized using a conventional laser laser. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment to which the present invention is applied will be described in detail below with reference to the drawings. (First embodiment)-Crystallization with continuous energy beam output along the time axis-The main part of the first embodiment of the present invention will be disclosed, that is, using an energy beam that continuously outputs energy along the time axis, for example, a semiconductor laser ( LD laser) solid-state laser (DPSS (diode pumped solid-state laser) laser) to crystallize semiconductor thin films. A continuous energy beam along the time axis can irradiate and scan the eyes, such as an amorphous silicon (a-Si film), to form large-sized polycrystalline silicon crystals. The crystal grain size at this time is about a few, and very large crystals can be formed. This crystalline particle size is currently -16- (please read the precautions on the back before filling out this page). This paper size is 100 times the Chinese National Standard (CNS) A4 size (210X297 mm). Because of the obtained size of the laser circuit obtained by the side circuit part, this crystal is very advantageous for TFT systems where high-speed operation is required. As shown in Figures 1A to 2B, on the beautiful glass material i that is ancient, „102 layer forming _2 film 2 is formed into a line (belt) shape (pictured) or an island shape ( (Figure ⑺). The surface of the a_si film 2 and the lower surface of the glass substrate i are irradiated and scanned by the energy beam 3 continuously output along the time axis from Lei Shi, in the direction shown by the arrow. After that, as shown in the third entry 3β; each strip-shaped semiconductor film 2 (picture M) or each island-shaped, 'conductor film 2 (3B S1) is patterned and etched to pass through the The channel region 4 in the semiconductor thin film 2 forms a TFT island region 6 having a source region and a non-electrode region 5.… Due to the high cooling rate due to thermal diffusion to the peripheral region, microcrystals are formed around the conductive region 6. However, The cooling rate in the island area 6 can be set sufficiently low by appropriately selecting the irradiation conditions (energy and scanning speed) of the cw laser 3, and forming a number of width // m and a length of tens of # m Crystal grains. Therefore 'the grain size of the channel portion can be increased. Use of energy light continuously along the time axis The crystallization technology has been studied in the field of SOI (silicon on insulator), but glass substrates are considered to be heat-resistant. When a glass substrate is irradiated with a laser, and an a-Si thin film system is formed on the entire surface The temperature of the glass substrate rises as the temperature of the a-Si film rises. Therefore, observe 535194, Invention Description 1 (5 < solve this problem, "film = processed into a belt or island shape 'to prevent breaking The temperature of the glass substrate rises, cracks occur, and impurities diffuse into the film. In order to form many TFTs in a large area, it is necessary to stabilize the energy + the conductor. The solid-state laser system of the laser has an energy stability of ~ 1 / Q / h 'So it is better than other energy beams. The following will describe-an example of crystallization using a diode pump · state laser (DPSS laser) with a semiconductor laser holmium laser. The wavelength of this solid-state laser is 532 nm (Nd: The second harmonic of YV〇4, the second harmonic of Nd: YAG, or the like). The energy beam output stability is < 0.1 rms% noise, and the output time stability is < ± 1% / h. Note that the wavelength is not limited to this, but Use any wavelength that can crystallize a semiconductor film. The output is 10 W, and NA35 glass is used as an amorphous substrate. The material of the amorphous substrate is not limited to this, but it can be another one with an amorphous insulating layer , Ceramic, plastic, or the like, non-alkaline glass, silica glass, single crystal silicon. A Si02 barrier layer is formed on a glass substrate and a semiconductor film with a film thickness of about 400 nm. Note that the barrier layer is not limited to this, but can be a layer structure of a Si02 film and a SiN film. The semiconductor film is a silicon film formed by plasma CVD. The heat treatment for dehydrogenation was performed at 450 ° for 2 hours before energy irradiation. The dehydrogenation system is not limited to heat treatment, but this paper size can apply Chinese National Standard (CNS) A4 specification (210X297 mm) -18- (Please read the precautions on the back before filling this page) 1 (6) Hunting is achieved by irradiating the energy beam multiple times and gradually increasing the energy level from the low energy side. In this embodiment, the semiconductor thin film is made of glass and is irradiated from the bottom surface ', but it is not limited thereto. The semiconductor thin film can be irradiated from the semiconductor thin film side. The energy beam is a 400-inch extended linear beam (rectangular beam). The size and shape of the energy beam are not limited to this, and the energy beam can be adjusted to an optimal size required for crystallization. As the shape of the light beam, a rectangular (or elliptical) light beam, a linear (or elliptical) light beam, or the like can be suitably used. Although it is preferred that such a long (or oval) beam, a rectangular (or oval) beam, or a linear (or oval) beam have a uniform energy intensity distribution within the beam, this need not always be the case. This-the beam can have an energy profile with a maximum intensity tied to the center of the beam. In this embodiment, as shown in FIGS. 2A and 2B, the a_Si thin film 2 is formed with a stripe pattern in a silicon region where a TFT is formed. Adjacent band-shaped a-Si films 2 are separated by a predetermined distance and exist; there are regions of the a-Si film 2 again. The arrangement of the a_y film 2 can significantly reduce thermal damage to the NA3 5 glass substrate 1. Note that the a-Si 溥 film is not limited to a band shape, but can form an island pattern. Figure 4 shows the results of crystallizing an a-Si film at a scanning speed of an energy beam of 20 cm / s. It was found that crystals having a crystal particle size of 5 or more were formed. This crystalline particle size is equivalent to 10 to 100 times the size of this paper. The Chinese National Standard (CNS) A4 specification (210X297 mm) is applicable. 535194 A7 B7 V. Description of the invention 1 (7) Laser crystallized particles size. If it is observed that the crystalline particles flow in the scanning direction, the crystalline pattern is defined as a "flow pattern" in this embodiment. This name is not limited to this, but is convenient for description in this embodiment. As a pattern having a crystalline particle size different from the flowing pattern, a pattern shown in FIG. 5 is sometimes formed, which is similar to the crystalline pattern formed by laser laser shown in FIG. 37. In this embodiment, the crystalline particle pattern is defined as "laser pattern". The laser pattern is formed due to improper energy density or scanning speed (or both). The following will describe the observation of a large amount of glass present on the crystalline film The result of the influence of impurities in this embodiment. In this embodiment, a Si02 film with a thickness of about 400 nm formed by PECVD is interposed between the NA35 glass substrate 1 and the a-Si film 2 as a semiconductor film. The buffer The layer system is not limited to this, but it can be a single SiO 2 film with a thickness of 200 nm or more, or a laminated structure of SiO 2 film and SiN film can be used. Figure 6 shows the results of SIMS analysis. It is confirmed that in glass The impurities (aluminum, boron, sodium, and barium) are not present in the crystalline semiconductor film. Aluminum is observed in the data, but it is only a phantom. Aluminum does not actually exist in the film. The density of sodium is low The detection limit is shown in Figure 7. Figure 7 shows the results of detecting the thermal damage to NA35 glass (observation of the cross-section TEM result). As shown in Figure 7, the interface between the glass and the buffer layer is clear. CNS ) A4 size (210X297mm) -20- (Please read the precautions on the back before filling this page)

、可I 535194 A7 B7 五、發明説明ί8 ) 的,且沒有觀察到任何對玻璃的損害。 於此實施例中,係藉由使用一具有10 W輸出 與532 nm波長之DPSS雷射而達成結晶。當半導體 薄膜圖案之配置為已知,如第2 A與2B圖所示,可 形成多光束,並在將其等與半導體薄膜區域匹配時 同時發射。此時,可使用多能量光束產生器,或自 一產生器之能量光束係可被分裂成多個光束。 -TFT之製造- 以下將解說一使用上述連續沿時間軸輸出之 能量光束之η-通道薄膜電晶體的製造實例。第8A 至11C圖係分別顯示在製造薄膜電晶體中之步驟的 概略截面圖。 作為一非結晶基材,類似上述實例,係使用 ΝΑ35玻璃基材2卜如第8Α圖所示,一厚度約400 nm之Si02緩衝層22,以及一具有非結晶矽薄膜之 圖案的Si薄膜係形成於玻璃基材21上。用於脫氫 之熱處理係於450°下進行2小時。脫氫係非限制於 熱處理,而可藉由多次照射能量光束,同時將能量 等級自低能量側逐漸增加而達成。 接著,使用上述連續沿時間軸輸出之能量光束 結晶a-Si薄膜2,藉此形成一作用半導體薄膜11。 更特定言之,如第2A圖所示,一半導體薄膜, 於此情況下,a-Si薄膜2係形成為帶形。使用具有 532 nm波長、能量光束穩定度< 0.1 rms%雜訊,以 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -21- (請先閲讀背面之注意事項再填寫本頁) 訂丨 Φ 535194 A7 B7 五、發明説明) 及輸出穩定度< ± 1%/h的DPSS雷射。藉由在20 cm/s之掃瞒速度下,以能量光束尺寸為400 /zmx 40//m的線性光束照射並掃瞄a-Si薄膜2,而使其 結晶。 隨後,如第3A圖所示,一 TFT島區域6係形 成於該結晶的帶形半導體薄膜内。此時,半導體薄 膜係被處理成將TFT通道區域4設置在該帶形半導 體薄膜之中心軸上。亦即,在完全TFT内之電流流 動係與雷射光束掃瞎方向一致。於此情況下,如顯 示在第2A圖之下部所示,多數個(於此實例中係例 釋三個)TFT可形成於各帶寬内。 如第8B圖所示,作為閘極氧化物薄膜之氧化 矽薄膜23係藉由PECVD而於作用半導體薄膜11 上形成約200 nm厚度之薄膜厚度。該氧化矽薄膜 23可以諸如LPCVD或濺鍍法之其他方法形成。 如第8C圖所示,一鋁薄膜(或鋁合金薄膜)24 係藏鐘成約300 nm之薄膜厚度。 如第9A圖所示,鋁薄膜24係藉由光微影與 乾蝕刻而形成電極形圖案,藉而形成一閘極電極 24 〇 如第9B圖所示,使用上述形成圖案之閘極電 極24作為罩模而使氧化矽薄膜23形成圖案,藉而 形成與閘極電極形狀一致的閘極氧化物薄膜23。 如第9C圖所示,使用閘極電極24作為罩模, 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -22- (請先閲讀背面之注意事項再填寫本頁) 、\一\口 · 發明説明3j〇 ) 而使離子植入於作用半導體薄膜11之閘極電極的 兩側内。更特定言之,η-型雜質,在此情況下,磷 (Ρ)係以20 keV之加速能量以及4 X l〇15/cm2的劑量 進行離子植入,藉而形成源極與汲極區域。 如第10A圖所示,最終結構係以激光雷射照 射’以使源極與沒極區域内之磷活化。接著,如第 10B圖所示,SiN係沈積至約3〇〇mn的薄膜厚度, 以覆蓋整個表面,藉而形成層間絕緣薄膜25。 如第11A圖所示,用於曝露作用半導體薄膜 11之閘極電極24以及源極與汲極區域的接觸孔% 係形成於該層間絕緣薄膜25内。 如第11B圖所示,形成由鋁或其等類 的金屬薄膜27,以包埋接觸孔26。如第uc圖所 示,金屬薄膜27係被形成圖案,以形成佈線27, 該佈線27係經由接觸孔26而連接間極電極%以 及半導體薄膜Η之源極纽極區域。其後,形成 覆蓋整個表面之保護賴,並執行其等類似之步 驟,以完成η-型TFT。 化通道TFT來檢測 。第12圖顯示實驗 使用以上述步驟製造之 TFT特性與結晶品質間的關係 結果。 當通道區域的結晶圖案為—流動圖案時,移動 又係較在激光雷射圖案内者高。最高的 47〇cm2/Vs。移動度係與流動圖案形狀有很強^關 535194 A7 B7 五、發明説明$ ) 體薄膜。 (第二改良) 第15A至15D圖係用於解說第二改良之概略 平面圖。 如第15A圖所示,a-Si薄膜係被加工成具有二 幾近平行縫隙32之島形,並形成一島區域。 a-Si薄膜之上表面係以一 6W能量、400 /z m X 40 //m光束尺寸以及20 cm/s掃瞄速度之CW雷 射,如Nd:YV04雷射(2ω,波長532 nm),在縫隙 32之方向(以箭矢顯示)照射。自上表面之水平照射 可正常地結晶a-Si薄膜。設若a-Si薄膜係自下表面 照射,樣品固持器係亦被加熱,以於薄膜表面側獲 得熱絕緣效果,並容易獲得較高品質結晶。該a-Si 薄膜係被熔化並結晶。由於熱擴散至周邊區域,因 而在島區域6周圍為高冷卻速率,進而形成微結 晶。在通道區域4中,藉由適當地選擇CW雷射之 照射條件(能量與掃瞄速度),可將冷卻速率設定得 足夠低,並形成在寬度上為數//m,以及在長度上 為數十// m之結晶顆粒。 此時,如第15B圖所示,縫隙32係阻礙自邊 緣向内成長之結晶顆粒與結晶邊界1並橫越通道區 域。僅平行於縫隙32成長之結晶顆粒係形成於縫 隙32之間。設若縫隙32間之間隔足夠小,此區域 係自單結晶形成。各縫隙32之縫隙寬度較佳係形 -25- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明) 成儘可能小,以不將縫隙32間之區域改變成微結 晶,同時保持縫隙32之顆粒阻礙效果。縫隙32間 之間隔係依據元件之通道寬度而以空白設定。 如第15C圖所示,最終結構係以乾蝕刻形成 圖案,以將縫隙32間之單結晶部分設定成通道區 域4,藉此完成TFT。 如第15D圖所示,以已知的方法形成閘極絕 緣薄膜與閘極電極。於植入與活化雜質後,形成源 極與汲極,以製造TFT。 藉由使用此方法之結晶,可選擇性地獲得在 TFT通道區域之所需部分的單結晶。在使用以此方 式製得之作用半導體薄膜所形成之TFT中,僅一結 晶顆粒存在於通道區域中。因此,可改良特性,並 大幅減少因結晶性與結晶顆粒邊界所產生之變 化。再者,可於玻璃基材上執行不同的處理,並可 提供以低化費所產生之具高價值的高效能顯示。 (第三改良) 第16A至16D圖係用於解說第三改良之概略 平面圖,以及沿I · Γ線所取之概略截面圖。 於Si02底下層與a-Si薄膜2成功地形成於玻 璃基材1後,a-Si薄膜2係被形成島形圖案,如第 16A圖所示。 如第16B圖所示,一 Si02薄膜係藉由CVD或 其等類似之方法而於該a-Si薄膜2上形成約50 nm -26- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明?4 ) 之薄膜厚度,並加工成二平行細線圖案33。 如第16C圖所示,a-Si薄膜2係自上表面以一 CW雷射加以照射與掃瞄。照射條件係相同於第一 實施例。此時,a-Si薄膜2係藉由雷射加熱再次熔 化與結晶。然而,由於該細線圖案33存在於a-Si 薄膜2上,熔化的Si係容易因表面張力而聚集,且 獨立於邊界之Si細線33a係形成於該細線圖案33 之下部。該Si細線阻礙結晶顆粒與結晶顆粒邊界係 橫越通道。結果,僅平行於細線成長之結晶顆粒係 形成於該二細線圖案33間。 細線圖案33之Si02薄膜係以水性HF溶液或 其等類似之物加以去除。如第16D圖所示,最終結 構係經乾蝕刻加工,以將單結晶部分設置於細線圖 案33之間作為通道區域4。其後,以已知的方法形 成一閘極絕緣薄膜與閘極電極,藉而製造TFT。 藉由使用此方法之結晶,可選擇性地獲得在 TFT通道區域之所需部分的單結晶。在使用以此方 式製得之作用半導體薄膜所形成之TFT中,僅一結 晶顆粒存在於通道區域中。因此,可改良特性,並 大幅減少因結晶性與結晶顆粒邊界所產生之變 化。然而,可於玻璃基材上執行不同的處理,並可 提供以低化費所產生之具高價值的高效能顯示。 (第四改良) 第四改良係幾近相同於作為第二改良之製造 -27- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 五、發明説明25 ) 方法,除了縫隙形狀不同。帛17圖係顯示在第四 改良中之縫隙形狀。不同於第15A至15C圖之縫隙 形狀,一縫隙32係未完全平行,但係稍為在雷射 掃瞄方向上變寬。此形狀可更有效阻礙自周圍對角 向内的結晶顆粒邊界。再者,圖中自下側延伸的結 晶顆粒可容易地以頸效應加以選擇。隨後的處理係 相同於第二改良。 (第五改良) 第18A至18C圖係用於解說第五改良之概略 圖。第18A圖之上部為圖案部分之平面圖,而下部 為沿ι·γ線所取之截面圖。帛18B與18C圖係顯示 接續於第18A圖之製造步驟。 ^於一 a_Si薄膜2中,一薄膜區域34係被一厚 薄膜區域35所環繞。在薄膜區域34之縱向,執行 以fw雷射之掃瞄與照射(參見第18a圖)。此時, 厚薄膜區域35因其厚度係具有大熱容量,因而降 低固化期狀冷卻料。目此,厚薄膜區域35對 薄膜區域34係具有熱浴作用。於薄膜區域34中, 結晶顆粒邊界係朝向周圍厚薄膜區域35擴散(參見 第8B圖)此忍扣在薄膜區域%内之缺陷(結晶顆 粒邊界)密度降低。亦即,可實行高品質結晶。 藉由使用薄膜區域34作為TFT之通道區域, 可實行一高效能TFT(參見第18C圖)。 535194 A7 B7 五、發明説明和 ) (第二實施例) 以下將描述本發明之第二實施例。 以下將解說使用於第一實施例之DPSS雷射裝 置的構造。 第19圖係顯示根據第二實施例之DPSS雷射 裝置之整個構造的外觀。 此DPSS雷射裝置係包含一固態半導體LD激 光之DPSS雷射41、一用於以DPSS雷射41所發 射之雷射光束照射預定位置之光學系統42,以及一 X-Y基台43,其係可在水平與垂直方向上自由驅 動,對此欲進行照射之玻璃基材係為固定的。 於第二實施例中,玻璃基材係由NA35玻璃(非 鹼性玻璃)所製成,而雷射波長為532 nm。在能量 光束内之輸出變化為0.1 rms%或更低之雜訊,輸出 不穩定度為< ± 1%/h,而能量光束之輸出為10 W。 注意波長係非限制於此數值,而可使用任何可結晶 矽薄膜之波長。又,光束輸出係非限制於此數值, 而可使用具有合適輸出之裝置。 該能量光束係形成400 /zmx 40 //m尺寸之 線形光束(長方形光束)。能量光束之尺寸與形狀係 非限制於此,且能量光束可被調整至結晶所需之最 佳化尺寸。使用中心作為最大強度,在縱向上的能 量變化係在40%内。 玻璃基材係以與光學軸垂直而設置在X-Y基 -29- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明?7 ) 台43上。 於第二實施例中,如同第一實施例,其上欲製 造一 TFT之半導體薄膜(a-Si薄膜)係形成帶形或島 形,如第1A或1B圖所示。相鄰a-Si薄膜係被分 離開來,並存在無a-Si薄膜之區域。此降低了對使 用於此實施例之玻璃基材的熱損害。 能量掃瞄速度為20 cm/s。此實施例採用馬達 驅動X-Y基台43。注意X-Y基台43之驅動機構 係非限制於此,而可使用其他基台,只要其可在15 cm/s或更高的速度下被驅動。以能量光束之掃瞄可 藉由將能量光束相對於X-Y基台43移動而執行。 亦即,可移動能光束或是X-Y基台。 當多晶矽欲形成於玻璃基材上時,由於目前基 材尺寸為400 mm X 500 mm,因此在掃目苗期間之位 置控制是重要的。此實施例之X-Y基台43係呈現 在每一米位移中,10 // m或更小之位置變化。 此實施例之DPSS雷射裝置可藉由將能量光束 輸出不穩定度設定至小於± 1%的值,且較佳將呈現 能量光束不穩定度之雜訊對時間設定為0.1 rms% 或更低而供應穩定連續的光束。藉由掃瞄此連續光 束,許多TFT之作用半導體薄膜可均勻地形成具有 大顆粒尺寸之結晶狀態(流動圖案)。 -改良- 以下將描述第二實施例之改良。 -30- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明淖 ) (第一改良) 第20圖係顯示根據第一改良之DPSS雷射裝 置之整個構造。 此改良使用二具有0.1 rms%雜訊或更低之輸 出穩定度、< ± 1%/h之輸出不穩定度,以及10 W 輸出之DPSS雷射41。由該二雷射41所發射之雷 射光束係多路傳輸進入沿光學路徑之一中間路 徑,藉而增進輸出。 光束尺寸係設定為800 // m X 40 /z m,以照 射比在第二實施例内之大的區域。類似於第一實施 例,此改良具有讀取與照射位置記號的功能。 X-Y基台43係被水平放置,且一玻璃基材係 被水平設置。於照射/掃瞄方向設置一磁浮型移動機 構,其中一常態馬達驅動架構係使用於X軸方向。 能量光束係垂直發射。 除了第二實施例之功效,第一改良之DPSS雷 射裝置可藉由設置DPSS雷射41(於此情況中為二 組)而供應更穩定的連續光束。藉由掃瞄此連續光 束,許多TFT之作用半導體薄膜可均勻地形成具有 大顆粒尺寸之結晶狀態(流動圖案)。 (第二改良) 第21圖顯示根據第二改良之DPSS雷射裝置 的整個構造。 此改良採用具有相同輸出穩定度、輸出^以及 -31- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明汐 ) (請先閱讀背面之注意事項再填寫本頁) 其等類似於第一改良之條件的二DPSS雷射41,而 照射不同的位置。各能量光束具有自位置記號讀取 照射位置的功能。 除了第二實施例之功效,第二改良之DPSS雷 射裝置可藉由設置DPSS雷射41(於此情況中為二 組)而快速地供應更穩定的連續光束。藉由掃瞄此連 續光束,許多TFT之作用半導體薄膜可均勻地形成 具有大顆粒尺寸之結晶狀態(流動圖案)。 (第三實施例) 隨後,將描述本發明之第三實施例。 •訂丨 於此,如同第二實施例,以下將描述DPSS雷 射裝置的構造以及使用該DPSS雷射裝置之半導體 薄膜的結晶方法。此實施例之DPSS雷射裝置與第 二實施例之不同點在於能量光束係如下述分歧。 ·· 於此實施例中,所描述為在使用半導體激光 (LD激光)固態雷射(DPSS雷射)Nd:YV04之像素區 域内的結晶實例。於此實施例中,將描述用於像素 區域之結晶技術,但本發明係非限制於此。本發明 係可亦應用至用於任何周邊電路之結晶。雷射係非 限制於Nd:YV〇4。可亦使用類似的DPSS雷射光(例 如,Nd:YAG或其等類似之物)。波長為532 nm。波 長係非限制於此。可使用任何波長,只要其可熔化 矽。能量輸出之穩定度係< 0.1 rms%之雜訊,輸出 時間之穩定度係<土1%/11,而輸出係10W。 535194 A7 B7 五、發明説明3(0 ) 作為非結晶基材,所使用為一 NA35玻璃基 材。非結晶基材係非限制於此。可使用其他非鹼性 玻璃、石英玻璃、具有非晶形絕緣層之單結晶基 材、陶竟或塑膠。 一約400 nm厚之由Si02製成之緩衝層係形成 於玻璃基材與半導體薄膜之間。該緩衝層係非限制 於此。其可為Si02與SiN之多層薄膜。半導體薄膜 係一約150 nm厚之經由電漿CVD方法所形成之矽 薄膜。在以能量光束照射前,用於脫氫之熱處理係 在500°C下執行2小時。脫氫係非限制於此一熱處 理。其可藉由多次照射光束能量係自低能量側逐漸 增加之能量光束而達成。於此實施例中,係自半導 體薄膜側進行照射,但其可經由玻璃自背表面側進 行照射。 -DPSS雷射裝置之構造· 第22圖係顯示根據此第三實施例之DPSS雷 射裝置的部分概略圖。 該D P S S雷射裝置包含一類似第二實施例之固 態半導體激光DPSS雷射41(未示出)、一作為用於 將自DPSS雷射41發射光學分歧成數個次光束(於 此例示實例中,為7個次光束)之光束分歧裝置的繞 射格柵51、一平行透鏡52、一用於聚集該分歧次 光束之聚光透鏡53,以及一 X-Y基台43 (未示出), 類似第二實施例,其上係安裝欲進行照射之玻璃基 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -33- (請先閲讀背面之注意事項再填寫本頁), 可 I 535194 A7 B7 V. Description of the invention ί8), and no damage to the glass was observed. In this embodiment, crystallization is achieved by using a DPSS laser with a 10 W output and a wavelength of 532 nm. When the configuration of the semiconductor thin film pattern is known, as shown in Figs. 2A and 2B, multiple beams can be formed and emitted simultaneously when they are matched with the semiconductor thin film area. In this case, a multi-energy beam generator may be used, or the energy beam system from a single generator may be split into multiple beams. -Manufacturing of TFT-An example of manufacturing a? -Channel thin film transistor using the above-mentioned energy beam output continuously along the time axis will be explained below. 8A to 11C are schematic cross-sectional views showing the steps in manufacturing a thin film transistor, respectively. As an amorphous substrate, similar to the above example, a SiO2 glass substrate 2 is used, as shown in FIG. 8A, a Si02 buffer layer 22 having a thickness of about 400 nm, and a Si film system having a pattern of an amorphous silicon film It is formed on the glass substrate 21. The heat treatment for dehydrogenation was performed at 450 ° for 2 hours. Dehydrogenation is not limited to heat treatment, but can be achieved by irradiating the energy beam multiple times while gradually increasing the energy level from the low energy side. Next, the a-Si thin film 2 is crystallized by using the energy beam continuously outputted along the time axis, thereby forming an active semiconductor thin film 11. More specifically, as shown in FIG. 2A, a semiconductor thin film is formed. In this case, the a-Si thin film 2 is formed in a band shape. Use 532 nm wavelength, energy beam stability < 0.1 rms% noise, apply Chinese National Standard (CNS) A4 specification (210X297 mm) at this paper scale -21- (Please read the precautions on the back before filling in this Page) Order 丨 Φ 194 194 A7 B7 V. Description of the invention) and DPSS laser with output stability < ± 1% / h. The a-Si film 2 was irradiated and scanned with a linear light beam having an energy beam size of 400 / zmx 40 // m at a sweep speed of 20 cm / s to crystallize it. Subsequently, as shown in FIG. 3A, a TFT island region 6 is formed in the crystalline band-shaped semiconductor thin film. At this time, the semiconductor thin film system is processed so that the TFT channel region 4 is disposed on the central axis of the strip-shaped semiconductor thin film. That is, the current flow in the complete TFT is consistent with the laser beam scanning direction. In this case, as shown in the lower part of FIG. 2A, a plurality of (three in this example) TFTs may be formed in each bandwidth. As shown in FIG. 8B, the silicon oxide film 23 as a gate oxide film is formed on the active semiconductor film 11 by a PECVD film having a thickness of about 200 nm. The silicon oxide film 23 can be formed by other methods such as LPCVD or sputtering. As shown in FIG. 8C, an aluminum thin film (or aluminum alloy thin film) 24 has a thickness of about 300 nm. As shown in FIG. 9A, the aluminum thin film 24 is formed into an electrode-shaped pattern by photolithography and dry etching to form a gate electrode 24. As shown in FIG. 9B, the patterned gate electrode 24 is used The silicon oxide thin film 23 is patterned as a mask, thereby forming a gate oxide thin film 23 conforming to the shape of the gate electrode. As shown in Figure 9C, the gate electrode 24 is used as the cover mold. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -22- (Please read the precautions on the back before filling this page), \ 一 \ 口 · Invention Description 3j〇) Ions are implanted into both sides of the gate electrode of the semiconductor thin film 11. More specifically, η-type impurities. In this case, phosphorus (P) is ion-implanted at an acceleration energy of 20 keV and a dose of 4 X 1015 / cm2, thereby forming source and drain regions. . As shown in Fig. 10A, the final structure is irradiated with laser laser 'to activate phosphorus in the source and non-electrode regions. Next, as shown in FIG. 10B, a SiN-based film is deposited to a thickness of about 300 nm to cover the entire surface, thereby forming an interlayer insulating film 25. As shown in FIG. 11A, the gate electrode 24 for exposing the semiconductor film 11 and the contact hole% of the source and drain regions are formed in the interlayer insulating film 25. As shown in Fig. 11B, a metal thin film 27 made of aluminum or the like is formed to embed the contact hole 26. As shown in Fig. Uc, the metal thin film 27 is patterned to form a wiring 27, which connects the inter electrode electrode% and the source button region of the semiconductor thin film 经由 via the contact hole 26. Thereafter, a protective layer covering the entire surface is formed, and similar steps are performed to complete the n-type TFT. Channel TFT to detect. Fig. 12 shows the results of the experiment using the relationship between the TFT characteristics and the crystal quality manufactured in the above steps. When the crystal pattern of the channel area is a flowing pattern, the movement is higher than that in the laser laser pattern. The highest 470cm2 / Vs. The mobility is strongly related to the shape of the flow pattern. 535194 A7 B7 V. Description of the invention (Second modification) Figures 15A to 15D are schematic plan views for explaining the second modification. As shown in Fig. 15A, the a-Si thin film is processed into an island shape having almost parallel slits 32, and forms an island region. The upper surface of the a-Si thin film is a CW laser with a 6W energy, 400 / zm X 40 // m beam size, and a scanning speed of 20 cm / s, such as Nd: YV04 laser (2ω, wavelength 532 nm), Irradiate in the direction of the slot 32 (shown by arrows). The horizontal irradiation from the upper surface can crystallize the a-Si film normally. Assuming that the a-Si thin film is irradiated from the lower surface, the sample holder system is also heated to obtain a thermal insulation effect on the surface side of the thin film and easily obtain higher quality crystals. The a-Si thin film is melted and crystallized. Since the heat is diffused to the peripheral region, a high cooling rate is formed around the island region 6, thereby forming microcrystals. In the channel area 4, by appropriately selecting the irradiation conditions (energy and scanning speed) of the CW laser, the cooling rate can be set to be sufficiently low and formed to be number / m in width and number in length Ten // m of crystalline particles. At this time, as shown in Fig. 15B, the gap 32 prevents the crystal grains growing inward from the edge and the crystal boundary 1 from crossing the channel region. Only crystalline particles growing parallel to the gaps 32 are formed between the gaps 32. Assuming that the interval between the gaps 32 is sufficiently small, this region is formed from a single crystal. The gap width of each gap 32 is better. -25- (Please read the precautions on the back before filling this page) This paper size is applicable to China National Standard (CNS) A4 (210X297 mm) 535194 A7 B7 V. Description of the invention ) As small as possible so as not to change the area between the gaps 32 into microcrystals, while maintaining the particle blocking effect of the gaps 32. The interval between the gaps 32 is set in blank according to the channel width of the component. As shown in FIG. 15C, the final structure is patterned by dry etching to set the single crystal portion between the gaps 32 as the channel region 4, thereby completing the TFT. As shown in Fig. 15D, a gate insulating film and a gate electrode are formed by a known method. After implanting and activating the impurities, a source and a drain are formed to manufacture a TFT. By using the crystallization using this method, a single crystal in a desired portion of a TFT channel region can be selectively obtained. In a TFT formed using an active semiconductor thin film prepared in this manner, only one crystalline particle exists in the channel region. Therefore, characteristics can be improved, and changes due to crystallinity and crystal grain boundaries can be greatly reduced. Furthermore, different processes can be performed on glass substrates, and high-value, high-performance displays can be provided with reduced costs. (Third Modification) Figures 16A to 16D are schematic plan views for explaining the third modification, and schematic sectional views taken along the line I · Γ. After the bottom layer of SiO2 and the a-Si film 2 were successfully formed on the glass substrate 1, the a-Si film 2 was formed into an island pattern, as shown in FIG. 16A. As shown in FIG. 16B, a Si02 film is formed on the a-Si film 2 by CVD or the like by about 50 nm -26- (Please read the precautions on the back before filling this page) Paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 B7 5. Description of invention? 4) the thickness of the film, and processed into two parallel thin line patterns 33. As shown in FIG. 16C, the a-Si thin film 2 is irradiated and scanned with a CW laser from the upper surface. The irradiation conditions are the same as those of the first embodiment. At this time, the a-Si thin film 2 is melted and crystallized again by laser heating. However, since the thin line pattern 33 exists on the a-Si thin film 2, the melted Si system is easily aggregated due to surface tension, and a thin Si line 33a independent of the boundary is formed under the thin line pattern 33. The Si fine wire prevents the boundary between the crystal particles and the crystal particles from crossing the channel. As a result, crystalline particles grown only parallel to the fine lines are formed between the two fine line patterns 33. The Si02 film of the thin line pattern 33 is removed with an aqueous HF solution or the like. As shown in FIG. 16D, the final structure is subjected to a dry etching process so that a single crystal portion is disposed between the thin line patterns 33 as a channel region 4. Thereafter, a gate insulating film and a gate electrode are formed by a known method, thereby manufacturing a TFT. By using the crystallization using this method, a single crystal in a desired portion of a TFT channel region can be selectively obtained. In a TFT formed using an active semiconductor thin film prepared in this manner, only one crystalline particle exists in the channel region. Therefore, characteristics can be improved, and changes due to crystallinity and crystal grain boundaries can be greatly reduced. However, different processes can be performed on glass substrates and can provide high-value, high-performance displays with reduced fees. (Fourth improvement) The fourth improvement is almost the same as the manufacturing of the second improvement-27- (Please read the precautions on the back before filling this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297) C) 5. Description of the invention 25) Method, except that the shape of the gap is different. Figure 17 shows the shape of the gap in the fourth modification. Unlike the shapes of the slits in FIGS. 15A to 15C, a slit 32 is not completely parallel, but is slightly widened in the laser scanning direction. This shape is more effective in blocking crystalline grain boundaries diagonally inward from the surroundings. Furthermore, the crystalline particles extending from the lower side in the figure can be easily selected with a neck effect. The subsequent processing is the same as the second modification. (Fifth modification) Figures 18A to 18C are schematic diagrams for explaining the fifth modification. The upper part of Fig. 18A is a plan view of the pattern portion, and the lower part is a cross-sectional view taken along the line ι · γ. Figures 18B and 18C show the manufacturing steps following Figure 18A. ^ In an a-Si film 2, a film region 34 is surrounded by a thick film region 35. In the longitudinal direction of the thin film region 34, scanning and irradiation with a fw laser are performed (see Fig. 18a). At this time, since the thick film region 35 has a large heat capacity due to its thickness, the solidified cooling material is reduced. For this reason, the thick film region 35 has a thermal bath effect on the film region 34. In the thin film region 34, the boundary of the crystalline particles diffuses toward the surrounding thick film region 35 (see FIG. 8B). The density of the defects (the boundary of the crystalline particles) within the percent of the thin film region decreases. That is, high-quality crystallization can be performed. By using the thin film region 34 as a channel region of the TFT, a high-performance TFT can be implemented (see FIG. 18C). 535194 A7 B7 V. Description of the invention and) (Second Embodiment) A second embodiment of the present invention will be described below. The structure of the DPSS laser device used in the first embodiment will be explained below. Fig. 19 shows the appearance of the entire configuration of a DPSS laser device according to the second embodiment. The DPSS laser device includes a DPSS laser 41 of a solid-state semiconductor LD laser, an optical system 42 for irradiating a predetermined position with a laser beam emitted by the DPSS laser 41, and an XY base 43. The glass substrate is driven freely in the horizontal and vertical directions, and the glass substrate to be irradiated is fixed. In the second embodiment, the glass substrate is made of NA35 glass (non-alkaline glass), and the laser wavelength is 532 nm. The output variation in the energy beam is 0.1 rms% or less noise, the output instability is < ± 1% / h, and the output of the energy beam is 10 W. Note that the wavelength is not limited to this value, and any wavelength of a crystallizable silicon film can be used. The beam output is not limited to this value, and a device having a suitable output can be used. This energy beam forms a linear beam (rectangular beam) with a size of 400 / zmx 40 // m. The size and shape of the energy beam are not limited to this, and the energy beam can be adjusted to the optimal size required for crystallization. Using the center as the maximum intensity, the energy change in the longitudinal direction is within 40%. The glass substrate is set on the XY base-29 perpendicular to the optical axis. (Please read the precautions on the back before filling this page.) This paper size applies to China National Standard (CNS) A4 (210X297 mm) 535194 A7 B7 5. Description of the invention? 7) On stage 43. In the second embodiment, like the first embodiment, a semiconductor thin film (a-Si thin film) on which a TFT is to be formed is formed into a band shape or an island shape, as shown in FIG. 1A or 1B. Adjacent a-Si thin films are separated, and there are regions without a-Si thin films. This reduces thermal damage to the glass substrate used in this embodiment. The energy scanning speed is 20 cm / s. This embodiment uses a motor to drive the X-Y abutment 43. Note that the drive mechanism of the X-Y abutment 43 is not limited to this, and other abutments can be used as long as they can be driven at a speed of 15 cm / s or higher. Scanning with an energy beam can be performed by moving the energy beam relative to the X-Y base 43. That is, a movable energy beam or an X-Y abutment. When polycrystalline silicon is to be formed on a glass substrate, since the current substrate size is 400 mm X 500 mm, position control during scanning is important. The X-Y abutment 43 of this embodiment exhibits a position change of 10 // m or less at each meter displacement. The DPSS laser device of this embodiment can set the energy beam output instability to a value less than ± 1%, and preferably set the noise presenting energy beam instability to time to 0.1 rms% or lower. And supply a stable continuous beam. By scanning this continuous light beam, many TFTs act on the semiconductor film to uniformly form a crystalline state (flow pattern) with a large particle size. -Improvement- An improvement of the second embodiment will be described below. -30- (Please read the precautions on the back before filling this page) This paper size is applicable to Chinese National Standard (CNS) A4 (210X297 mm) 535194 A7 B7 V. Description of the invention 淖) (First improvement) Figure 20 Shows the entire structure of the DPSS laser device according to the first modification. This improvement uses an output stability of 0.1 rms% noise or less, an output instability of < ± 1% / h, and a DPSS laser 41 of 10 W output. The laser beams emitted by the two lasers 41 are multiplexed into an intermediate path along an optical path, thereby increasing output. The beam size is set to 800 // m X 40 / z m to illuminate a large area in the second embodiment. Similar to the first embodiment, this modification has functions of reading and irradiating position marks. The X-Y abutment 43 is placed horizontally, and a glass substrate is placed horizontally. A magnetic levitation type mobile mechanism is set in the irradiation / scanning direction, and a normal motor driving mechanism is used in the X-axis direction. The energy beam is emitted vertically. In addition to the effects of the second embodiment, the first modified DPSS laser device can supply a more stable continuous beam by setting the DPSS laser 41 (two sets in this case). By scanning this continuous light beam, many TFTs act on the semiconductor film to uniformly form a crystalline state (flow pattern) with a large particle size. (Second modification) Fig. 21 shows the entire structure of a DPSS laser device according to a second modification. This improvement uses the same output stability, output ^ and -31- (Please read the precautions on the back before filling this page) This paper size applies to China National Standard (CNS) A4 specifications (210X297 mm) 535194 A7 B7 V. Description of the invention Xi) (Please read the precautions on the back before filling out this page) The two DPSS lasers 41 similar to the first modified condition, and irradiate different positions. Each energy beam has a function of reading the irradiation position from the position mark. In addition to the effects of the second embodiment, the second modified DPSS laser device can quickly supply a more stable continuous beam by setting the DPSS laser 41 (two sets in this case). By scanning this continuous beam, many TFTs act on the semiconductor film to uniformly form a crystalline state (flow pattern) with a large particle size. (Third Embodiment) Subsequently, a third embodiment of the present invention will be described. • Here, as in the second embodiment, the structure of a DPSS laser device and the crystallization method of a semiconductor thin film using the DPSS laser device will be described below. The difference between the DPSS laser device of this embodiment and the second embodiment is that the energy beam is diverged as follows. In this embodiment, an example of crystallization in a pixel region using a semiconductor laser (LD laser) solid-state laser (DPSS laser) Nd: YV04 is described. In this embodiment, a crystallization technique for a pixel region will be described, but the present invention is not limited thereto. The invention can also be applied to crystals used in any peripheral circuit. Laser systems are not limited to Nd: YV〇4. Similar DPSS laser light can also be used (for example, Nd: YAG or similar). The wavelength is 532 nm. The wavelength is not limited to this. Any wavelength can be used as long as it can melt the silicon. The stability of the energy output is < 0.1 rms% noise, the stability of the output time is < soil 1% / 11, and the output is 10W. 535194 A7 B7 V. Description of the invention 3 (0) As a non-crystalline substrate, a NA35 glass substrate is used. The amorphous base material is not limited thereto. Other non-alkaline glass, quartz glass, single crystalline substrate with amorphous insulation, ceramic or plastic can be used. A buffer layer made of SiO2 with a thickness of about 400 nm is formed between the glass substrate and the semiconductor thin film. The buffer layer is not limited thereto. It can be a multilayer thin film of SiO 2 and SiN. The semiconductor thin film is a silicon thin film formed by a plasma CVD method with a thickness of about 150 nm. Prior to irradiation with an energy beam, a heat treatment for dehydrogenation was performed at 500 ° C for 2 hours. The dehydrogenation system is not limited to this heat treatment. This can be achieved by repeatedly irradiating the beam with an energy beam gradually increasing from the low energy side. In this embodiment, the irradiation is performed from the semiconductor film side, but it can be irradiated from the back surface side through the glass. -Structure of DPSS Laser Device Fig. 22 is a schematic diagram showing a part of a DPSS laser device according to this third embodiment. The DPSS laser device includes a solid-state semiconductor laser DPSS laser 41 (not shown) similar to the second embodiment, and one for splitting the optical emission from the DPSS laser 41 into several sub-beams (in this illustrated example, (7 sub-beams), a diffraction grating 51 of a beam diverging device, a parallel lens 52, a condenser lens 53 for collecting the divergent sub-beams, and an XY abutment 43 (not shown), similar to the first In the second embodiment, the size of the basic paper on which the glass to be irradiated is installed is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -33- (Please read the precautions on the back before filling this page)

、可I Φ 535194 A7 B7 五、發明説明3(1 ) 材,且其可自由地在水平與垂直驅動。 儘管繞射格柵51在此實施例中係作為光束分 歧裝置,光束分歧裝置係非限制於此。舉例而言, 亦可使用者為多角鏡、可移動式鏡、使用聽覺效果 之A0裝置(聲光學裝置),或使用電場光學效果之 E0裝置(電光學裝)。 各次光束具有80 μιη X 20 μηι的尺寸,其係足 以在像素區域内形成薄膜電晶體。各次光束具有擴 圓光束形狀,其中最大強度係在質量中心。光束形 狀係非限制於此一橢圓光束形狀。可亦使用一長線 形光束(或一長方形光束)。能量光束之尺寸係亦非 限制於上述。可使用任何光束尺寸,只要其可形成 像素TFT。 於此實施例中,各欲形成像素TFT之矽區域 係為帶形,如第23圖所示。各半導體薄膜帶54係 自在任一側上之鄰近半導體薄膜帶54分離開來, 且有插置一不含半導體薄膜部分之區域。此係用於 降低使用於此實施例中之NA35玻璃基材上之熱損 害。 半導體薄膜之圖案係非限制於此一帶形。可亦 使用一島形圖案。由於此一像素TFT不需要如此高 的效能,用於結晶之光束能量強度可相較於周邊區 域降低。為此理由,即使非晶形矽形成於整個表面 上,可在不損害玻璃基材下執行結晶。 -34- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明泠 ) 第23圖係顯示使用四DPSS雷射產生總數28 之次光束之狀態的概略圖。 於此實施例之像素TFT之結晶技術中,以能 量光束之掃猫速度為100 cm/sec。掃目苗速度係非限 制於此數值。可使用任何掃瞄速度,只要其可達成 所需的像素TFT效能。 為了照射像素區域之整個表面,在區塊内之 28次光束係平行移動,以結晶各28線。像素區域 之整個表面係因此以改良的生產率加以結晶。於此 實施例中,此操作係藉由快速移動X-Y基台43來 進行。然而,本發明係非限制於此方式。該28次 光束可在區塊内移動同時該X-Y基台43係被固 定。在此實施例中,次光束的數目為28。但,次光 束之數目當然非限制於此數值。 以光束之照射方法係非限制於在第23圖中 者。如於第24 A圖中所顯示之照射方法亦為合適。 於此實例中,多數個(所例示之實例為2個)雷射係 各分割成多數個(所例示之實例為3個)次光束。此 等次光束係在未互相重疊下移動至掃瞄。於此實例 中,在各掃目苗操作内之側向位移可在距離上較短。 再者,舉例而言,可亦合適地使用如於第24B 圖中所顯示之照射方法。於此實施中,各DPSS雷 射41發射一能量光束。自各別DPSS雷射41所發 射之能量光束係在未互相重疊下移動。此照射方法 -35- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明初 ) 係特別有效於需要以較高能量結晶之周邊電路。當 然,此照射方法係有用於像素區域。 由於觀察在各以第23圖之方法所形成之光束 線内的結晶顆粒的結果,確認形成300 nm結晶顆 粒尺寸之多晶矽。 -TFT之製造 TFT係藉由使用作用半導體薄膜,以此實施例 之DPSS雷射裝置結晶半導體薄膜而製造。TFT之 製造方法係相同於參照第8至11圖所描述之第一 實施例中者。 於此實施例中,欲結晶之半導體薄膜係形成帶 形圖案,其中50 μηι寬帶係設置成某些間隔,以符 合像素配置。波長為532 nm。輸出為10 W。能量 光束之穩定度係&lt; 0.1 rms%之雜訊。輸出穩定度係&lt; ±l%/h。能量光束之形狀係80 μηι X 20 μηι之橢圓 形。掃瞄速度為100 cm/sec。結晶係在上述條件下 進行。 當進行檢測經由相同於參照第8至11圖所描 述之第一實施例中之方法製得之TFT的移動度 時,為約20 cm2/Vs。此數值顯示一可足夠實際使 用作為像素電晶體的效能。 -改良- 以下將描述此第三實施例之改良。 以下將描述,如第25圖所示,用於選擇性地 -36- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明濰 ) 僅在欲形成TFT之區域結晶的有效結晶方法。 第26圖係使用於此實施例之改良中,DPSS 雷射裝置之照射系統的概略圖。 參照第26A圖,一照射系統A係由一用於在 預定方向反射次方束之固定鏡61,以及一用於在預 定方向進一步反射經固定鏡61反射之光束,以照 射標的區域的可移動式鏡62所組成。此一照射系 統A係用於各分歧次光束。 參照第26B圖,一照射系統B係由一用於將 次光束反射至一預定方向之固定鏡63、一平行透鏡 64,以及一用於經由平行透鏡64聚集經固定鏡63 反射之光束,以照射標的區域的聚光透鏡65所組 成。此一照射系統B係用於各分歧次光束。 除了移動Χ·Υ基台43,顯示於第26A或26B 圖之光學系統係設置用於各分歧次光束。光學系統 之任一者係設計成僅掃瞄用於形成各TFT之區 域。亦即,各次光束位移之範圍係小於最多100 μηι。 當快速移動Χ-Υ基台43時,於各像素位置之 光學系統係被開啟,以結晶像素部分。此導致生產 率的增加。 於此實施例中,非晶形矽可形成於基材之整個 表面上,或形成帶形或島形圖案。於任何情況下, 欲以雷射光束照射之部分當然必須與像素區域之 配置相符合。 -37- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 535194 A7 B7 五、發明説明$ ) (第四實施例) 隨後,以下將描述本發明之第四實施例。 於此,類似第二實施例,以下將描述DPSS雷 射裝置之構造以及使用該DPSS雷射裝置之半導體 薄膜的結晶方法。此實施例之DPSS雷射雷射與第 二實施例不同處在於,雷射光束可如下述選擇性地 施加至任意部分。 於此實施例中,a-Si薄膜係未事先加工成島形 圖案,但其係殘留為如同未形成圖案的狀態。於此 情況下,使用尺寸限制於大體上相當於各島之寬度 (約100 μιη或更低)的能量光束,間歇地進行照射, 同時移動Χ-Υ基台。如此所獲得為相當於在第一實 施例中各別島的結晶區域(熔融區域)。於此方式 中,可避免損害玻璃基材與剝落薄膜的問題。 在應用至LCD,同時周邊電路區域係高度集 合且其需要TFT具有較佳結晶與較高移動度的情 況中,像素區域係包含用於在相當大間隔之各別 TFT且各TFT不需要如此高移動度的區域。然而, 像素區域所占據的區域係遠大於周邊電路區域所 占據者。如此,於像素區域中,X-Y基台係高速移 動(約數m/s),且結晶係直接僅執行於所需部分, 藉而顯著地增進生產率。 -DPSS雷射裝置的構造- 第27圖係顯示根據本發明第四實施例之 -38- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 ________B7 _____ 五、發明説明?6 ) DPSS雷射裝置之主要部分的概略圖。 該DPSS雷射裝包含一類似第二實施例之固態 半導體LD激光雷射41、一具有平行透鏡之功能以 及聚光鏡之功能的光學系統7;1、一設置於光學路徑 (經此能量光束係到達玻璃基材上之a-Si薄膜70) 内之作為間歇發射裝置的交流變換器 (chopper)72,其係具有用於能量光束之傳輸(ON)區 域72a與中止(OFF)區域72b,且可於箭矢方向旋 轉,以允許能量光束間歇通過、一用於將具有通過 一 ON區域72a之能量光束反射至玻璃基材的鏡子 73,以及一 X-Y基台43(未示出),類似第二實施例, 其可自由地水平與垂直驅動。使用此DPSS雷射裝 置,一 CW雷射光,例如Nd:YAG雷射光(2ω,波 長:532 nm),係經由光學系統72形成20 μηι X 5 μηι 之光束尺寸。 於此情況下,其係有效地在第28圖所顯示之 箭矢方向上掃瞄。此甚至是對如第1圖之情況,如 非限制於以能量光束之間歇照射的間歇照射亦有 效。 第28圖係顯示在相素區域中之TFT之設置實 例的概略圖。 於此實施例中,各像素尺寸為150 μηι X 50 μηι,而TFT區域可具有10 μηι X 15 μηι之尺寸。 於Si〇2緩衝層(厚度:200 nm)而後一 a-Si薄膜(厚度 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -39- (請先閲讀背面之注意事項再填寫本頁)可可 Φ 535194 A7 B7 5. Invention Description 3 (1) material, and it can be driven horizontally and vertically freely. Although the diffraction grating 51 is used as the beam diverging means in this embodiment, the beam diverting means is not limited thereto. For example, the user can also use a polygon mirror, a movable mirror, an A0 device (acoustic-optical device) using auditory effects, or an E0 device (electro-optical device) using electric field optical effects. Each secondary beam has a size of 80 μm X 20 μm, which is sufficient to form a thin film transistor in the pixel area. Each secondary beam has a rounded beam shape, with the maximum intensity at the center of mass. The beam shape is not limited to this elliptical beam shape. A long linear beam (or a rectangular beam) can also be used. The size of the energy beam is not limited to the above. Any beam size can be used as long as it can form a pixel TFT. In this embodiment, the silicon regions of each pixel TFT to be formed are band-shaped, as shown in FIG. Each semiconductor thin film tape 54 is separated from an adjacent semiconductor thin film tape 54 on either side, and there is an area where a semiconductor film-free portion is interposed. This is used to reduce thermal damage on the NA35 glass substrate used in this example. The pattern of the semiconductor thin film is not limited to this strip shape. An island pattern can also be used. Since such a pixel TFT does not need such a high efficiency, the energy intensity of the beam used for crystallization can be reduced compared to the surrounding area. For this reason, even if amorphous silicon is formed on the entire surface, crystallization can be performed without damaging the glass substrate. -34- (Please read the precautions on the back before filling in this page) This paper size is applicable to the Chinese National Standard (CNS) A4 size (210X297 mm) 535194 A7 B7 V. Description of the invention) Figure 23 shows the use of four DPSS A schematic diagram of the state of the laser generating a total of 28 secondary beams. In the crystallization technology of the pixel TFT in this embodiment, the scanning speed of the energy beam is 100 cm / sec. The speed of scanning the seedlings is not limited to this value. Any scanning speed can be used as long as it can achieve the required pixel TFT performance. In order to illuminate the entire surface of the pixel area, the 28 beams in the block are moved in parallel to crystallize 28 lines each. The entire surface of the pixel region is thus crystallized with improved productivity. In this embodiment, this operation is performed by rapidly moving the X-Y abutment 43. However, the present invention is not limited to this method. The 28 beams can be moved in the block while the X-Y abutment 43 is fixed. In this embodiment, the number of sub-beams is 28. However, the number of secondary beams is of course not limited to this value. The beam irradiation method is not limited to the one shown in FIG. The irradiation method as shown in Figure 24A is also suitable. In this example, a plurality of (the illustrated example is two) laser systems are each divided into a plurality of (the illustrated example is three) sub-beams. These sub-beams move to scanning without overlapping each other. In this example, the lateral displacements within the operations of each scan can be shorter in distance. Furthermore, for example, the irradiation method as shown in FIG. 24B can also be suitably used. In this implementation, each DPSS laser 41 emits an energy beam. The energy beams emitted from the respective DPSS lasers 41 move without overlapping each other. This irradiation method -35- (Please read the precautions on the back before filling this page) This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 B7 V. Preliminary description of the invention) It is particularly effective for the needs Peripheral circuits crystallized with higher energy. Of course, this illumination method is used for the pixel area. As a result of observing the crystalline particles in the beam lines formed by the method shown in FIG. 23, it was confirmed that polycrystalline silicon having a crystal particle size of 300 nm was formed. -Manufacture of TFT TFT is manufactured by crystallizing a semiconductor thin film using a DPSS laser device of this embodiment using an active semiconductor thin film. The manufacturing method of the TFT is the same as that in the first embodiment described with reference to Figs. 8 to 11. In this embodiment, the semiconductor thin film system to be crystallized forms a stripe pattern, in which the 50 μm wideband system is arranged at certain intervals to conform to the pixel configuration. The wavelength is 532 nm. The output is 10 W. The stability of the energy beam is <0.1 rms% noise. Output stability is &lt; ± l% / h. The shape of the energy beam is an ellipse of 80 μη X 20 μηι. The scanning speed is 100 cm / sec. Crystallization proceeds under the above conditions. When the mobility of the TFT obtained by the same method as that in the first embodiment described with reference to Figs. 8 to 11 was measured, it was about 20 cm2 / Vs. This value shows a performance that is sufficient for practical use as a pixel transistor. -Improvement- An improvement of this third embodiment will be described below. The following description, as shown in Figure 25, is used to selectively -36- (please read the precautions on the back before filling this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 B7 V. Description of the invention Wei) An effective crystallization method that crystallizes only in the area where the TFT is to be formed. Fig. 26 is a schematic diagram of an irradiation system of a DPSS laser device used in the modification of this embodiment. Referring to FIG. 26A, an illumination system A is composed of a fixed mirror 61 for reflecting a square beam in a predetermined direction, and a movable mirror for further reflecting a light beam reflected by the fixed mirror 61 in a predetermined direction to illuminate a target area. Composed of a mirror 62. This irradiation system A is used for the respective sub-beams. Referring to FIG. 26B, an illumination system B is composed of a fixed mirror 63 for reflecting the secondary beam to a predetermined direction, a parallel lens 64, and a beam for reflecting the light reflected by the fixed mirror 63 through the parallel lens 64 to The condenser lens 65 irradiates the target area. This irradiation system B is used for each sub-beam. In addition to moving the X · Y abutment 43, the optical system shown in Fig. 26A or 26B is provided for each sub-order beam. Either of the optical systems is designed to scan only the area used to form each TFT. That is, the range of each beam displacement is less than 100 μm at most. When the X-Y base 43 is rapidly moved, the optical system at each pixel position is turned on to crystallize the pixel portion. This leads to an increase in productivity. In this embodiment, the amorphous silicon can be formed on the entire surface of the substrate, or a strip or island pattern can be formed. In any case, the portion to be illuminated by the laser beam must of course match the arrangement of the pixel area. -37- (Please read the notes on the back before filling in this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 B7 V. Description of the invention $) (Fourth embodiment) Then, A fourth embodiment of the present invention will be described below. Here, similar to the second embodiment, the structure of a DPSS laser device and the crystallization method of a semiconductor thin film using the DPSS laser device will be described below. The DPSS laser of this embodiment is different from the second embodiment in that the laser beam can be selectively applied to any portion as described below. In this embodiment, the a-Si thin film is not processed into an island pattern in advance, but it remains as if it is not patterned. In this case, an energy beam whose size is limited to approximately the width of each island (about 100 μm or less) is used to irradiate intermittently while moving the X-Υ abutment. In this way, a crystalline region (melted region) corresponding to each island in the first embodiment is obtained. In this way, the problems of damaging the glass substrate and the peeling film can be avoided. In the case where it is applied to an LCD and the peripheral circuit area is highly concentrated and it requires TFTs to have better crystallinity and higher mobility, the pixel area contains individual TFTs used at relatively large intervals and each TFT need not be so high Area of mobility. However, the area occupied by the pixel area is much larger than the area occupied by the peripheral circuit area. In this way, in the pixel area, the X-Y abutment system moves at a high speed (approximately several m / s), and the crystal system is directly executed only on the required part, thereby significantly improving the productivity. -The structure of the DPSS laser device-Figure 27 shows -38- according to the fourth embodiment of the present invention (Please read the precautions on the back before filling out this page) This paper size applies the Chinese National Standard (CNS) A4 specification ( 210X297 mm) 535194 A7 ________B7 _____ 5. Description of the invention? 6) A schematic diagram of the main part of the DPSS laser device. The DPSS laser device includes a solid-state semiconductor LD laser laser 41 similar to the second embodiment, an optical system 7 having a function of a parallel lens and a function of a condenser lens; 1. an optical path (reached by this energy beam system) An a-Si film 70) on a glass substrate is an alternating current converter (chopper) 72 which is an intermittent emission device. The chopper 72 has an ON region 72a and an OFF region 72b for the energy beam. Rotate in the direction of the arrow to allow the energy beam to pass intermittently, a mirror 73 for reflecting the energy beam having passed through an ON area 72a to the glass substrate, and an XY abutment 43 (not shown), similar to the second In an embodiment, it can be driven horizontally and vertically freely. Using this DPSS laser device, a CW laser light, such as Nd: YAG laser light (2ω, wavelength: 532 nm), is formed into a beam size of 20 μm x 5 μm via the optical system 72. In this case, it is effectively scanning in the direction of the arrow shown in FIG. 28. This is effective even in the case as shown in FIG. 1, but is not limited to intermittent irradiation with intermittent irradiation with an energy beam. Fig. 28 is a schematic diagram showing an example of the TFT arrangement in the pixel area. In this embodiment, each pixel has a size of 150 μm × 50 μm, and the TFT region may have a size of 10 μm × 15 μm. Next to the Si02 buffer layer (thickness: 200 nm) followed by an a-Si film (thickness of this paper applies Chinese National Standard (CNS) A4 specifications (210X297 mm) -39- (Please read the precautions on the back before filling (This page)

訂I 535194 A7 B7 五、發明説明ί7 ) 150 nm)形成於一玻璃基材上後,交流變換器72係 被旋轉。能量光束係藉而在7.5 ps/17.5 ps速率下產 生ON/OFF,並以2 m/sec之掃瞄速度(X-Y基台的 速度)來施加。於此方式中,未將a-Si薄膜加工成 島形圖案,未損害玻璃基材與剝落薄膜,可選擇性 僅結晶a-Si薄膜的所需部分(例如,在第27圖中之 結晶區域74)。 於此情況中,較佳能量光束係間歇地施加至 a-Si薄膜之若干部分,而非欲形成TFT之區域,以 結晶並形成具有預定形狀之位置記號75(第27 圖),且此等記號75(第27圖)係使用作為a-Si薄膜 之結晶指針。 當以上述方法執行a-Si薄膜之結晶時,可使 用CW雷射獲得大顆粒結晶,且此不會增加處理步 驟與時間。在以此大顆粒結晶所形成之TFT中,可 改良其特性,並減少因結晶之不平坦。因此,可在 降低花費下,獲得具附加價值之高效能液晶顯示裝 置。 -改良· 以下將描述此第四實施例之改良。 (改良1) 於此改良中,將描述用於在液晶顯示裝置之周 邊電路中之TFT之a-Si薄膜的結晶方法。 於周邊電路區域中,集合的程度係高於像素區 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) -40- (請先閲讀背面之注意事項再填寫本頁) 訂— ;φ. 535194 A7 __ B7 五、發明説明?8 ) 域内’且結日日的要求疋嚴格的。作為欲形成Tft之 區域’各具有50 μηι X 200 μηι尺寸之結晶區域係以 5 μιη之間隔形成。一電路係形成於各結晶區域内。 為此目的,一 cw雷射係經由光學系統形成5〇 μηιχ 5 0111之光束尺寸。於一8丨〇2緩衝層(厚度:2〇〇11111) 而後一 a_Si薄膜(厚度:150 nm)形成於一玻璃基材 上後,交流變換器72係被旋轉。能量光束係藉而 在1 ms/0.025 ms速率下產生ΟΝ/OFF,並以20 cm/sec之掃瞄速度(X-Y基台的速度)來施加。藉由 將掃瞄速度降低至約20 cm/sec,可獲得流動長結晶 顆粒(流動圖案),藉而形成具高移動度之TFT。於 此方式中,未將a-Si薄膜加工成島形圖案,未損害 玻璃基材及剝落薄膜,可在所需部分形成高品質結 晶。 (改良2) 於此改良中,用於產生能量光束ΟΝ/OFF之 間歇發射裝置係藉由一小孔與一鏡子的組合來達 成。 第29圖係顯示根據此改良2之DPSS雷射裝 置之主要部分的概略圖。 除了 DPSS雷射41與光學系統71外,該DPSS 雷射裝置包括一用於在所欲方向反哺能量光束之 可旋轉式鏡子,來取代交流變換器72。該DPSS雷 射裝置進一步包括一具有用於允許能量光束在所 本紙張尺度適用中國國家標準(CNS) A4規格(21〇X297公釐) -41- (請先閲讀背面之注意事項再填寫本頁)Order I 535194 A7 B7 V. Description of the invention (7) 150 nm) is formed on a glass substrate, and the AC converter 72 is rotated. The energy beam is turned ON / OFF at a speed of 7.5 ps / 17.5 ps and is applied at a scanning speed of 2 m / sec (the speed of the X-Y abutment). In this method, the a-Si film is not processed into an island pattern, the glass substrate and the peeling film are not damaged, and only a desired portion of the a-Si film can be selectively crystallized (for example, the crystalline region 74 in FIG. 27). ). In this case, it is preferable that the energy beam is intermittently applied to portions of the a-Si film rather than the area where the TFT is to be formed to crystallize and form a position mark 75 (FIG. 27) having a predetermined shape, and these Symbol 75 (FIG. 27) is used as a crystal pointer of an a-Si thin film. When the crystallization of an a-Si thin film is performed in the above method, CW laser can be used to obtain large particle crystals, and this does not increase the processing steps and time. In a TFT formed by crystallization from this large particle, its characteristics can be improved and unevenness due to crystallization can be reduced. Therefore, a high-performance liquid crystal display device with added value can be obtained at a reduced cost. -Improvement · An improvement of this fourth embodiment will be described below. (Modification 1) In this modification, a crystallization method of an a-Si thin film for a TFT in a peripheral circuit of a liquid crystal display device will be described. In the peripheral circuit area, the degree of assembly is higher than the pixel area. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -40- (Please read the precautions on the back before filling this page) Order—; φ. 535194 A7 __ B7 V. Explanation of the invention? 8) Within the domain ', and the requirements for closing date are not strict. As the regions to be formed Tft ', crystalline regions each having a size of 50 μm × 200 μm are formed at intervals of 5 μm. A circuit system is formed in each crystal region. For this purpose, a cw laser system forms a beam size of 50 μηι 5 0111 via an optical system. After a buffer layer (thickness: 200011111) and an a-Si film (thickness: 150 nm) are formed on a glass substrate, the AC converter 72 is rotated. The energy beam is generated at ON / OFF at a rate of 1 ms / 0.025 ms and is applied at a scanning speed of 20 cm / sec (the speed of the X-Y abutment). By reducing the scanning speed to about 20 cm / sec, flowing long crystalline particles (flowing patterns) can be obtained, thereby forming a TFT with high mobility. In this method, the a-Si film is not processed into an island pattern, the glass substrate and the peeling film are not damaged, and a high-quality crystal can be formed at a desired portion. (Improvement 2) In this improvement, the intermittent emission device for generating the energy beam ON / OFF is achieved by a combination of a small hole and a mirror. Fig. 29 is a schematic diagram showing a main part of a DPSS laser device according to this modification 2. In addition to the DPSS laser 41 and the optical system 71, the DPSS laser device includes a rotatable mirror for feeding energy beams in a desired direction instead of the AC converter 72. The DPSS laser device further includes a device for allowing the energy beam to apply the Chinese National Standard (CNS) A4 specification (21 × 297 mm) at the paper size -41- (Please read the precautions on the back before filling this page )

、可I Φ 535194 A7 B7 五、發明説明$9 ) 欲方向通過之小孔76a的中斷板76。於此改良中, 鏡子77係被旋轉,以擺動能量光束。能量光束係 僅當其通過孔76a時產生ON。作為用於擺動能量 光束之裝置,可亦使用可旋轉式多角鏡。 (改良3) 第30圖係顯示根據此改良3之DPSS雷射裝 置之主要部分的概略圖。 此改良之DPSS雷射裝置具有幾乎相同於第三 實施例之構造,但不同點在於,交流變換器72係 經處理,且伴隨此,設置數個鏡子。 於此改良中,交流變換器72之ON區域72a 之預定一者係以可反射能量光束之中斷板81來中 止。設置數個鏡子82,以在預定方向上,來反射已 反射於各別中斷板81上之能量光束。藉由此結構, 反射在中斷板81上之能量光束係轉成照射a-Si薄 膜70a之鄰近線,以及鄰接的鄰近線。在如第28 圖所示之像素尺寸為50 μηι X 150 μχη以及TFT區 域尺寸為15 μιη X 10 μηι的情況下,約2/3的掃猫 期間係在OFF狀態。藉由於此OFF期間照射鄰近 二條線,可於各掃瞄期間照射三條線。因此,處理 時間可縮短至約1/3。 在一以X-Y基台43之掃瞄期間,未照射時間 係照射時間的數倍長,使得於未照射時間期間,能 量光束係快速地一個接著一個移動至鄰近線。藉 -42- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明4〇 ) 此,可減少閒置時間,因而可增進生產率。 (請先閲讀背面之注意事項再填寫本頁) 如上所述,根據此改良,藉由將cw雷射之能 量光束限制為100 μηι或更低,並將其間歇施加, 可在不損害玻璃基材與剝落薄膜下,形成大顆粒結 晶。此外,藉由在一線之未照射時間期間照射鄰近 線,可於各掃瞄期間結晶數條線,藉而增加生產 率。此使其可抑制因應結晶顆粒邊界或尺寸之TFT 特性的不均勻,而可獲得良好的元件特性。結果, 可提供具併入其驅動電路之高品質液晶顯示裝置。 (改良4) 第31圖係顯示根據此改良4之DPSS雷射裝 置之主要部分的概略圖。 此改良之DPSS雷射裝置具有幾乎相同於改良 3之構造,但不同點在於,一多角鏡子係用於取代 交流變換器72。 除了 DPSS雷射41與光學系統71外,此改良 之DPSS雷射裝置包括一取代交流變換器72之多 角鏡子83,以及一具有數個(於此所例示為3個) 用於僅允許能量光束在依據反射於多角鏡子83 上之能量光束之方向的預定方向通過之孔洞84a 的中斷板8 4。 於此改良中,多角鏡子83係被旋轉,以擺動 能量光束,且藉此,在a-Si薄膜70上之三條線係 在一掃瞄期間同時被照射。然而,於照射第一條線 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) _ 43 _ 535194 A7 B7 五、發明説明41 ) (請先閲讀背面之注意事項再填寫本頁) 後,由於X-Y基台43已經移動,第二條線之照射 部分(孔洞84a之位置)必須位在事先依據X_Y基台 43之移動的位置。相同的方式亦應用至第三條線。 根據此改良,類似改良3,可在不損害玻璃基 材與剝落薄膜下,形成大顆粒結晶。此外,藉由在 一線之未照射時間期間照射鄰近線,可於各掃瞄期 間結晶數條線,藉而增加生產率。 在如第27至31圖所示之第四實施例與其改良 1至4中,能量光束係在加黑箭矢方向掃瞄欲移動 之Χ-Υ基台。當掃瞄一條線時,能量光束係移動於 窄箭矢方向,以掃瞄下一條線。 (第五實施例) 隨後,以下將描述本發明之第五實施例。 於此實施例中,為了製造TFT,一 a-Si薄膜 係以一 CW雷射加以結晶,類似第一至第四實施 例。此時,此實施例主要係在於防止因以能量光束 照射之緩衝層之溫度上升所導致之a-Si薄膜的剝 落。此實施例揭露了具合宜緩衝層之TFT。 已知使用SiN或SiON作為形成於玻璃基材與 a-Si薄膜間之緩衝層材料係有效於防止諸如自構成 基材之玻璃之鈉等雜質所造成的污染。第32圖係 顯示檢測在一形成後未改良之媛衝層内之氫分佈 所得的結果。 當以連續對時間產生能量之能量光束,於此實 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 B7 五、發明説明42 ) (請先閲讀背面之注意事項再填寫本頁) 例中為CW雷射,來結晶一其間插置一包括SiN或 SiON之緩衝層之形成在基材上的a-Si薄膜時,由 於緩衝層吸收能量光束(或因當a-Si薄膜熔融時之 熱傳導),溫度係上升。當在緩衝層内之氫的密度高 時,係發生氫原子的溢出,而產生導致薄膜剝落之 針孔。又,當在a-Si薄膜内之氫的密度高時,係發 生溢出而產生針孔。當兩者之密度皆高時,如第33 圖所示,a-Si薄膜係因針孔而剝落。當使用一連續 能量光束時,相較於使用一習知激光雷射來結晶, 此現象係特別明顯。 因此,於此實施例中,如第34圖所示,一 a-Si 薄膜93係以緩衝層92插置於其間的方式形成於一 玻璃基材91上方。緩衝層92係一由具有約400 nm 厚之薄SiN或SiON薄膜92a以及一 Si02薄膜92b 所製成之多層薄膜。在以CW雷射結晶a-Si薄膜 93前,在a-Si薄膜93與薄膜92a任一者中之氫的 密度係經調整。更特定言之,在a-Si薄膜93内之 氫的密度係調整至1 X l〇2G/cm3或更低,而薄膜92a 内之氫的密度係調整至1 X l〇22/cm3或更低。藉由 設置Si02薄膜92b,可降低Si薄膜與緩衝層間之 界面狀態密度,此外,在以CW雷射之能量光束照 射時,由於SiN係非直接以雷射光照射,因此,自 基材之上表面側照射比自基材之下表面側照射為 佳。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -45 - 535194 A7 B7 五、發明説明44 ) 之良好結晶。 [在SiN薄膜内之氫的合宜密度] 以下將描述藉由檢測在構成緩衝層之SiN薄 膜内之氫的合宜密度所獲得之實驗結果。 如第34圖所示,一具有約50 nm厚之薄SiN 薄膜92a,而後一具有約200 nm厚之Si02薄膜92b 係經由P-CVD方法而形成於一玻璃基材91上,以 形成一緩衝層92。一具有約150 nm厚之a-Si薄膜 93係接著形成於其上。各薄膜之厚度係非限制於上 述數值。 隨後,該a-Si薄膜93係在氮氣壓、450°C下, 以熱處理脫氫2小時。在SIMS分析中,確認在薄 SiN薄膜92a内之氫的密度變成1 X 1022/cm3或更 低。此時,在a-Si薄膜93内之氫的密度為1 X 102()/cm3 或更低。 該a-Si薄膜93係接著在6.5 W之輸出、20 cm/sec之掃目苗速度,以及532 nm之波長(Nd:YV〇4 之第二諧波)之條件下,以半導體激光(LD激光)固 態雷射(DPSS雷射)Nd:YV04進行結晶。藉由移動 X-Y基台進行掃瞄。結果,獲得類似第36圖之良 好結晶。 如上所述,根據此實施例,其變得可使用對時 間連續輸出能量之結晶而使TFT之電晶體特性高 度均勻化,並在未有針孔與剝落產生下穩定地形成 -47- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 _B7 _ 五、發明説明45 ) TFT,藉而實現非常高度可靠的TFT。 於上述實施例中,a-Si薄膜係使用作為半導體 薄膜。然而,本發明係可亦應用至任何情況,其中 初始薄膜為一經由LPCVD方法形成之p-Si薄膜、 一藉由固相成長之p-Si薄膜、一藉由金屬感應固向 成長之p-Si薄膜,或其等類似之物。 本發明可達成TFT,其中TFT之電晶體特性 可被製得高度均勻,且在周邊電路區域内之移動度 係特別高,以在應用至周邊集合電路TFT-LCD、系 統面板、系統玻璃,以及其等類似之物時可高度驅 動。 再者,根據本發明,其變成可使對時間連 續輸出能量之能量光束的不足獲得補償,使得半 導體薄膜之結晶的生產率增加,藉而實現其移動 度在周邊電路區域係特別高,以高速驅動之高效 能 TFT 〇 -48 - (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 535194 A7 -一 B7 —--- ' - 一— -— - 五、發明説明46 ) 1 玻璃基材 光雷射) 2 a-Si薄膜 42 光學系統 3 能量光束 43 基台 4 通道區域 51 繞射 5 沒極區域 52 平行透鏡 6 島區域 53 聚光透鏡 11 作用半導體薄膜 54 半導體薄犋 21 NA35玻璃基材 61 固定鏡子 22 Si02緩衝層 62 可移動式鏡 23 氧化矽薄膜 63 固定鏡子 24 鋁(鋁合金)薄膜 64 平行透鏡 (閘極電極) 65 聚光透鏡 25 層間絕緣薄膜 70 a_Si薄膜 26 接觸孔 71 光學糸統 27 金屬薄膜 72 交流變換器 31 位置記號 72a 傳輪區域 32 繾隙 72b 中斷區域 33 平行細線圖案 73 鏡子 33a Si細線 74 結晶區域 34 細薄膜區域 75 位置記號 35 厚薄膜區域 76 中斷板 41 BPSS雷射(LD激 76a 小孔 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) -49- (請先閲讀背面之注意事項再填寫本頁jMay I Φ 535194 A7 B7 V. Description of the invention $ 9) Interrupting plate 76 of the small hole 76a passing through in the direction you want. In this modification, the mirror 77 is rotated to swing the energy beam. The energy beam is ON only when it passes through the hole 76a. As a device for swinging the energy beam, a rotatable polygon mirror can also be used. (Modification 3) Fig. 30 is a schematic diagram showing a main part of a DPSS laser device according to this modification 3. This modified DPSS laser device has almost the same structure as that of the third embodiment, but the difference is that the AC converter 72 is processed and accompanied by several mirrors. In this modification, a predetermined one of the ON areas 72a of the AC converter 72 is stopped by an interruption plate 81 that reflects the energy beam. A plurality of mirrors 82 are provided to reflect the energy beams which have been reflected on the respective interruption plates 81 in a predetermined direction. With this structure, the energy beam reflected on the interruption plate 81 is converted into adjacent lines irradiating the a-Si thin film 70a and adjacent adjacent lines. With a pixel size of 50 μm X 150 μxη and a TFT area size of 15 μm X 10 μm as shown in Figure 28, about 2/3 of the cat scan period is OFF. Since two adjacent lines are illuminated during this OFF period, three lines can be illuminated during each scanning period. Therefore, the processing time can be shortened to about 1/3. During the scanning period with the X-Y abutment 43, the non-irradiation time is several times longer than the irradiation time, so that during the non-irradiation time, the energy beam is rapidly moved to the adjacent line one by one. Borrow -42- (Please read the precautions on the back before filling in this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 B7 V. Description of the invention 4) This can reduce idle time , Which can increase productivity. (Please read the notes on the back before filling this page) As mentioned above, according to this improvement, by limiting the energy beam of the cw laser to 100 μηι or lower, and applying it intermittently, it can be used without damaging the glass substrate. Under the material and peeling film, large particle crystals are formed. In addition, by irradiating adjacent lines during the unirradiated time of the first line, several lines can be crystallized during each scanning period, thereby increasing the productivity. This makes it possible to suppress non-uniformity of TFT characteristics depending on the boundary or size of crystal grains, and to obtain good device characteristics. As a result, a high-quality liquid crystal display device having a driving circuit incorporated therein can be provided. (Modification 4) Fig. 31 is a schematic diagram showing a main part of a DPSS laser device according to this modification 4. This modified DPSS laser device has almost the same structure as the modified 3, but the difference is that a polygon mirror is used instead of the AC converter 72. In addition to the DPSS laser 41 and the optical system 71, this modified DPSS laser device includes a polygon mirror 83 instead of the AC converter 72, and a plurality (illustrated here as three) for allowing only energy beams The interruption plate 84 in the hole 84a passing in a predetermined direction according to the direction of the energy beam reflected on the polygon mirror 83. In this modification, the polygon mirror 83 is rotated to oscillate the energy beam, and thereby, three lines on the a-Si film 70 are simultaneously irradiated during a scan. However, the paper size for the first line of irradiation is subject to the Chinese National Standard (CNS) A4 specification (210X297 mm) _ 43 _ 535194 A7 B7 V. Invention Description 41) (Please read the precautions on the back before filling this page) Later, since the XY abutment 43 has moved, the irradiated part of the second line (the position of the hole 84a) must be located in accordance with the movement of the X_Y abutment 43 in advance. The same applies to the third line. According to this improvement, similar to Modification 3, large particle crystals can be formed without damaging the glass substrate and the peeling film. In addition, by irradiating adjacent lines during the unirradiated time of a line, several lines can be crystallized during each scanning period, thereby increasing productivity. In the fourth embodiment and its modifications 1 to 4 as shown in Figs. 27 to 31, the energy beam is scanned in the direction of the black arrow to scan the X-Υ abutment to be moved. When scanning one line, the energy beam moves in a narrow arrow direction to scan the next line. (Fifth Embodiment) Subsequently, a fifth embodiment of the present invention will be described below. In this embodiment, in order to manufacture a TFT, an a-Si thin film is crystallized by a CW laser, similarly to the first to fourth embodiments. At this time, this embodiment is mainly to prevent the a-Si film from peeling off due to the temperature rise of the buffer layer irradiated with the energy beam. This embodiment discloses a TFT with a suitable buffer layer. It is known that the use of SiN or SiON as a buffer layer material formed between a glass substrate and an a-Si thin film is effective in preventing contamination caused by impurities such as sodium of the glass constituting the substrate. Figure 32 shows the results obtained by measuring the hydrogen distribution in an unmodified elementary layer after formation. When the energy beam that generates energy continuously with time, the paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 B7 V. Description of the invention 42) (Please read the notes on the back before filling (This page) In the example, CW laser is used to crystallize an a-Si thin film formed on a substrate with a buffer layer including SiN or SiON interposed therebetween, because the buffer layer absorbs the energy beam (or when a-Si The heat transfer during film melting), the temperature rises. When the density of hydrogen in the buffer layer is high, the overflow of hydrogen atoms occurs, and pinholes that cause the film to peel off are generated. When the density of hydrogen in the a-Si thin film is high, the system overflows and pinholes occur. When the density of both is high, as shown in FIG. 33, the a-Si film is peeled off due to pinholes. This phenomenon is particularly noticeable when using a continuous energy beam as compared to crystallization using a conventional laser laser. Therefore, in this embodiment, as shown in FIG. 34, an a-Si film 93 is formed over a glass substrate 91 with the buffer layer 92 interposed therebetween. The buffer layer 92 is a multilayer film made of a thin SiN or SiON film 92a and a Si02 film 92b having a thickness of about 400 nm. Before crystallizing the a-Si thin film 93 with a CW laser, the density of hydrogen in either the a-Si thin film 93 or the thin film 92a is adjusted. More specifically, the density of hydrogen in the a-Si film 93 is adjusted to 1 X 10 2 G / cm3 or lower, and the density of hydrogen in the film 92a is adjusted to 1 X 1022 / cm3 or lower. low. By providing the Si02 film 92b, the density of the interface state between the Si film and the buffer layer can be reduced. In addition, when the CW laser energy beam is irradiated, since the SiN is not directly irradiated with laser light, Side irradiation is better than irradiation from the lower surface side of the substrate. This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X297 mm) -45-535194 A7 B7 V. Description of Invention 44). [Convenient density of hydrogen in SiN film] The experimental results obtained by detecting the appropriate density of hydrogen in the SiN film constituting the buffer layer will be described below. As shown in FIG. 34, a thin SiN film 92a having a thickness of about 50 nm, and a second Si02 film 92b having a thickness of about 200 nm are formed on a glass substrate 91 by a P-CVD method to form a buffer. Layer 92. An a-Si film 93 having a thickness of about 150 nm is then formed thereon. The thickness of each film is not limited to the above-mentioned values. Subsequently, the a-Si thin film 93 was dehydrogenated by heat treatment under nitrogen pressure at 450 ° C for 2 hours. In the SIMS analysis, it was confirmed that the density of hydrogen in the thin SiN film 92a became 1 × 1022 / cm3 or lower. At this time, the density of hydrogen in the a-Si thin film 93 is 1 × 102 () / cm3 or lower. The a-Si thin film 93 was subjected to a semiconductor laser (LD) under the conditions of an output of 6.5 W, a scanning speed of 20 cm / sec, and a wavelength of 532 nm (the second harmonic of Nd: YV〇4). Laser) solid-state laser (DPSS laser) Nd: YV04 for crystallization. Scan by moving the X-Y abutment. As a result, a good crystal similar to that shown in Fig. 36 was obtained. As described above, according to this embodiment, it becomes possible to use a crystal that continuously outputs energy over time to highly uniformize the transistor characteristics of the TFT, and to form it stably without pinholes and peeling -47- (Please (Please read the notes on the back before filling this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 _B7 _ V. Description of the invention 45) TFT, thereby realizing a very highly reliable TFT. In the above embodiments, the a-Si thin film is used as a semiconductor thin film. However, the present invention can also be applied to any situation where the initial thin film is a p-Si thin film formed by the LPCVD method, a p-Si thin film grown by a solid phase, and a p-Si thin film grown by solid induction. Si film, or the like. The present invention can achieve a TFT, in which the transistor characteristics of the TFT can be made highly uniform, and the mobility in the peripheral circuit area is particularly high, so as to be applied to the peripheral integrated circuit TFT-LCD, system panel, system glass, and These and the like can be highly driven. Furthermore, according to the present invention, it becomes possible to compensate for the shortage of energy beams that continuously output energy over time, so that the productivity of crystallization of a semiconductor thin film is increased, thereby realizing that its mobility is particularly high in the peripheral circuit area and driven at high speed. High-performance TFT 〇-48-(Please read the precautions on the back before filling this page) This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 535194 A7 -One B7 —--- '-One —-—-V. Description of the invention 46) 1 Glass substrate light laser) 2 a-Si film 42 Optical system 3 Energy beam 43 Abutment 4 Channel area 51 Diffraction 5 Impossible area 52 Parallel lens 6 Island area 53 Condensing Optical lens 11 Acting semiconductor film 54 Semiconductor thin film 21 NA35 glass substrate 61 Fixed mirror 22 Si02 buffer layer 62 Movable mirror 23 Silicon oxide film 63 Fixed mirror 24 Aluminum (aluminum alloy) film 64 Parallel lens (gate electrode) 65 Condensing lens 25 Interlayer insulating film 70 a_Si film 26 Contact hole 71 Optical system 27 Metal film 72 AC converter 31 Position mark 72a Wheel area 32 Gap 72b Interrupted area 33 Parallel thin line pattern 73 Mirror 33a Si thin line 74 Crystal area 34 Thin film area 75 Position mark 35 Thick film area 76 Break plate 41 BPSS laser (LD laser 76a The size of this paper is applicable to Chinese national standards ( CNS) Α4 Specification (210X297mm) -49- (Please read the notes on the back before filling in this page j

535194 A7 B7 五、發明説明苟 ) 77 鏡子 81 中斷板 82 鏡子 83 多角鏡子 84 中斷板 84a 孔洞 91 玻璃基材 92 緩衝層 92a SiON薄膜 92b Si02薄膜 93 a-Si薄膜 -50- (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)535194 A7 B7 V. Description of the invention 77) Mirror 81 Break plate 82 Mirror 83 Polygonal mirror 84 Break plate 84a Hole 91 Glass substrate 92 Buffer layer 92a SiON film 92b Si02 film 93 a-Si film-50- (Please read the back first Please note this page before filling in this page) This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm)

Claims (1)

六、申請專利範園 第90120943號專利申請案申請專利範圍修正本 1 一種半導體元件之製造方法,盆中正日期:91年〇3月 .# 具中在其周圍之像素區 域與周邊電路區域係設置在一基 π Φ s蛐 ’各该區域係包括薄 朕電日日體,該方法包含下列步驟: 將半導體薄膜至少形成於該像辛 α ^ 豕京£域與該周邊電路區 域内之該周邊電路區域内,以及 :用-具有其能量對時間連續輸出之能量光束結晶該 薄膜,使得該薄膜可作為各薄膜電晶體之作用半導 其中-半導體激光固態雷射係使用作為該能量光束。 2. 如申請專利範圍第1項之方法,1中&gt; ^ . &quot; 八甲5亥+導體薄膜係於 邊基材上形成線形或島形圖案。 3. 如申請專利範圍第2項之方法,1中 π &amp; /、中用於以該能量光束 妝射之位置調整的記號係設置在 、, 隹°亥基材上,以對應於該形 成圖案之半導體薄膜。 4·如申請專利範圍第1項之方法,1中呤坐、替α ^ β ^ 八中忒+導體薄膜係於 该基材上形成圖案,以具有厚度相異之部分。 5 ·如申請專利範圍第4項之方法,Α中 各\少 一中忒+導體薄膜之薄 ^刀係被該半導體薄膜之厚部分所環繞,且該半導體薄膜 係以在該薄部分之大體縱向上移動之該能量光束來照射。、 6·如申請專利範圍第4項之方法,复中形士、 ^ 、、、 ,、甲形成一薄膜電晶體 之通道區域,以對應該半導體薄膜之該薄部分。 7. 一種半導體元件之製造方法,:^中在 x t 在其周圍之像素區 域與周邊電路區域係設置在一基材 刊上各该區域係包括薄 535194 A8 B8 C8VI. Patent Application Fanyuan No. 90120943 Patent Application Amendment of Patent Scope 1 A method for manufacturing a semiconductor device, the date of the basin's positive: March 1991. # The pixel area around the tool and the peripheral circuit area are set Each of the regions at a base π Φ s 蛐 ′ includes a thin solar cell. The method includes the following steps: forming a semiconductor thin film at least on the image region and the periphery in the peripheral circuit region. In the circuit area, and: crystallizing the film with an energy beam having a continuous output of energy with respect to time, so that the film can be used as a semiconductor for each thin film transistor, and a semiconductor laser solid-state laser system is used as the energy beam. 2. As in the method of applying for the first item of the patent scope, the first medium &gt; ^. &Quot; Bajia 5hai + conductor film is formed on the side substrate to form a linear or island pattern. 3. As for the method in the second item of the scope of patent application, the marks in π &amp; /, 1 used to adjust the position of the shot with the energy beam are set on the substrate, 隹 °, to correspond to the formation Patterned semiconductor film. 4. According to the method of claim 1 in the scope of the patent application, 1 中, αα ^ β ^ Yazhong 导体 + conductor film is formed on the substrate to form a pattern to have parts with different thicknesses. 5 · According to the method of claim 4 in the scope of patent application, the thickness of the conductor film in each of A and the conductor film is surrounded by the thick portion of the semiconductor film, and the semiconductor film is generally formed in the thin portion. The energy beam moving in the longitudinal direction is irradiated. 6. According to the method of claim 4 in the scope of patent application, the compounder, ^, ,,, and A form a channel region of a thin film transistor to correspond to the thin portion of the semiconductor thin film. 7. A method for manufacturing a semiconductor device, in which the pixel region and peripheral circuit region around xt are arranged on a substrate, each of which includes a thin 535194 A8 B8 C8 膜電晶體’該方法包含下列步驟: 區域與該周邊電路區 將半導體薄膜至少形成於該像素 域内之该周邊電路區域内,以及 之能量光束結晶該 使用一具有其能量對時間連續輪出 半導體薄膜, 其中缝隙係形成於該半導體薄膜内,且該半導體薄膜 係以在該缝隙之大體縱向上移動之能量光束來照射。 8·如申請專利範圍第7項之方法,其中在該半導體薄膜内 之鄰近缝隙係以其間逐漸改變之距離而互相分離開來。 9. 如&quot;專利範圍第7項之方法,其中二縫隙係:成於該 半導體薄膜内’而其間以該能量光束照射所製得之結晶區 域係使用作為薄膜電晶體之通道區域。 10. -種半導體元件之製造方法,其中在其周圍之像素區 域與周邊電路區域係設置在—基材上,各該區域係包括薄 膜電晶體’该方法包含下列步驟: 將半導體/專膜至少形成於該像素區域與該周邊電路區 域内之該周邊電路區域内,以及 使用一具有其能量對時間連續輸出之能量光束結晶該 半導體薄膜, 其中、、、田長線形絕緣薄膜係形成於該半導體薄膜上,且 該半導體薄膜係以在該絕緣薄膜之大體縱向上移動之能量 光束來照射。 11 ·如申請專利範圍第10項之方法,其中在該半導體薄膜 上之鄰近纟巴緣薄膜係以其間逐漸改變之距離而互相分離開 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公爱) -2 - 535194 、申請專利範圍 來。 u·如申請專利範圍第1〇項之方法,复 . /、平—#巴緣薄膜儀形 成於該半導體薄膜上,而其間以該 …、 巧匕里九朿照射所製得之 結晶區域係使用作為薄膜電晶體之通道區域。 13· -種半導體元件之製造方法,其中在其周圍之像素區 域與周邊電路區域係設置在一基材上,各該區域係包 膜電晶體’該方法包含下列步驟: 彳 區 將半導體薄膜至少形成於該像素區域與該周邊電路 域内之該周邊電路區域内,以及 使用-具有其能量對時間連續輸出之能量 半導體薄膜, 其中僅欲形成薄膜電晶體之部分係以該能量光束在 於結晶之合適的能量加以照射,而未有薄膜電晶體形成 部分係被快速略過。 14. -種半導體元件之製造方法’其中在其周圍之像素 域與周邊電路區域係設置在一基材上,各該區域係包括 膜電晶體,該方法包含下列步驟·· 將半導體薄膜至少形成於該像素區域與該周邊電路 域内之該周邊電路區域内,以及 使用-具有其能量對時間連續冑出之能量%束結晶 半導體薄膜, 其中δ亥半導體薄膜係以該能量光束間歇地照射,使; 僅欲形成薄膜電晶體之部分係選擇性地被結晶。 15·如申請專利範圍第14項之方法,其中,藉由控制&amp; 本紙張尺度適用中國國家標準(OB) Α4規格(210X297公嫠) 535194 A8 B8 C8 - ---————— D8 六、申請專利範圍 ~ &quot; --- 材上的掃瞎速度以及該間歇照射的時間安排,在用於欲形 成薄膜電晶體之該半導體薄膜之鄰近部分之照射期間的間 隔期間’該能量光束係快速地移動至另一欲形成薄膜電晶 體之部分,以將該部分結晶。 16.如申請專利範圍第14項之方法,其中該能量光束係間 歇地施加至未形成薄膜電晶體之部分,以形成具有用於薄 膜電晶體之預定結晶形狀的位置記號。 如申請專利範圍第卜7、1〇、13及14項中任一項之方 法^其中在該像素區域中以該能量光束之照射係在不同於 在该周邊電路區域中之照射條件下進行。 18·如申請專利範圍第i、7、1〇、13及⑷員中任一項之方 法’其中形成於該像素區域内之半導體薄膜係使用一脈衝 能量光束來結晶,而形成於該周邊電路區域内之半導體薄 膜係使用該具有其能量對時間連續地輸出之能量光束來結 晶。 19. 如申請專利範圍第18項之方法,其中形成於該周邊電 路區域内之該半導體薄膜係在形成於該像素區域内之該半 導體薄膜結晶後再結晶。 20. 如申明專利範圍第^7、13及μ項中任一項之方 法’其中形成於周邊電路區域内之該半導體薄膜係在使用 具有其能量對時間連續地輸出之該能量光束來結晶後,用 於作用半導體薄膜,而形成於該像素區域内之半導體薄 膜係在未有此結晶下用於作用半導體薄膜。 21 ·如申凊專利範圍第2〇項之方法,其中形成該周邊電路 本紙張尺度適用中國國豕標準(CNs) A4規格(210X 297公爱) (請先閲讀背面之注意事項再填寫本頁)The film transistor includes the following steps: a region and the peripheral circuit region forming a semiconductor thin film at least in the peripheral circuit region within the pixel domain, and crystallization of an energy beam using a semiconductor film having its energy continuously rotated over time The gap is formed in the semiconductor thin film, and the semiconductor thin film is irradiated with an energy beam that moves in the longitudinal direction of the gap. 8. The method according to item 7 of the scope of patent application, wherein adjacent gaps in the semiconductor film are separated from each other by a gradually changing distance therebetween. 9. The method according to item 7 of the "Patent Scope", wherein the two gaps are: formed in the semiconductor thin film, and a crystalline region obtained by irradiating with the energy beam is used as a channel region of the thin film transistor. 10. A method for manufacturing a semiconductor device, wherein a pixel region and a peripheral circuit region around the semiconductor element are disposed on a substrate, each of which includes a thin film transistor. The method includes the following steps: Formed in the pixel region and the peripheral circuit region in the peripheral circuit region, and crystallizing the semiconductor thin film using an energy beam having continuous output of energy with respect to time, wherein the field-shaped insulating film is formed on the semiconductor On the thin film, and the semiconductor thin film is irradiated with an energy beam moving in a substantially longitudinal direction of the insulating film. 11 · The method according to item 10 of the scope of patent application, wherein the adjacent thin film on the semiconductor film is separated from each other with a gradually changing distance. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love) -2-535194, the scope of patent application comes. u · As in the method of applying for the scope of the patent No. 10, compound. / 、 平 — # Bayan thin film instrument is formed on the semiconductor thin film, and the crystalline region obtained by irradiation with the ... Used as a channel area for thin film transistors. 13. A method of manufacturing a semiconductor device, wherein a pixel region and a peripheral circuit region around the semiconductor element are disposed on a substrate, and each region is a coated transistor. The method includes the following steps: The semiconductor region includes at least a semiconductor region. Formed in the pixel region and the peripheral circuit region within the peripheral circuit region, and using an energy semiconductor film with continuous output of its energy versus time, wherein only the portion where the thin film transistor is to be formed is suitable for the crystallization of the energy beam Energy was irradiated, and no thin-film transistor-forming portion was quickly skipped. 14. A method of manufacturing a semiconductor device, wherein a pixel region and a peripheral circuit region around the semiconductor element are disposed on a substrate, and each region includes a film transistor. The method includes the following steps: forming a semiconductor thin film at least In the pixel region and the peripheral circuit region in the peripheral circuit region, and using an energy% beam crystalline semiconductor film having its energy continuously elapsed over time, wherein the δH semiconductor film is intermittently irradiated with the energy beam so that ; Only the part where the thin film transistor is to be formed is selectively crystallized. 15. The method of item 14 in the scope of patent application, in which the paper size is controlled by the Chinese National Standard (OB) A4 specification (210X297 cm) 535194 A8 B8 C8 Sixth, the scope of patent application ~ &quot; --- The literacy speed on the material and the time schedule of the intermittent irradiation, during the interval of the irradiation period of the adjacent portion of the semiconductor thin film used to form a thin film transistor, the energy beam It is quickly moved to another portion where a thin film transistor is to be formed to crystallize the portion. 16. The method of claim 14 in which the energy beam is intermittently applied to a portion where the thin film transistor is not formed to form a position mark having a predetermined crystal shape for the thin film transistor. For example, the method of any one of items 7, 10, 13, and 14 of the scope of the patent application ^, wherein the irradiation with the energy beam in the pixel region is performed under a different condition from that in the peripheral circuit region. 18. The method according to any one of the claims i, 7, 10, 13 and members of the scope of the patent application, wherein the semiconductor thin film formed in the pixel region is crystallized using a pulsed energy beam and formed in the peripheral circuit. The semiconductor thin film in the region is crystallized using the energy beam having its energy continuously output with time. 19. The method of claim 18, wherein the semiconductor thin film formed in the peripheral circuit region is crystallized and recrystallized after the semiconductor thin film formed in the pixel region. 20. A method as claimed in any of claims ^ 7, 13 and μ, wherein the semiconductor thin film formed in the peripheral circuit area is crystallized using the energy beam having its energy continuously outputted over time. Is used to act as a semiconductor film, and the semiconductor film formed in the pixel region is used to act as a semiconductor film without this crystal. 21 · If you apply for the method of item 20 of the patent scope, in which the peripheral circuit is formed, the paper size is applicable to China National Standards (CNs) A4 specifications (210X 297 public love) (Please read the precautions on the back before filling this page ) 535194535194 、申凊專利範園 品或之忒半導體薄膜係在形成於該周邊電路之該半導 膜么士曰*〆哥 、曰曰則,使用具有其能量對時間連續地輸出之該能量光 束來脫氫。 尤 22·如申請專利範圍第1、7、10、13及14項中任一項之方 中半導體薄膜與一閘極氧化物薄膜係形成於該像 盥品或人忒周邊電路區域中一者内,至少或該半導體薄膜 〃忒像素區域之該閘極氧化物薄膜兩者係在厚度上與該周 邊電路區域不同。 如申凊專利範圍第1、7、10、13及14項中任一項之方 /、中遠此s光束係被移動,以掃瞄該半導體薄膜。 认如申凊專利範圍第23項之方法,其中該能量光束係平 /一長方形像素之短侧移動,以掃瞒形成於該週邊 路區域中的該半導體薄膜。 2二如申請專利範圍第23項之方法,其中以該能量光束, 掃目苗方向係平行於在作用半導體薄膜之—部分内之電流流 動方向,以作為一通道區域。 26·如申明專利範圍第1、7、10、13及14項中任一項之 法其中在不同位置之半導體薄膜係使用具有其等能量 時間連續地輸出之能量光束來同時照射。 27·如申請專利範圍第23項之方法,其中以該能量光束 掃瞄速度係控制成不小於1〇 cm/see。 28·如申請專利範圍第!、7、1〇、13及14項中任一項之 法其中A月b里光束之輸出不穩定度係控制成小於± 1 %/h。 29·如申請專利範圍第28項之方法,其中顯示該能量光束 電 之 方 之 方 (請先閲讀背面之注意事¾再填窝本頁} 訂- 本紙張尺度適用中國國家標準(CNS) A4規格 ^^194The patented semiconductor thin film or the thin semiconductor film is applied to the semiconductor film formed on the peripheral circuit, and the semiconductor film is removed by using the energy beam that continuously outputs its energy over time. hydrogen. In particular, if a semiconductor thin film and a gate oxide thin film of any one of items 1, 7, 10, 13 and 14 of the scope of application for a patent are formed in one of the peripheral circuits of the image-like product or the human body Inside, at least or both of the gate oxide film of the semiconductor film and the pixel region are different in thickness from the peripheral circuit region. For example, one of the 1, 7, 10, 13 and 14 scope of the patent application of COSCO Group / COSCO This s beam is moved to scan the semiconductor film. Consider the method of claim 23, wherein the energy beam is moved flat / short side of a rectangular pixel to hide the semiconductor thin film formed in the peripheral road region. 22. The method according to item 23 of the scope of patent application, in which the direction of the scanning eye is parallel to the direction of current flow in a part of the acting semiconductor film with the energy beam as a channel area. 26. The method according to any of claims 1, 7, 10, 13 and 14, in which the semiconductor thin films at different positions are simultaneously irradiated with an energy beam having a continuous output of energy at the same energy time. 27. The method of claim 23, wherein the scanning speed of the energy beam is controlled to be not less than 10 cm / see. 28 · If the scope of patent application is the first! The method of any one of 7, 7, 10, 13 and 14 wherein the output instability of the light beam in month A is controlled to be less than ± 1% / h. 29. If the method of applying for the scope of patent No. 28, which shows the method of the energy beam (please read the notes on the back ¾ then fill in this page) Order-This paper size applies Chinese National Standard (CNS) A4 Specifications ^^ 194 申請專利範園 之不穩定度的雜訊(光學雜訊)係控制成不大於〇」_%。 虮如申請專利範圍第卜7、10、13及14項中任一項。之方 去,其中該能量光束係由一 cw雷射來獲得。 =·如中睛專利範圍第3G項之方法,其中該cw雷射係為— 牛V體激光固態雷射。 32·如申請專利範圍第1、7、10、13及14項中任一項之方 法其中该作用半導體薄膜係使用該能量光束製成具有流 線流動圖案的結晶狀態。 /;,L 33.如申請專利範圍第Ϊ、7、1〇、^及“項中任一項之 法,其中該基材係由非鹼性玻璃或塑膠製成,且以該能 光束之照射係自該基材之上或下侧進行。 34·如申請專利範圍第1、7、1〇、^及^項中任一項之 法,其中該能量光束係光學地分歧成次光束,且該半導 薄膜之不同部分係以該次光束同時照射,以被結晶。 35·如申請專利範圍第34項之方法,其中施加各該次 束’以不互相重疊。 如申請專利範圍第!、7、1〇、13及14項中任一項之 法,其中在各欲形成薄膜電晶體之至少二部分係在掃目苗 度、能量強度,以及光束形狀中之一者不同的條件下結… 37·如申請專利範圍第!、7、1〇、13及14項中任一項之 法’其中該半導體薄膜係以一緩衝層插置於其間之方式充 成該基材上方,該層包括一薄膜,該薄膜含有Si與N ^ Si、0,以及N,而在該半導體薄膜内之氫的密度係控制4 不大於 1 X l〇2()/cm3。 方 量 方 體 光 方 速 曰曰 方 或 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公楚) -6- f請先閲讀背面之注意事項再填窝本頁;JThe noise (optical noise) of the patent application Fan Yuan is controlled to be not more than 0%.虮 If any of the scope of patent application No. 7, 10, 13 and 14 is applied. In other words, the energy beam is obtained by a cw laser. = · As in the method of item 3G of Zhongzhong's patent scope, wherein the cw laser is-a solid body laser of V-body laser. 32. The method according to any one of claims 1, 7, 10, 13, and 14, wherein the active semiconductor thin film is formed into a crystalline state having a streamlined flow pattern using the energy beam. / ;, L 33. The method according to any one of items Ϊ, 7, 10, ^ and "in the scope of patent application, wherein the substrate is made of non-alkaline glass or plastic, and The irradiation is performed from above or below the substrate. 34. The method according to any one of claims 1, 7, 10, ^ and ^, wherein the energy beam is optically branched into a sub-beam, And different parts of the semiconducting film are irradiated with the secondary beam at the same time to be crystallized. 35. For example, the method of the scope of patent application No. 34, wherein each of the secondary beams is applied so as not to overlap each other. Method of any one of 7, 7, 10, 13 and 14, wherein at least two parts of each thin film transistor to be formed are under different conditions of one of an eye-catching seedling degree, an energy intensity, and a beam shape Conclusion ... 37. If the method of any one of the scope of patent application !, 7, 10, 13 and 14 is used, wherein the semiconductor thin film is filled on the substrate with a buffer layer interposed therebetween, the The layer includes a thin film containing Si and N ^ Si, 0, and N, and hydrogen in the semiconductor thin film Density control 4 is not greater than 1 X l02 () / cm3. Square volume, square light, square speed, or square size of this paper are applicable to China National Standard (CNS) A4 specification (210X297). 6-f Please read the back first Note for refilling this page; J 535194 A8 B8 C8 D8 、申請專利範圍 3 8·如申請專利範圍第37項之方法,其中在該薄膜内之氫 的您度係控制成不大於1 X 1 〇22/em3。 39·如申請專利範圍第37項之方法,其中該半導體薄膜之 脫氫係在形成该半導體薄膜後或於將該半導體薄膜形成圖 案後進行。 40·如申請專利範圍第i、7、1〇、13及14項中任一項之方 法其中该裝置係讀取與記憶設置在該基材上之記號之位 置,以作為以該能量光束之照射的位置調整,並根據該位 置進行以該能量光束之照射。 41· 一種用於發射一能量光束之半導體製造裝置,該能量 光束係用於結晶一形成在一基材上之半導體薄膜, 其中該裝置可對時間連續地輸出數個該能量光束,並 具有相對地移動該能量光束之功能,以掃瞄欲被照射之標 的’而該能量光束之輸出不穩定度係小於± l〇/〇/h。 4厶如申請專利範圍第41項之裝置,其中顯示該能量光束 之不穩度的雜訊(光學雜訊)係不大於0.1 rms%。 43 ·如申請專利範圍第4 i項之裝置,其中以該能量光束之 知目田速度係不小於1 〇 cm/sec。 其中該裝置可發射 44·如申請專利範圍第41項之裝置 具其能量間歇地輸出之能量光束。 其中該能量光束係 (請先閱讀背面之注意事項再填寫本頁) -訂I 45. 如申請專利範圍第41項之裝置 一 CW雷射獲得。 46. 如申請專利範圍第45項之裝置,其中該(::^¥雷射係為一 半導體激光固態雷射。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公楚) A8 B8 C8 D8 、申請專利範園 47. —種半導體製造裝置,其包含: 薄膜:Hi I其:於將其上之基材攜載至-形成半導體 (請先閱讀背面之注意事項再填寫本頁} 、、,使侍該基材可在平行於該半導體薄膜之表 面的平面上移動; 雷射振盈器,其具有對時間連續地輸出能量光束的功 能;以及 光束刀歧為,其用於自該雷射振盈器將該能量光束 學地分歧成次光束。 48. 如申請專利範圍第47項之裝置,其中該能量光束之輸 出不穩定度係小於± 1 〇/0/h。 49·如申請專利範圍第48項之裝置,其中該能量光束係自 訂丨 一 CW雷射獲得。 5〇·、如申請專利範圍第49項之裝置,其中該cw雷射係為一 半導體激光固態雷射。 51·如中料利範圍第48項之裝置,其中顯示該能量光束 之不穩定度的雜訊(光學雜訊)係不大於01 rms%。 52· —種半導體製造裝置,其包含: * «又置衣置,其用於將其上之基材攜載至一形成半導體 溥膜之表面上,使得該基材可在平行於該半導體薄膜之表 面的平面上移動; 田射振盪器,其具有對時間連續地輸出能量光束的功 能;以及 間歇發射裝置,以允3午该能量光束間歇地通過。 53·如申請專利範圍第52項之裝置,其進一步包含用於自535194 A8 B8 C8 D8, scope of patent application 3 8. For the method in the scope of patent application item 37, the degree of hydrogen in the film is controlled to be not more than 1 X 102 / em3. 39. The method of claim 37, wherein the dehydrogenation of the semiconductor thin film is performed after the semiconductor thin film is formed or after the semiconductor thin film is patterned. 40. The method according to any one of the items i, 7, 10, 13 and 14 of the scope of patent application, wherein the device reads and memorizes the position of the mark set on the substrate as the energy beam. The irradiation position is adjusted, and irradiation with the energy beam is performed according to the position. 41 · A semiconductor manufacturing device for emitting an energy beam, the energy beam is used to crystallize a semiconductor film formed on a substrate, wherein the device can continuously output a plurality of the energy beams with time, and has a relative The function of moving the energy beam to scan the target to be irradiated, and the output instability of the energy beam is less than ± 10/0 / h. 4) If the device of the scope of patent application No. 41, the noise (optical noise) showing the instability of the energy beam is not more than 0.1 rms%. 43. The device according to item 4i of the scope of the patent application, in which the knowing field velocity of the energy beam is not less than 10 cm / sec. Among them, the device can emit 44. A device such as item 41 of the patent application has an energy beam whose energy is output intermittently. The energy beam is (please read the precautions on the back before filling out this page)-Order I 45. If the device in the scope of patent application No. 41 is obtained by a CW laser. 46. For the device in the 45th scope of the patent application, the (:: ^ ¥ laser is a semiconductor laser solid-state laser. This paper size applies to China National Standard (CNS) A4 specification (210X297)) A8 B8 C8 D8. Patent application park 47. A semiconductor manufacturing device, which includes: Thin film: Hi I Its: The substrate on it is carried to-forming a semiconductor (Please read the precautions on the back before filling in this page}, , So that the substrate can be moved on a plane parallel to the surface of the semiconductor film; a laser oscillator, which has a function of continuously outputting an energy beam over time; and a beam knife, which is used for The laser vibrator divides the energy beam into secondary beams. 48. For example, the device in the scope of patent application No. 47, wherein the output instability of the energy beam is less than ± 10/0 / h. 49 · 如The device in the scope of patent application 48, wherein the energy beam is obtained by a custom 丨 a CW laser. 50. The device in the scope of patent application 49, in which the cw laser is a semiconductor laser solid-state laser 51 · As in the material The device of the range item 48, wherein the noise (optical noise) showing the instability of the energy beam is not more than 01 rms%. 52 · —A semiconductor manufacturing device, including: It is used to carry the substrate on it to a surface forming a semiconductor film, so that the substrate can be moved on a plane parallel to the surface of the semiconductor film; a field-emitting oscillator, which has a continuous output for time The function of an energy beam; and an intermittent emission device to allow the energy beam to pass intermittently at noon. 53. The device according to item 52 of the patent application, which further includes 535194 申清專利範園 該雷射振盛器將該能量光束光學地分歧成次光束之光束分 歧器。 54.如申請專利範圍第52項之裝置,其中該能量光束之輸 出不穩定度為小於± 1 〇/0/h。 55·如申請專利範圍第54項之裝置,其中該能量光束係自 一 CW雷射獲得。 56·如巾請專利範圍第55項之|置,其中該cw雷射係為— 半導體激光固態雷射。 57. 如申請專利範圍第54項之裝置,其中顯示該能量光束 之不穩定度的雜訊(光學雜訊)係不大於Q·丨議%。 58. 如申請專利範圍第52項之裝置,其中該間歇發射裝置 具有用於該能量光束之—傳輸區域與—中斷區域。 59. —種半導體製造裝置,其用於發射一能量光束,該能 量光束係用於將-半導體薄膜結晶於—基材上,該裳置包 含: 雷射振盪器,其具有對時間連續地輸出能量光束的功 能; 其中該裝置具有相對地移動該能量光束之功能,以掃 瞄欲被照射之標的,以及 其中该能1光束為半導體激光固態雷射且形成為線形 或橢圓形圖案。 y 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)535194 Shen Qing Patent Fan Yuan The laser vibrator optically splits the energy beam into a beam splitter of a secondary beam. 54. The device as claimed in claim 52, wherein the output instability of the energy beam is less than ± 10/0 / h. 55. The device of claim 54 in which the energy beam is obtained from a CW laser. 56. For example, please apply for item 55 of the patent scope, where the cw laser is a semiconductor laser solid-state laser. 57. For the device in the scope of application for patent No. 54, the noise (optical noise) showing the instability of the energy beam is not more than Q ·%. 58. The device of claim 52, wherein the intermittent emitting device has a -transmission area and -interruption area for the energy beam. 59. A semiconductor manufacturing device for emitting an energy beam for crystallizing a semiconductor film on a substrate, the apparatus comprising: a laser oscillator having a continuous output over time The function of an energy beam; wherein the device has a function of relatively moving the energy beam to scan a target to be irradiated, and wherein the energy 1 beam is a semiconductor laser solid-state laser and is formed into a linear or elliptical pattern. y This paper size applies to China National Standard (CNS) A4 (210X297 mm) (請先閲讀背面之注意事項再填寫本頁) -9 535194 第90120943號專利申請案圖式修正頁92年01月17日(Please read the notes on the back before filling this page) -9 535194 No. 90120943 Patent Application Schematic Correction Page January 17, 1992 减 15AMIM5Ba彌150®n15Da 535194Minus 15 AMIM5BaMi150®n15Da 535194 铖 16AH cw鱗耸莓銥/漭耸铖 16AH cw Scale Tower Berry Iridium « 16ma«16ma 铖16C厕 ) § YY VYY 2铖 16C toilet) § YY VYY 2 铖 16DS 2铖 16DS 2
TW90120943A 2000-08-25 2001-08-24 Semiconductor device, manufacturing method therefor, and semiconductor manufacturing apparatus TW535194B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000255646 2000-08-25
JP2001202730 2001-07-03
JP2001256977A JP2003086505A (en) 2000-08-25 2001-08-27 Method of manufacturing semiconductor device and semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
TW535194B true TW535194B (en) 2003-06-01

Family

ID=27344431

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90120943A TW535194B (en) 2000-08-25 2001-08-24 Semiconductor device, manufacturing method therefor, and semiconductor manufacturing apparatus

Country Status (2)

Country Link
JP (1) JP2003086505A (en)
TW (1) TW535194B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476629B2 (en) 2003-04-21 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor
US7397592B2 (en) 2003-04-21 2008-07-08 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing a thin film transistor
US7220627B2 (en) 2003-04-21 2007-05-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device where the scanning direction changes between regions during crystallization and process
WO2004102647A1 (en) 2003-05-14 2004-11-25 Fujitsu Limited Method for crystallizing semiconductor thin film
JP4413569B2 (en) * 2003-09-25 2010-02-10 株式会社 日立ディスプレイズ Display panel manufacturing method and display panel
JP2005167084A (en) * 2003-12-04 2005-06-23 Fujitsu Ltd Apparatus and method for laser crystallization
JP2005217214A (en) 2004-01-30 2005-08-11 Hitachi Ltd Method for manufacturing semiconductor thin film and image display device
JP2005217209A (en) * 2004-01-30 2005-08-11 Hitachi Ltd Laser annealing method and laser annealer
JP4568000B2 (en) 2004-03-24 2010-10-27 株式会社 日立ディスプレイズ Manufacturing method of semiconductor thin film
JP4444035B2 (en) 2004-04-21 2010-03-31 シャープ株式会社 Active matrix substrate for display device and manufacturing method thereof
JP4633434B2 (en) 2004-10-18 2011-02-16 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP4597730B2 (en) 2005-03-22 2010-12-15 シャープ株式会社 Thin film transistor substrate and manufacturing method thereof
JP5085014B2 (en) 2005-05-26 2012-11-28 株式会社ジャパンディスプレイイースト Semiconductor device manufacturing method and semiconductor device
JP4675680B2 (en) 2005-05-30 2011-04-27 シャープ株式会社 Method for manufacturing thin film transistor substrate
JP4628879B2 (en) * 2005-06-13 2011-02-09 株式会社 日立ディスプレイズ Manufacturing method of display device
KR101287314B1 (en) 2005-12-05 2013-07-17 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 Systems and methods for processing a film, and thin films
JPWO2016098174A1 (en) * 2014-12-15 2017-09-28 ギガフォトン株式会社 Laser irradiation device
JP6941473B2 (en) * 2017-04-26 2021-09-29 株式会社日本製鋼所 Display manufacturing method, display and LCD TV
WO2021039310A1 (en) 2019-08-29 2021-03-04 株式会社ブイ・テクノロジー Laser annealing device and laser annealing method
JP2021034693A (en) 2019-08-29 2021-03-01 株式会社ブイ・テクノロジー Laser annealing device and formation method of crystallized film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311989A (en) * 1987-04-03 1988-01-19 セイコーエプソン株式会社 Electro-optical display unit
JPH03290924A (en) * 1990-03-22 1991-12-20 Ricoh Co Ltd Manufacture of crystalline silicon film, crystalline silicon semiconductor utilizing the same and its manufacture
JPH03284828A (en) * 1990-03-30 1991-12-16 Kyocera Corp Crystallizing method for semiconductor thin-film
JP3026520B2 (en) * 1991-08-23 2000-03-27 東京エレクトロン株式会社 Liquid crystal display manufacturing equipment
JPH05267771A (en) * 1992-03-19 1993-10-15 Hitachi Ltd Solid-state laser device and laser etching, laser marking, blood component mesuruing, and laser anneal device thereof
JPH06291038A (en) * 1993-03-31 1994-10-18 Ricoh Co Ltd Manufacturing apparatus for semiconductor material
JP3509226B2 (en) * 1994-10-31 2004-03-22 ソニー株式会社 Laser processing apparatus and method
JP3469337B2 (en) * 1994-12-16 2003-11-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH09199441A (en) * 1996-01-22 1997-07-31 Sharp Corp Method for manufacturing a semiconductor device
JPH10209069A (en) * 1997-01-17 1998-08-07 Sumitomo Heavy Ind Ltd Method and equipment for laser annealing
JP4103156B2 (en) * 1997-09-03 2008-06-18 旭硝子株式会社 Polycrystalline semiconductor thin film, method for forming the same, polycrystalline semiconductor TFT, and TFT substrate
JP3347072B2 (en) * 1998-09-16 2002-11-20 株式会社東芝 Polycrystalline growth method

Also Published As

Publication number Publication date
JP2003086505A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
TW535194B (en) Semiconductor device, manufacturing method therefor, and semiconductor manufacturing apparatus
US6861328B2 (en) Semiconductor device, manufacturing method therefor, and semiconductor manufacturing apparatus
TWI271805B (en) Laser annealing apparatus and annealing method of semiconductor thin film
KR101040463B1 (en) Crystallization method, crystallization apparatus, processed substrate, thin film transistor and display apparatus
US6635932B2 (en) Thin film crystal growth by laser annealing
US7531390B2 (en) Crystallizing method, thin-film transistor manufacturing method, thin-film transistor, and display device
WO2000002251A1 (en) Thin film transistor and liquid crystal display
US6686978B2 (en) Method of forming an LCD with predominantly &lt;100&gt; polycrystalline silicon regions
JP4296762B2 (en) Laser irradiation apparatus and semiconductor thin film processing method
JP2000058478A (en) Excimer laser annealing system and production of semiconductor film
JP2004006703A (en) Treatment method and its apparatus for annealing and doping semiconductor
JP4769491B2 (en) Crystallization method, thin film transistor manufacturing method, thin film transistor, and display device
KR100611040B1 (en) Apparutus for thermal treatment using laser
JP2000111950A (en) Manufacture of polycrystalline silicon
JP4524413B2 (en) Crystallization method
JP2008243843A (en) Crystallization method, method for manufacturing thin-film transistor, substrate for laser crystalization, thin-film transistor, and display device
JP2005039259A (en) Crystallization method, crystallization equipment, thin-film transistor (tft), and display device
JP2010114472A (en) Method of crystallization
JP2005032831A (en) Crystallization method, crystallization equipment, tft, and display device
JP2003168691A (en) Method for manufacturing semiconductor device
JP2008098310A (en) Crystallization method, crystallized substrate, manufacturing method of thin film transistor, thin film transistor, and display unit
JP2007059695A (en) Crystallization method, thin film transistor manufacturing method, crystallized substrate, thin film transistor and display device
JP2001319892A (en) Laser annealing apparatus and method for fabricating transistor
JPH11126905A (en) Manufacture of polycrystalline semiconductor film and manufacture of thin film transistor device
JP2004311910A (en) Thin film transistor and its manufacturing method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent