KR960016181B1 - Manufacturing method of semiconductor laser diode - Google Patents

Manufacturing method of semiconductor laser diode Download PDF

Info

Publication number
KR960016181B1
KR960016181B1 KR1019930002410A KR930002410A KR960016181B1 KR 960016181 B1 KR960016181 B1 KR 960016181B1 KR 1019930002410 A KR1019930002410 A KR 1019930002410A KR 930002410 A KR930002410 A KR 930002410A KR 960016181 B1 KR960016181 B1 KR 960016181B1
Authority
KR
South Korea
Prior art keywords
laser diode
layer
ingaasp
inp
manufacturing
Prior art date
Application number
KR1019930002410A
Other languages
Korean (ko)
Other versions
KR940020628A (en
Inventor
채태일
이두환
Original Assignee
현대전자산업 주식회사
김주용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대전자산업 주식회사, 김주용 filed Critical 현대전자산업 주식회사
Priority to KR1019930002410A priority Critical patent/KR960016181B1/en
Publication of KR940020628A publication Critical patent/KR940020628A/en
Application granted granted Critical
Publication of KR960016181B1 publication Critical patent/KR960016181B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0203Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

forming a mesa pattern by etching an n+-InP substrate(21); and forming a laser diode by stacking an n+-InGaAsP buffer layer(22), an undoped-InGaAsP active layer(23), a P-InP layer(24) and a P+-InGaAsP contact layer(25) in sequence by an in-situ epitaxial growth on top of the n+-InP substrate(21) where the mesa is formed. The method is to manufacturing laser diode by an one-step epitaxial growth.

Description

반도체 레이저 다이오드 제조방법Semiconductor laser diode manufacturing method

제1도는 종래 기술에 의해 제조된 레이저 다이오드의 단면도.1 is a cross-sectional view of a laser diode manufactured by the prior art.

제2A도 내지 제2B도는 본 발명에 의해 제조되는 레이저 다이오드의 단면도.2A-2B are cross-sectional views of laser diodes produced by the present invention.

제3도는 제2B도 공정후 Zn확산영역을 형성한 레이저 다이오드의 단면도.3 is a cross-sectional view of the laser diode forming the Zn diffusion region after the process of FIG.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1,21 : n+-InP기판2 : n+-InP버퍼층1,21: n + -InP substrate 2: n + -InP buffer layer

3,23 : 언도프된-InGaAsP활성층4 : P-InP클래딩층3,23: undoped-InGaAsP active layer 4: P-InP cladding layer

5 : P-InGaAsP콘택층6 : P-InP블로킹층5: P-InGaAsP contact layer 6: P-InP blocking layer

7 : n-InP블로킹층22 : n+-InGaAsP버퍼층7: n-InP blocking layer 22: n + -InGaAsP buffer layer

24 : P-InP층25 : P+-InGaAsP콘택층24: P-InP layer 25: P + -InGaAsP contact layer

본 발명은 반도체 레이저 다이오드(LASER Diode) 제조방법에 관한 것으로, 특히 한번의 에피텍셜 성장 공정으로 반도체 레이저 다이오드를 제조하여 수율을 향상시킬 수 있는 기술이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor laser diode (LASER Diode), and more particularly, a technology capable of improving yield by manufacturing a semiconductor laser diode in one epitaxial growth process.

반도체 레이저 다이오드는 광통신 시스템의 핵심소자뿐 아니라 여러가지 가전제품 즉 레이저 프린터 또는 바코드 리더의 주요 부품으로 사용할 수 있다.Semiconductor laser diodes can be used as a key component in optical communication systems, as well as in various consumer electronics, such as laser printers or bar code readers.

종래의 레이저 다이오드 제작 공정은 일반적으로 1회 내지 3회의 에피텍셜 성장 공정을 행하게 된다.Conventional laser diode fabrication processes generally undergo one to three epitaxial growth processes.

단일 모드로 구동되는 반도체 레이저 다이오드를 제작하기 위해서는 주입 전류와 재결합하여 방출되는 빛을 좁은 폭으로 이루어진 활성층에 가둘 필요가 있다. 그래서 먼저 1차 에피텍셜 성장으로 이종 접합 구조를 만들고 그후에 에칭을 하여 메사형태 또는 여러 가지 형태의 패턴을 형성한 후 패턴 측벽에 1 내지 2회의 에피텍셜 성장층을 형성하여 전류 블로킹층을 구성한다.In order to fabricate a single-mode semiconductor laser diode, it is necessary to trap light emitted by recombination with the injection current in a narrow active layer. Therefore, first, a heterojunction structure is formed by primary epitaxial growth, and then etching is performed to form a mesa shape or various types of patterns, and then a current blocking layer is formed by forming one or two epitaxial growth layers on the pattern sidewalls.

종래의 기술을 첨부된 제1도를 참조하여 설명하면 다음과 같다.The prior art will be described with reference to the attached FIG. 1 as follows.

제1도는 종래의 기술로 n+-InP기판(1) 상부에 n+-InP버퍼(Buffer)층(2)과, 언도프된-InGaAsP활성층(3), P-InP클래딩(Cladding)층(4) 및 P-InGaAsP콘택층(5)을 인-시투(In-Situ)공정 방법에서 순차적으로 에피텍셜 성장시킨 다음, 에치(Etch) 공정으로 상기 P-InGaAsP콘택층(5), P-InP클래딩층(4), 언도프된-InGaAsP활성층(3)의 일정 부분과 n+-InP버퍼층(2)의 소정 두께를 식각하여 역메사형태의 패턴을 형성하고, 상기 패턴들의 측벽에 전류 블로킹층이 되는 P-InP블로킹층(6)과 n-InP블로킹층(7)을 순차적으로 에피텍셜 성장시켜 반도체 레이저 다이오드를 형성한 것을 도시한다.The first turn layer in the prior art n + -InP n + -InP buffer (Buffer) layer 2, the undoped -InGaAsP active layer (3), P-InP cladding (Cladding) on the upper substrate 1 ( 4) and the P-InGaAsP contact layer 5 are epitaxially grown in an in-situ process method, and then the P-InGaAsP contact layer 5 and P-InP by an etch process. A portion of the cladding layer 4, the undoped -InGaAsP active layer 3, and a predetermined thickness of the n + -InP buffer layer 2 are etched to form an inverted mesa pattern, and a current blocking layer is formed on the sidewalls of the patterns. The semiconductor laser diode is formed by sequentially epitaxially growing the P-InP blocking layer 6 and the n-InP blocking layer 7 to be formed.

그러나 상기한 종래 기술은 실리콘에 비교하여 열에 약한 III-V족 반도체기판을 사용하므로 역학적인 변형에도 민감하여 공정 수가 많을수록 여러가지 결함이 발생될 수 있다. 또한 에피텍셜 성장을 600~700℃의 고온에서 진행하므로 에피텍셜 성장 과정에서 열 손상과 층간의 격자부정합, 계면 상태의 불량, 표면의 산화 등이 발생되는 문제점이 있다.However, the above-described conventional technology uses a III-V semiconductor substrate, which is weaker in heat than silicon, and thus is sensitive to mechanical deformations, and thus, many defects may occur as the number of processes increases. In addition, since epitaxial growth proceeds at a high temperature of 600 to 700 ° C., there is a problem that thermal damage, lattice mismatch between layers, poor interface state, and surface oxidation occur during epitaxial growth.

따라서, 본 발명은 종래 기술에서 2회에 걸쳐 에피텍셜 성장 공정에 실시하는 것을 1회의 에피텍셜 성장 공장을 실시하도록 하여 종래 기술에서 발생되는 문제점을 해결하는데 그 목적이 있다.Accordingly, an object of the present invention is to solve the problems occurring in the prior art by performing one epitaxial growth plant in the epitaxial growth process twice in the prior art.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

제2A도 및 제2B도는 본 발명에 의해 레이저 다이오드를 형성하는 단면도이다.2A and 2B are sectional views of forming a laser diode according to the present invention.

제2A도는 n+-InP기판(21)에서 일정 부분을 예정된 두께만큼 식각하여 메사형태의 패턴을 형성한 단면도이다.FIG. 2A is a cross-sectional view of a portion of the n + -InP substrate 21 etched by a predetermined thickness to form a mesa pattern.

제2B도는 상기 메사형태의 패턴을 갖는 n+-InP기판(21) 상부에 인-사투 에피텍셜 성장 방법으로 1.1㎛ 파장의 n+-InGaAsP버퍼층(22)과, 1.3㎛ 파장의 언도프된-InGaAsP활성층(23), P-InP층(24), P+-InGaAsP콘택층(25)을 예정된 두께로 순차적으로 적층하여 레이저 다이오드를 형성한 단면도이다.2B shows an n + -InGaAsP buffer layer 22 having a wavelength of 1.1 mu m and an undoped 1.3 mu m wavelength with an in-satu epitaxial growth method on the n + -InP substrate 21 having the mesa pattern. A sectional view of the InGaAsP active layer 23, the P-InP layer 24, and the P + -InGaAsP contact layer 25 are sequentially stacked to a predetermined thickness to form a laser diode.

이종 접합구조에서 에너지갭이 작은 활성층 내에서 전하들이(전자와 정공) 재결합되도록 해야 내부 양자 효율이 크므로 1.3㎛ 파장의 언도프된-InGaAsP활성층 내에 p-n 접합면이 형성되도록 1.1㎛ 파장의 n+-InGaAsP버퍼층의 두께 및 불순물 농도를 정확하게 제어해야 한다.In the heterojunction structure, charges (electrons and holes) must be recombined in the active layer with a small energy gap, so that the internal quantum efficiency is large, so that a pn junction surface is formed in the undoped-InGaAsP active layer of 1.3 mu m wavelength, and n + The thickness and impurity concentration of the InGaAsP buffer layer must be accurately controlled.

제3도는 상기 제2B도를 도시한 구조로 공정을 완료시킨 다음, 메사타입의 패턴 상부에 있는 n+-InGaAsP콘택층(25)의 소정부분과 그 하부의 P-InP층(24)의 일정 부분까지 Zn을 확산시켜 Zn확산영역(26)을 형성한 상태의 단면도이다.FIG. 3 shows the structure shown in FIG. 2B, and after completion of the process, a predetermined portion of the n + -InGaAsP contact layer 25 on the mesa type pattern and the P-InP layer 24 below it are fixed. It is sectional drawing of the state in which Zn was spread | diffused to the part and the Zn diffusion region 26 was formed.

상기한 본 발명에 의하면 메사형태의 패턴이 형성된 n+-InP기판 상부에 1회의 에피텍셜 성장방법으로 n+-InGaAsP버퍼층, 언도프된-InGaAsP활성층, P-InP층 및 P+-InGaAsP콘택층을 순차적으로 형성할 수가 있으므로 종래의 2회 실시하던 에피텍셜 성장방법에 비교하여 반도체 레이저 다이오드의 열손상 또는 다른 결함발생을 최소화 할 수 있다. 또한 레이저 다이오드 제조 공정도 단순하여 수율 향상 및 생산량 증대를 그대할 수 있다.According to the present invention, the n + -InGaAsP buffer layer, the undoped -InGaAsP active layer, the P-InP layer and the P + -InGaAsP contact layer by one epitaxial growth method on the n + -InP substrate on which a mesa pattern is formed Can be formed sequentially so that thermal damage or other defects in the semiconductor laser diode can be minimized as compared with the conventional epitaxial growth method. In addition, the laser diode manufacturing process is simple, resulting in increased yield and increased yield.

Claims (2)

반도체 레이저 다이오드 제조방법에 있어서, n+-InP기판의 소정 부분을 예정된 두께로 식각하여 메사형태의 돌출 패턴을 형성하는 공정과, 상기 메사형태의 돌출 패턴이 형성된 n+-InP기판의 상부에 인-시투 에피텍셜 성장 방법으로 n+-InGaAsP버퍼층과, 언도프된-InGaAsP활성층, P-InP층, P+-InGaAsP콘택층을 예정된 두께 만큼 순차적으로 적층하여 레이저 다이오드를 형성하는 공정을 포함하는 것을 특징으로 하는 반도체 레이저 다이오드 제조방법.In the method of manufacturing a semiconductor laser diode, a step of forming a mesa-shaped protrusion pattern by etching a predetermined portion of the n + -InP substrate to a predetermined thickness, and a phosphorus on the n + -InP substrate formed with the mesa-shaped protrusion pattern A method of forming a laser diode by sequentially stacking an n + -InGaAsP buffer layer, an undoped InGaAsP active layer, a P-InP layer, and a P + -InGaAsP contact layer by a predetermined thickness in a situ epitaxial growth method. A method for manufacturing a semiconductor laser diode. 제1항에 있어서, 상기 제1항의 공정 순서로 레이저 다이오드 구조를 형성한 후 n+-InGaAsP층의 일정부분과 그 하부의 P-InP층의 예정된 두께까지 Zn을 확산시켜 Zn확산영역을 형성하는 공정을 포함하는 것을 특징으로 하는 반도체 레이저 다이오드 제조방법.The method according to claim 1, wherein after forming the laser diode structure in the process order of claim 1, Zn is diffused to a predetermined thickness of a portion of the n + -InGaAsP layer and a predetermined thickness of the P-InP layer thereunder to form a Zn diffusion region. Method for manufacturing a semiconductor laser diode comprising the step of.
KR1019930002410A 1993-02-22 1993-02-22 Manufacturing method of semiconductor laser diode KR960016181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930002410A KR960016181B1 (en) 1993-02-22 1993-02-22 Manufacturing method of semiconductor laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930002410A KR960016181B1 (en) 1993-02-22 1993-02-22 Manufacturing method of semiconductor laser diode

Publications (2)

Publication Number Publication Date
KR940020628A KR940020628A (en) 1994-09-16
KR960016181B1 true KR960016181B1 (en) 1996-12-04

Family

ID=19351069

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930002410A KR960016181B1 (en) 1993-02-22 1993-02-22 Manufacturing method of semiconductor laser diode

Country Status (1)

Country Link
KR (1) KR960016181B1 (en)

Also Published As

Publication number Publication date
KR940020628A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
US6990134B2 (en) GaN series surface-emitting laser diode having spacer for effective diffusion of holes between P-type electrode and active layer, and method for manufacturing the same
KR100386928B1 (en) Manufacturing a heterobipolar transistor and a laser diode on the same substrate
EP1719003A1 (en) Buried heterostructure device fabricated by single step mocvd
US5311533A (en) Index-guided laser array with select current paths defined by migration-enhanced dopant incorporation and dopant diffusion
KR0146714B1 (en) Fabrication method of buried heterojunction laser diode
KR0171649B1 (en) Opto-electronic integrated circuit and method of manufacturing the same
KR960016181B1 (en) Manufacturing method of semiconductor laser diode
US4989050A (en) Self aligned, substrate emitting LED
CN111384666B (en) Method for manufacturing vertical cavity surface emitting laser and vertical cavity surface emitting laser
KR100590565B1 (en) Semiconductor laser diode and method of manufacturing the same
EP1481452A2 (en) A laser diode with a low absorption diode junction
KR100287201B1 (en) Manufacturing method of laser diodes
KR100203376B1 (en) Manufacturing method of horizontally arrayed p-n junction semiconductors
KR0144490B1 (en) A method of manufacture of semiconductor laser diode
JPH0474488A (en) Semiconductor laser and manufacture thereof
KR100289730B1 (en) Manufacturing method of semiconductor laser device
JPH07111361A (en) Buried type semiconductor laser device and manufacture thereof
KR100239499B1 (en) Method for manufacturing semiconductor laser diode and semiconductor laser diode
KR950006987B1 (en) Semiconductor laser diode manufacturing method
KR100265801B1 (en) Laser diode and its manufacturing method
KR950011998B1 (en) Manufacturing method of semiconductor laser diode
KR100366697B1 (en) Semiconductor laser diode and manufacturing method thereof
KR100265804B1 (en) Semiconductor laser diode
KR100283958B1 (en) Laser diode fabricating method
KR970009732B1 (en) Fabrication method of planar pin photodiode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051118

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee